• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    General -lumps,-breathers,and hybrid solutions to(2+1)-dimensional generalized KDKK equation?

    2021-05-06 08:54:34PeisenYuan袁培森JiaxinQi齊家馨ZiliangLi李子良andHongliAn安紅利
    Chinese Physics B 2021年4期
    關(guān)鍵詞:齊家李子紅利

    Peisen Yuan(袁培森), Jiaxin Qi(齊家馨), Ziliang Li(李子良), and Hongli An(安紅利),?

    1College of Artificial Intelligence,Nanjing Agricultural University,Nanjing 210095,China

    2College of Oceanic and Atmospheric Sciences,Ocean University of China,Qingdao 266100,China

    3College of Sciences,Nanjing Agricultural University,Nanjing 210095,China

    Keywords: KDKK equation, Hirota bilinear method, high-order lump solution, T-breather solution, hybrid solution

    1. Introduction

    Exact solutions of nonlinear equations are very important. Not only because exact solutions can help us to obtain some useful physical information hidden in the model, but also because they can work as benchmarks to test and improve numerical algorithms, which may lead to some deeper applications.[1]Therefore, many experts have devoted themselves to constructing exact solutions of nonlinear equations and lots of effective methods have been proposed, including the inverse scattering theory, B¨acklund transformation, Darboux transformation, Wronskian and Casoratian techniques,variable separation approach, Hirota bilinear method, and so on.[2–17]

    Among the above methods,the Hirota bilinear method is more popularly used to construct N-soliton solutions,breather and lump solutions of nonlinear equations due to its directness and simplicity. Solitons are stable waves. Breathers are partially localized on a background and periodic in a certain direction. While, lumps are localized in all directions in the space. Such lump solutions have been considered as perfect prototypes for explaining rogue wave dynamics in financial crisis, nonlinear optics, plasmas, oceanography, and Bose–Einstein condensates.[18–21]In recent years, the researches on the breather and lump solutions as well as their interactions have been a hot topic in physical areas and many results have been achieved. For example, Yue et al. derived N solitons, breather, and lump solutions of the nonlinear evolution equation.[22]Wang et al. obtained breather solutions of the Ito equation and analyzed their dynamics.[23]Liu et al.derived the breathers, lumps, and interaction solutions of the KP equation.[24]Zhang and Ma presented a class of lump solution of the (2+1)-dimensional SK equation via the generalized bilinear forms.[25]Zhang et al. gave the breather and lump solutions for the nonlocal KP equation,[26]and Yong et al., based on symbolic computation, derived the lump solutions for the KPI equation.[27]Huang et al. investigated interaction solutions between kink soliton solutions and lumps of the generalized KP equation.[28]Wang and Zhang obtained some lump solutions for a reduced Hirota equation.[29]Ma and his coworkers computed lumps solutions for two combined fourth-order soliton equations[30,31]and nonlinear dispersive waves with higher-order dispersion relations.[32]And they showed that such lumps solutions had rich dynamical behaviors. Meanwhile,there is also some work on breather and lump solutions of other nonlinear equations.[33–38]However,we find that most work mentioned above only focuses on the low-order lump and breather solution.For the high-order solutions of breathers,lumps and their interactions,little work has been done due to the difficulty in selecting suitable parameters involved in N-solitons. However, such high-order breathers,lumps as well as the interaction solutions, compared with the corresponding 1-lump and 1-breather, have more importance and wide applications in real world. Therefore,it is worthy of studying the high-order breather,lump solutions,and interactions of nonlinear equations.

    As analyzed above, in the present work we shall investigate higher-order breathers, lumps, and their interactions for the (2+1)-dimensional generalized KDKK equation, which takes a form of

    where u=u(x,y,t) and hi(i=1,2,...,8) are real constants.This equation has been widely used in ocean dynamics, fluid mechanics, and plasma physics.[39–41]It is noted that under some special cases, the equation (1) corresponds to different physical models. For example, when h1=h2=0, h3=1,h4=h5=?5, h6=?15, h7=15, and h8=45, the equation turns to the (2+1)-dimensional B-type KP equation for the shallow water wave in fluids or electrostatic wave potential in plasmas.[42–45]While when h2=6h1, h6=4h5, and h3=h4=h7=h8=0, the equation becomes to the (2+1)-dimensional breaking soliton equation for the interactions between a long wave propagating along the x axis and a Riemann wave along the y axis.[46,47]Therefore, it would be of great interest to study the general (2+1)-dimensional KDKK equation(1).

