• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors?

    2021-05-06 08:54:34HaoZou鄒浩LinAnYang楊林安XiaoHuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2021年4期

    Hao Zou(鄒浩), Lin-An Yang(楊林安), Xiao-Hua Ma(馬曉華), and Yue Hao(郝躍)

    The State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: AlGaN/GaN,high electron mobility transistors(HEMTs),barrier layer,notch

    1. Introduction

    Due to the superior performances of the high electron mobility transistors(HEMTs)based on AlGaN/GaN heterojunction structure in a wide bandgap,such as high breakdown voltage,high electron velocity,and high current density,they have received a lot of attention in the field of high power and high frequency applications than these HEMTs based on GaAs.[1–6]And many methods have been introduced to improve the high power characteristics, among them the field plate is adopted most.[7–11]There are many types of field plate structures,such as conventional gate field plate,[9,12–14], recessed gate field plate,[15]and Γ-gate with air bridge structure.[16,17]The field plate structure aims to reduce the peak electric field beside the gate electrode,eventually improve the breakdown characteristic. The notch structure in the AlGaN barrier layer proves to reduce the concentration of the two-dimensional electron gas(2DEG) within the channel and also suppress the peak electric field beside the gate electrode.[18–23]The notch structure is achieved by an inductively coupled plasma (ICP) etching system at the AlGaN barrier layer, and the notch structure is parallel to the gate. In this work,the 5 types of notch-structure AlGaN/GaN HEMTs are compared with each other,and their structures to be investigated are named as follows: type-1 referring to the conventional AlGaN/GaN HEMT without a notch structure, type-2 denoting the notch-structure HEMT where the notch is next to the gate and has a depth of 10 nm,type-3 representing the notch-structure HEMT with the notch position being the same as the type-2 but a depth being 15 nm,type-4 being the notch-structure HEMT where the notch is 200 nm away from the gate and has a depth of 10 nm,type-5 signifying the notch-structure HEMT with the notch position being the same as the type-4 but the notch depth being 15 nm, and the type-6 meaning the double-notch structure HEMT where the left notch is 200 nm away from the gate and the right notch is 200 nm away from the left one and they have the same notch depth of 15 nm. Measurements show that the notch-structure HEMTs exhibit superior DC and RF performances compared with the conventional AlGaN/GaN HEMT, and the doublenotch structure one exhibits the best performance. Moreover,each of all the AlGaN/GaN HEMTs in this work has an I-gate length of 0.8 μm,aiming to reduce the difficulty in manufacturing and improve the reliability. The manufacturing process of the notch structure at the AlGaN barrier is compatible with the conventional HEMT one.

    2. Device structure and manufacture

    The AlGaN/GaN heterojunction structure was grown on a 3-in(1 in=2.54 cm)sapphire substrate,and it was achieved by the metal–organic chemical vapor deposition (MOCVD).The thickness of the GaN buffer layer and the AlGaN barrier layer were 2μm and 24 nm,respectively. The AlGaN barrier layer was undoped one and the Al composition was 30%. The cross-sectional sizes of the AlGaN/GaN HEMT are shown in Fig.1.

    Fig.1. Cross-sceional sizes of AlGaN/GaN HEMTs on 3-in sapphire grown by MOCVD.

    The electrical properties of the two-dimensional electron gas were measured at room temperature by the Hall measurement, the carrier density was 9.25×1012cm?2, the mobility of the two-dimensional electron gas was 1863 cm2/(V·s),and the sheet resistance was 361 ?/sq. In order to have a good comparison among these 6 types of AlGaN/GaN HEMTs,they were fabricated on the same wafer. All these HEMTs had the same cell pitch and device feature size. The distance between the source and drain was 3μm,the gate was 0.9μm away from the source,and the width of the device was 50μm. The length and the depth of the notch structures are denoted as Lnand Dn.The sectional views of these 6 types of AlGaN/GaN HEMTs are shown in Fig.2.

    Fig.2. Schematics of AlGaN/GaN HEMTs with various notch structures.

    To fabricate the AlGaN/GaN HEMTs,the manufacturing processes are as follows.

    The first step was to preprocess the wafer. The new wafer was soaked in hydrofluoric acid solution (HF:H2O=2:3)for 30 s to remove the surface contaminants. Then the ohmic contact regions of the source and drain electrode were formed by the electron beam evaporation (EBE) and annealed at 880?C for 30 s in N2ambient. The ohmic contact metal was composed of Ti/Al/Ni/Au with the sickness of 20,160,55,and 45 nm,respectively. Then the AlGaN/GaN HEMTs were isolated by the mesa etching process,and this step was achieved by the inductively coupled plasma(ICP)etching system based on the Cl2and BCl3,and the mesa height was measured to be 120 nm.The next step was the key step to form the notch structure.All of the notch regions were defined by an electron beam lithography system (EBL) in the same step. Since the notch structures of the 6 types of HEMTs were in different forms,the manufacturing process of the notch structure has a sequence.In the notch etching process,an ICP etching system based on the Cl2and BCl3was also adopted, but the etching rate was lower in order to reduce the etching damage. The lower etching rate was obtained by reducing the etching power and the etching gas flow,and the etching depth was controlled by the etching time. Since these proposed notch-structure HEMTs had different depths, in the etching process the Si wafer was used for occlusion. Then a 60-nm SiN passivation layer was deposited on the entire wafer by a plasma-enhanced chemical vapor deposition system(PECVD).In fact,the notch structure was filled with the SiN just like the sectional views shown in Fig.2. And the SEM images of these 6 types of notch structure are shown in Fig.3. The next step was to remove the SiN from the source and drain regions so that the ohmic contact regions could be exposed for metal interconnection, and this step still needs an ICP etching system,but it was based on the CF4and O2. And in order to completely remove the SiN passivation layer,a 20%over-etching rate was adopted. Then the gate regions were defined by the stepper, and before the gate metal deposition the ICP based on the CF4and O2was also used to remove the SiN passivation layer from the gate regions. Then the gate electrode based on the Ni/Au/Ni metal stack was deposited by the electron beam evaporation system(EBE).And the thickness values of the Ni/Au/Ni metal stacks were 45, 200, and 20 nm, respectively. The last step of the manufacturing process was the metal interconnection, which is beneficial to the further test. And the Ti/Au metal stack was also deposited by the electron beam evaporation system(EBE),and the thickness values of the two metals were 20 nm and 200 nm,respectively. The top SEM view of the HEMT is shown in Fig.4.

    Fig.3. SEM images of various notch structures.

    Fig.4. SEM top view of fabricated AlGaN/GaN high electron mobility transistor(HEMT).

    3. Results and discussion

    3.1. Simulation results of electric field distribution

    The electric field distributions of these 6 types of Al-GaN/GaN HEMTs by TCAD simulation are shown in Fig.5.The simulation size parameters of the HEMTs are the same as those mentioned above. The peak electric field appears at a distance of 1.5 μm from the source. The peak electric fields of the 6 types of HEMTs