    To conclude,motivated by the significance of the (2+1)-dimensional KDKK equation and wide applications of the lump and breather solutions,here we would like to investigate the general high-order lumps, breathers as well as their interactions. We hope that the results obtained can help experts to understand and study the propagations of nonlinear localized waves as well as other physical phenomena related. The outline of the paper is arranged as follows. In Section 2,by introducing a special transformation and coefficient constraint,the N-soliton solutions of the (2+1)-dimensional KDKK equation(1) are constructed. In Section 3, by using a long wave limit to the 2M-solitons, the general M-lump solutions are derived and their dynamical behaviors are analyzed. In Section 4, by restricting the conjugate conditions to the parameters, the Tbreather solutions are constructed. Numerical simulations are implemented,which show that the types of breathers and their propagation properties are determined by the parameters selected. In Section 5,some interaction solutions are given. Finally,a short conclusion is attached in the last section.

    2. N-soliton solutions to the KDKK equation

    In this section, our concern is with the construction of N-soliton solutions to the (2+1)-dimensional KDKK equation (1). For this purpose, a special transformation is introduced via

    It is seen that under the coefficient constraints

    Equation (1) can be readily written into the Hirota bilinear form

    where Dx,Dy,and Dtare the bilinear derivative operators defined by

    with α,β,and γ being nonnegative integers.

    According to the Hirota bilinear direct method,[3]the N-soliton solutions to the (2+1)-dimensional KDKK equation(1)are derived

    where

    3. M-lump solutions to the KDKK equation

    with

    On taking a limit when ki→0,we get

    where

    where

    When we apply the long wave limit of ki→0 to f2and omit the constant factor k1k2,we can get

    where θ1,θ2,and Bijare defined by

    with pibeing complex constants. In order to obtain the lump solution,we set p2=p?1=a?ib in Eq.(15),so the expression of f2is reducible to

    where

    When requiring the relation

    and substituting Eq.(16)into the following expression:

    we obtain the 1-lump solution

    The lump solution keeps moving along the line

    with

    It can be checked that the solution (18) is a constant and keeps moving in a permanent lump status at the velocity of vx=?h4(a2+b2)and vy=2ah4.The 1-lump solution reaches its maximum

    However,when(x,y)→∞,the solution decays. Here we take the parameters a=b=1 to exhibit the dynamical behaviors the 1-lump solution may posses. It can be seen from Fig.1 that the 1-lump solution shows bright and dark solitons’ behaviors. Moreover, such a solution keeps its velocity, shape,and amplitude unchanged during propagations.

    f4 = θ1θ2θ3θ4+B12θ3θ4+B13θ2θ4+B14θ2θ3

    +B23θ1θ4+B24θ1θ3+B34θ1θ2+B12B34

    where

    When taking

    In the above discussion, we have shown that when N =2M and taking the long wave limit to the 2M-solitons,the general M-lump solutions will be generated. Such lump solutions are nonsingular and rationally localized. In the following,we shall demonstrate that when only adopting certain conjugation constrains to the parameters involved in 2T-solitons,the general T-breather solutions will be constructed.

    Fig.1. Time evolutions of the 1-lump solution on xoy plane. The time is chosen as t=3(i?2)for(ai)and(bi).

    Fig.2. Time evolutions of the 2-lump solution on xoy plane. The time is chosen as t=2i?4 for(ai)and(bi).

    Fig.3. Time evolutions of the 3-lump solution on xoy plane. The time is chosen as t=i?2 for(ai)and(bi).

    4. T-breather solutions to the KDKK equation

    In this section, we plan to construct high-order breather solutions to the KDKK equation. Hence, we introduce the conjugate constraints:

    to the parameters involved in the 2T-soliton solutions(5)and(6). For example,when N=2,one can take the complex conjugate conditions as

    On inserting the above relation into Eq.(5),we can obtain the first-order breather solution,which is expressed by

    with

    we can obtain the second-order breather solutions. The propagations features and dynamical behaviors of these 2-breather solutions are detected in Fig.5. It can be seen from these figures that the 2-breather solutions consist of two first-order breathers. Like the 1-breather solution, they also exhibit three types of dynamical behaviors due to the parameters{ki,pi} (i=1,2,3,4) selected. For example, when kiare all pure imaginary numbers and piare complex numbers, the 2-breather solutions are shown to be periodic along the x axis,see Figs.5(a1)and 5(b1). When kiare complex numbers and piare pure imaginary numbers, the 2-breather solutions turn to be periodic along the directions which are perpendicular to each other, see Figs. 5(a2) and 5(b2). While when k1is real number, p1is pure imaginary number and k3, p3are complex numbers, the 2-breathers are shown be periodic along the directions intersecting each other at a certain angle, see Figs.5(a3)and(b3).

    Fig.4. Three types of behaviors of the first-order breather solution in xoy plane. The parameters are chosen as follows. In panels(a1)and(b1):k1=1/5, p1=(2/3)i;in panels(a2)and(b2): k1=(1/2)i, p1=(1/3)i;in panels(a3)and(b3): k1=1/2+i,p1=1/2+i.

    Fig.5. Three types of behaviors of the 2-breather solution in xoy plane. The parameters are chosen as follows. In panels(a1)and(b1): k1=i,k3=(1/2)i, p1=1+i, p3=?1+(1/2)i;in panels(a2)and(b2):k1=(1/3)+i,k3=?1+(1/2)i, p1=(2/3)i, p3=?(1/2)i;in panels(a3)and(b3): k1=1/4,k3=(1/2)+i, p1=(2/3)i, p3=(1/2)+i.

    5. Hybrid wave solutions of the KDKK equation

    5.1. Two kinds of hybrid solutions for N=3

    When N=3,from Eq.(5),one can easily write down the expression of f3,which is

    where ηi, Aij(i,j=1,2,3) are described in Eq. (6). In this subsection, two different techniques are applied to Eq. (30)and thereby two kinds of hybrid solutions are constructed.One is a kind of solution mixed by one lump and a stripe soliton via the long wave limit method established in Case 1. The other is a kind of solution combined by one breather and a strip soliton via the conjugate constraint method established in Case 2.

    Case 1An interaction solution between one lump and a stripe soliton

    where

    Fig.6. Interaction behaviors of the hybrid solution given in Eq.(31). The time is chosen as t=3i?6 in panels(ai)and(bi).

    Fig.7. Interaction behaviors of the hybrid solution given in Eq.(34). The parameters are chosen as p1=(5/4)i,k1=1/4,k3=2,and p3=2.The time is chosen as t=3i?6 for the figure(ai)and(bi).

    Case 2An interaction solution between one breather and a stripe soliton

    Substituting them into f3in Eq.(30),then we obtain

    where

    Fig.8. Interaction behaviors of the hybrid solution given in Eq.(34). The parameters are chosen as p1=1/2+2i,k1=1/2+i, p3=1.5,and k3=1.2. The time is chosen as t=3i?6 for the figure(ai)and(bi).

    5.2. Three kinds of hybrid solutions for N=4

    When N =4, from Eq. (5), one can get the expression of f4. By taking long wave limit and restricting the conjugate conditions to f4,three kinds of hybrid wave solutions can be obtained. Details are as follows.

    Case 1 Two hybrid solutions between one lump and one breather or two bell-shaped solitons

    where

    Fig.9. Interactions of the hybrid solution between one lump and one breather. The parameters are chosen as p1 ==1+i,k3 ==(7/10)i,and p3==2i. The time is chosen as t=3i?6 for(ai)and(bi).

    Fig.10. Interactions of the hybrid solution between one lump and one breather. The parameters are chosen as p1==1+(3/2)i,k3==1/3,and p3==(11/10)i. The time is chosen as t=3i?6 for(ai)and(bi).

    Fig.11. Interactions of the hybrid solution between one lump and two bell-shaped solitons. The parameters are chosen as p1 = =1+i,k3=1.2, p3=?1.1,k4=0.8, p4=?0.9. The time is chosen as t=5i?10 for(ai)and(bi).

    Fig.12. Interaction behaviors between the breather and two bell-shaped solitons. The parameters are chosen by p1==(13/12)i,k1==2/5, p3=?0.5, p4=?2/3,k3=1,and k4=1.8. The time is chosen as t=3i?6 for(ai)and(bi).

    Fig.13. Interaction behaviors between the breather and two bell-shaped solitons. The parameters are chosen by p1==(1/2)+i,k1==(1/2)+i, p3=?0.5, p4=?2/3,k3=1,and k4=1.8. The time is chosen as t=3i?6 for(ai)and(bi).

    (ii) When p2=and p3, p4, k3, and k4are real num-Substituting them into the expression of f4given by Eq. (5),we obtain an interaction solution between one breather and two bell-shaped solitons. When we take the parameters as p1==(13/12)i, k1==2/5, p3=?0.5, p4=?2/3,k3= 1, and k4= 1.8, and the breather in the hybrid solution is shown to be periodic along the y axis, seen in Fig.12.While when we take p1==1/2+i, k1==(1/2)+i,p3=?0.5, p4=?2/3, k3=1, and k4=1.8, the breather in the hybrid solution is shown to be periodic along the directions intersecting to xoy plane,seen in Fig.13.

    6. Conclusion

    The investigation on exact solutions of the nonlinear equations is important and necessary because such solutions can better help us to understand the physical phenomena described by the model and lead to further applications. In this paper, we use the special transformation (2) to construct Nsoliton solutions of the(2+1)-dimensional generalized KDKK equation. By taking the long wave limit and the complex conjugation conditions to the N-solitons,we obtain the general-lumps, T-breathers, and localized interaction solutions. Numerical simulations show that for the-lumps, they usually collide with each other at certain time and their interactions are nonelastic (see Figs. 2 and 3). For the T-breathers and hybrid solutions, they have much richer dynamical behaviors than lumps, (see Figs. 4–13). Such behaviors are affected by the parameters selected. However, for the more complicated interaction solutions, due to the complexity in selecting the parameters,it is rather difficult to study their interactions,but they are worthy of deep investigation. In addition,how to use the solutions obtained to explain some physical phenomena,for example catastrophic weather and huge waves,is deserved our considerations. Meanwhile,whether the KDKK equation admits the multiple wave solutions is also an interesting questions deserved investigation. Based on the significance of the localized wave solutions and wide application of the KDKK equation, all these questions mentioned above will be further studied in the near future.

    猜你喜歡
    齊家李子紅利
    推進充分就業(yè) 實現(xiàn)“人口紅利”向“人才紅利”轉(zhuǎn)變
    華人時刊(2023年13期)2023-08-23 05:42:52
    一次難忘的生日
    秋天
    李子有多少
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    黃河流域燦爛的齊家文化——陶器
    收藏界(2019年2期)2019-10-12 08:26:10
    齊家文化玉器賞鑒
    收藏界(2019年3期)2019-10-10 03:16:22
    玻璃清潔器
    富硒紅利一觸即發(fā)
    健康紅利
    商周刊(2017年26期)2017-04-25 08:13:03
    欧洲精品卡2卡3卡4卡5卡区| 老司机福利观看| 人妻久久中文字幕网| 国产真人三级小视频在线观看| 黄色成人免费大全| 免费观看精品视频网站| 久久久久久国产a免费观看| 亚洲av日韩精品久久久久久密| 一夜夜www| 老鸭窝网址在线观看| 精品熟女少妇八av免费久了| 色综合欧美亚洲国产小说| 亚洲精品久久成人aⅴ小说| 黄片大片在线免费观看| 国产一区二区三区视频了| 一卡2卡三卡四卡精品乱码亚洲| 久9热在线精品视频| 在线看三级毛片| 国产区一区二久久| 免费搜索国产男女视频| 色综合亚洲欧美另类图片| 成人av一区二区三区在线看| 欧美最黄视频在线播放免费| 久久午夜亚洲精品久久| 一个人免费在线观看的高清视频| 亚洲专区中文字幕在线| 日本一本二区三区精品| 夜夜夜夜夜久久久久| 日本 欧美在线| 亚洲成av片中文字幕在线观看| 自线自在国产av| 色老头精品视频在线观看| 我的亚洲天堂| 成人国语在线视频| 99riav亚洲国产免费| 久久久久久大精品| 国产精品香港三级国产av潘金莲| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲精品久久久久久毛片| 中文字幕av电影在线播放| 女警被强在线播放| 69av精品久久久久久| 国产私拍福利视频在线观看| 97碰自拍视频| av免费在线观看网站| 真人做人爱边吃奶动态| 91国产中文字幕| 成年版毛片免费区| 窝窝影院91人妻| 精品欧美一区二区三区在线| 俺也久久电影网| av在线天堂中文字幕| 久久精品国产亚洲av高清一级| 两个人视频免费观看高清| av有码第一页| 亚洲国产精品sss在线观看| 亚洲 欧美 日韩 在线 免费| 中文资源天堂在线| 久久国产精品人妻蜜桃| 中文字幕精品亚洲无线码一区 | 国产国语露脸激情在线看| 日韩欧美一区二区三区在线观看| 亚洲 国产 在线| 亚洲欧美精品综合一区二区三区| 一级毛片高清免费大全| 成人18禁在线播放| 日韩一卡2卡3卡4卡2021年| 这个男人来自地球电影免费观看| 99在线人妻在线中文字幕| 一二三四社区在线视频社区8| 午夜福利在线在线| avwww免费| 欧美午夜高清在线| 国产精品免费一区二区三区在线| 长腿黑丝高跟| av视频在线观看入口| 长腿黑丝高跟| 国产精品久久久久久精品电影 | 一级作爱视频免费观看| 亚洲五月天丁香| 少妇裸体淫交视频免费看高清 | 午夜福利在线在线| 麻豆久久精品国产亚洲av| 老熟妇乱子伦视频在线观看| 黑人操中国人逼视频| 成人一区二区视频在线观看| 国产人伦9x9x在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品 国内视频| 国产亚洲精品久久久久5区| 欧美日韩中文字幕国产精品一区二区三区| 在线永久观看黄色视频| 99热只有精品国产| 亚洲七黄色美女视频| 久久这里只有精品19| 欧美黄色淫秽网站| 欧美日韩中文字幕国产精品一区二区三区| 十八禁人妻一区二区| 亚洲av电影不卡..在线观看| 韩国av一区二区三区四区| 欧美激情久久久久久爽电影| 中文亚洲av片在线观看爽| 精品久久久久久久久久免费视频| 无人区码免费观看不卡| 欧美丝袜亚洲另类 | 神马国产精品三级电影在线观看 | 人妻久久中文字幕网| 久久亚洲精品不卡| 精品卡一卡二卡四卡免费| 精品午夜福利视频在线观看一区| 亚洲男人天堂网一区| 国产成人系列免费观看| 少妇 在线观看| 男女做爰动态图高潮gif福利片| 草草在线视频免费看| 成人三级黄色视频| 香蕉丝袜av| 性欧美人与动物交配| 色婷婷久久久亚洲欧美| 亚洲精品在线观看二区| 国产一卡二卡三卡精品| cao死你这个sao货| 亚洲色图 男人天堂 中文字幕| 成人亚洲精品av一区二区| 人人妻人人看人人澡| 精品少妇一区二区三区视频日本电影| 好男人电影高清在线观看| 哪里可以看免费的av片| 国产色视频综合| 制服人妻中文乱码| 亚洲一区二区三区不卡视频| 精品国产亚洲在线| 在线观看免费视频日本深夜| 在线观看一区二区三区| 最近最新免费中文字幕在线| 久久人妻av系列| 黄色 视频免费看| 精品卡一卡二卡四卡免费| 一区二区三区国产精品乱码| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站 | 中出人妻视频一区二区| 好看av亚洲va欧美ⅴa在| 国产亚洲精品第一综合不卡| 国产精品久久久人人做人人爽| 一个人观看的视频www高清免费观看 | 亚洲国产精品久久男人天堂| 欧美成人午夜精品| 亚洲久久久国产精品| 久久午夜亚洲精品久久| 一级毛片精品| 亚洲专区中文字幕在线| 长腿黑丝高跟| 久久天躁狠狠躁夜夜2o2o| 国产v大片淫在线免费观看| 真人做人爱边吃奶动态| 久久精品人妻少妇| 国产精品九九99| 青草久久国产| av福利片在线| 人妻久久中文字幕网| 美女国产高潮福利片在线看| 一a级毛片在线观看| 欧美日韩乱码在线| 国产麻豆成人av免费视频| 成人欧美大片| 一级a爱视频在线免费观看| 久久久久亚洲av毛片大全| 国产黄a三级三级三级人| 欧美人与性动交α欧美精品济南到| aaaaa片日本免费| 51午夜福利影视在线观看| 国产97色在线日韩免费| 黄色毛片三级朝国网站| 午夜两性在线视频| www日本黄色视频网| or卡值多少钱| 99热6这里只有精品| 久久久久久亚洲精品国产蜜桃av| 久久久久亚洲av毛片大全| 亚洲精品色激情综合| 村上凉子中文字幕在线| 一区二区日韩欧美中文字幕| 欧美zozozo另类| 国产人伦9x9x在线观看| 久久国产精品影院| 欧美在线黄色| 国产精品日韩av在线免费观看| 国产成人精品久久二区二区91| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站高清观看| 欧美性长视频在线观看| 一区二区三区激情视频| 久久亚洲精品不卡| 亚洲狠狠婷婷综合久久图片| 麻豆av在线久日| 国产成人啪精品午夜网站| 国产免费男女视频| 中文亚洲av片在线观看爽| 免费看a级黄色片| 在线免费观看的www视频| 国产亚洲精品久久久久5区| 在线观看免费午夜福利视频| 两个人看的免费小视频| 无限看片的www在线观看| 午夜视频精品福利| 久久久国产欧美日韩av| 国产91精品成人一区二区三区| 国产精品日韩av在线免费观看| 一边摸一边抽搐一进一小说| 伦理电影免费视频| 国产精品免费视频内射| 长腿黑丝高跟| tocl精华| 国产熟女xx| 巨乳人妻的诱惑在线观看| 日日干狠狠操夜夜爽| 久久久久国产一级毛片高清牌| 岛国在线观看网站| 2021天堂中文幕一二区在线观 | 91麻豆av在线| 久久精品国产综合久久久| 国产精品综合久久久久久久免费| 成人三级黄色视频| 亚洲九九香蕉| aaaaa片日本免费| 男男h啪啪无遮挡| 欧美又色又爽又黄视频| 露出奶头的视频| 一进一出抽搐动态| 亚洲av片天天在线观看| www.自偷自拍.com| 国产精品二区激情视频| 欧美在线一区亚洲| 国产欧美日韩一区二区精品| 中文字幕最新亚洲高清| 日韩国内少妇激情av| 成人特级黄色片久久久久久久| 欧美黄色片欧美黄色片| 后天国语完整版免费观看| 精品高清国产在线一区| www日本黄色视频网| 国产高清有码在线观看视频 | 亚洲男人天堂网一区| 高清毛片免费观看视频网站| 久久久久精品国产欧美久久久| 国产激情欧美一区二区| 黑人巨大精品欧美一区二区mp4| 国产不卡一卡二| 淫秽高清视频在线观看| 国产精品美女特级片免费视频播放器 | 黄网站色视频无遮挡免费观看| 国产一区在线观看成人免费| 欧美成狂野欧美在线观看| 成人一区二区视频在线观看| 亚洲国产毛片av蜜桃av| 精品久久久久久久末码| 免费观看精品视频网站| 91成人精品电影| 欧美成人性av电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看影片大全网站| 国产伦人伦偷精品视频| 一本精品99久久精品77| 91字幕亚洲| 亚洲aⅴ乱码一区二区在线播放 | 老司机午夜福利在线观看视频| 婷婷精品国产亚洲av| 国产精品一区二区三区四区久久 | 精品福利观看| 在线观看日韩欧美| 精华霜和精华液先用哪个| 一级a爱片免费观看的视频| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 少妇熟女aⅴ在线视频| 午夜福利一区二区在线看| 18禁裸乳无遮挡免费网站照片 | 怎么达到女性高潮| 久久久久亚洲av毛片大全| a级毛片在线看网站| 中文字幕最新亚洲高清| 国产爱豆传媒在线观看 | 国产亚洲精品久久久久5区| www.熟女人妻精品国产| 亚洲国产欧美日韩在线播放| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 国产爱豆传媒在线观看 | 国产真实乱freesex| 国产精品亚洲美女久久久| 男女做爰动态图高潮gif福利片| 在线观看日韩欧美| 亚洲色图av天堂| 19禁男女啪啪无遮挡网站| 很黄的视频免费| 757午夜福利合集在线观看| 久久久久久久久久黄片| bbb黄色大片| 国产精品亚洲美女久久久| 他把我摸到了高潮在线观看| 青草久久国产| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠躁躁| а√天堂www在线а√下载| www.精华液| 妹子高潮喷水视频| 精品久久久久久久毛片微露脸| 亚洲一区高清亚洲精品| 亚洲色图av天堂| 免费高清视频大片| 欧美黄色淫秽网站| 夜夜看夜夜爽夜夜摸| 91成年电影在线观看| 日韩欧美在线二视频| 亚洲成人久久性| 69av精品久久久久久| 亚洲专区字幕在线| 免费观看人在逋| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 99精品在免费线老司机午夜| 亚洲精品美女久久av网站| 精品第一国产精品| 久久亚洲精品不卡| 日本在线视频免费播放| 久久精品国产亚洲av香蕉五月| 精品午夜福利视频在线观看一区| 亚洲国产毛片av蜜桃av| 可以免费在线观看a视频的电影网站| 亚洲av成人不卡在线观看播放网| 黄色片一级片一级黄色片| 国产午夜福利久久久久久| 丝袜人妻中文字幕| 在线观看免费视频日本深夜| 久久久久久久精品吃奶| 国产乱人伦免费视频| 亚洲av熟女| 欧美绝顶高潮抽搐喷水| 久久精品国产亚洲av高清一级| 国产伦在线观看视频一区| 视频区欧美日本亚洲| 可以在线观看毛片的网站| 十八禁网站免费在线| 级片在线观看| 久久久久久久久久黄片| 高潮久久久久久久久久久不卡| 1024香蕉在线观看| 国产aⅴ精品一区二区三区波| 男人舔女人下体高潮全视频| 亚洲男人的天堂狠狠| 美女大奶头视频| 欧美黄色淫秽网站| 国产又爽黄色视频| 亚洲国产中文字幕在线视频| 久久亚洲精品不卡| 级片在线观看| 88av欧美| 午夜久久久久精精品| 国产成人系列免费观看| 青草久久国产| 搞女人的毛片| 香蕉av资源在线| 亚洲av成人一区二区三| 97人妻精品一区二区三区麻豆 | 啦啦啦韩国在线观看视频| 午夜a级毛片| 午夜老司机福利片| 欧美三级亚洲精品| av在线天堂中文字幕| 美女扒开内裤让男人捅视频| 日韩成人在线观看一区二区三区| 麻豆国产av国片精品| 在线观看66精品国产| 亚洲欧美一区二区三区黑人| 啦啦啦韩国在线观看视频| 亚洲国产看品久久| 中文字幕人妻熟女乱码| 成人国产综合亚洲| 亚洲av日韩精品久久久久久密| xxxwww97欧美| 又黄又爽又免费观看的视频| 国产亚洲欧美在线一区二区| 成人18禁在线播放| 亚洲自拍偷在线| 欧美色视频一区免费| 91九色精品人成在线观看| 日韩欧美一区二区三区在线观看| 日韩欧美国产在线观看| 日韩欧美免费精品| 欧美一级a爱片免费观看看 | 波多野结衣巨乳人妻| 少妇被粗大的猛进出69影院| 一本大道久久a久久精品| 一本大道久久a久久精品| 他把我摸到了高潮在线观看| 久久午夜亚洲精品久久| 一级毛片女人18水好多| 成人一区二区视频在线观看| 成人三级黄色视频| 午夜精品久久久久久毛片777| 欧美国产精品va在线观看不卡| 国产av不卡久久| 午夜久久久久精精品| 国产三级在线视频| 国产精华一区二区三区| 久久久久免费精品人妻一区二区 | 国产私拍福利视频在线观看| 午夜老司机福利片| 日本熟妇午夜| 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色| 国产成人欧美| 18美女黄网站色大片免费观看| 色综合婷婷激情| 亚洲久久久国产精品| 最新美女视频免费是黄的| 美女大奶头视频| 男人的好看免费观看在线视频 | 夜夜躁狠狠躁天天躁| 嫩草影视91久久| а√天堂www在线а√下载| 国产精品永久免费网站| 欧美亚洲日本最大视频资源| 久久久久久久午夜电影| 特大巨黑吊av在线直播 | 日日干狠狠操夜夜爽| 正在播放国产对白刺激| 99国产极品粉嫩在线观看| 亚洲欧美一区二区三区黑人| 久久午夜综合久久蜜桃| 欧美又色又爽又黄视频| av超薄肉色丝袜交足视频| 成人精品一区二区免费| 国产黄a三级三级三级人| 精品国产乱子伦一区二区三区| 日韩欧美国产一区二区入口| 午夜福利在线观看吧| 国产伦一二天堂av在线观看| 最好的美女福利视频网| 亚洲av美国av| 国产精品永久免费网站| 99精品在免费线老司机午夜| 亚洲国产欧美日韩在线播放| 视频在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 久久精品国产清高在天天线| 性欧美人与动物交配| 人人妻,人人澡人人爽秒播| 欧美日韩福利视频一区二区| 国产一级毛片七仙女欲春2 | 热re99久久国产66热| 黄色视频不卡| 国产在线精品亚洲第一网站| 日韩欧美一区二区三区在线观看| 校园春色视频在线观看| 亚洲国产精品999在线| x7x7x7水蜜桃| 夜夜看夜夜爽夜夜摸| 亚洲精品久久国产高清桃花| 国产精品99久久99久久久不卡| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲| 久久久国产精品麻豆| 国产精品野战在线观看| 黄色视频不卡| 国产激情偷乱视频一区二区| 亚洲av成人av| 18禁黄网站禁片午夜丰满| 欧美黑人欧美精品刺激| 桃色一区二区三区在线观看| 精品电影一区二区在线| 欧美成狂野欧美在线观看| 日韩欧美在线二视频| 国产亚洲精品综合一区在线观看 | 大型黄色视频在线免费观看| 丝袜人妻中文字幕| 国产亚洲精品久久久久久毛片| 啪啪无遮挡十八禁网站| 黑人操中国人逼视频| 国产一区二区在线av高清观看| 中文字幕av电影在线播放| 亚洲熟妇中文字幕五十中出| 久久久久久久久免费视频了| 国内揄拍国产精品人妻在线 | 日韩中文字幕欧美一区二区| 一边摸一边抽搐一进一小说| 国产亚洲av高清不卡| 亚洲五月婷婷丁香| 亚洲中文字幕一区二区三区有码在线看 | 91麻豆av在线| 在线观看一区二区三区| 法律面前人人平等表现在哪些方面| 18禁黄网站禁片免费观看直播| 久久久久久亚洲精品国产蜜桃av| 亚洲成人精品中文字幕电影| 久久久国产成人精品二区| 一进一出抽搐gif免费好疼| 色播亚洲综合网| 欧美国产精品va在线观看不卡| 久久久久久久精品吃奶| 亚洲色图av天堂| 日韩高清综合在线| 一级a爱视频在线免费观看| 国内毛片毛片毛片毛片毛片| 亚洲中文日韩欧美视频| 亚洲人成77777在线视频| 观看免费一级毛片| 成人三级黄色视频| 精品久久蜜臀av无| 日韩精品青青久久久久久| 亚洲成人久久爱视频| 日本五十路高清| 成年免费大片在线观看| av天堂在线播放| 欧美丝袜亚洲另类 | 18禁黄网站禁片午夜丰满| 久久久久亚洲av毛片大全| 国产精品亚洲av一区麻豆| 欧美av亚洲av综合av国产av| 成熟少妇高潮喷水视频| 国产一区在线观看成人免费| 国产精品 欧美亚洲| 成年女人毛片免费观看观看9| 日韩成人在线观看一区二区三区| 99热6这里只有精品| 伊人久久大香线蕉亚洲五| 中文字幕精品亚洲无线码一区 | videosex国产| 黄色a级毛片大全视频| 在线观看一区二区三区| 两人在一起打扑克的视频| 亚洲国产欧美日韩在线播放| 亚洲av熟女| 欧美日本视频| 色综合站精品国产| 亚洲精品av麻豆狂野| 一二三四社区在线视频社区8| 久久人妻av系列| 国产主播在线观看一区二区| 精品一区二区三区四区五区乱码| 成熟少妇高潮喷水视频| 国产野战对白在线观看| 欧美成人免费av一区二区三区| 国产主播在线观看一区二区| 亚洲天堂国产精品一区在线| 天堂动漫精品| 久久国产亚洲av麻豆专区| 久久久久久大精品| 一本综合久久免费| 两个人视频免费观看高清| 午夜激情av网站| 俺也久久电影网| 午夜视频精品福利| 日本撒尿小便嘘嘘汇集6| 国产精品久久久av美女十八| 色av中文字幕| 久久国产精品男人的天堂亚洲| 欧美成人免费av一区二区三区| 两个人免费观看高清视频| 日本在线视频免费播放| 亚洲成人国产一区在线观看| 成人一区二区视频在线观看| 国产精品自产拍在线观看55亚洲| 中文字幕精品免费在线观看视频| 亚洲黑人精品在线| 精品国产亚洲在线| 无人区码免费观看不卡| 国产精品久久久av美女十八| 国内久久婷婷六月综合欲色啪| 在线免费观看的www视频| 日日爽夜夜爽网站| 制服丝袜大香蕉在线| 手机成人av网站| 黄片大片在线免费观看| 日韩免费av在线播放| 亚洲成国产人片在线观看| 午夜福利一区二区在线看| 啦啦啦观看免费观看视频高清| 一个人免费在线观看的高清视频| 日本熟妇午夜| 一本久久中文字幕| 好男人电影高清在线观看| 精品久久蜜臀av无| 国产一卡二卡三卡精品| 日韩大尺度精品在线看网址| 露出奶头的视频| 成人国产综合亚洲| 国产色视频综合| 国产av在哪里看| 法律面前人人平等表现在哪些方面| 88av欧美| 韩国av一区二区三区四区| 老鸭窝网址在线观看| 老司机靠b影院| 亚洲一区高清亚洲精品| 色综合亚洲欧美另类图片| 窝窝影院91人妻| 黄频高清免费视频| 熟女电影av网| 热99re8久久精品国产| 国产又色又爽无遮挡免费看| xxx96com| 国产精品精品国产色婷婷| 曰老女人黄片| 在线观看免费日韩欧美大片| 久久久久亚洲av毛片大全| 午夜久久久在线观看| 亚洲久久久国产精品| 国产成+人综合+亚洲专区| www.www免费av| 韩国精品一区二区三区| 精品日产1卡2卡|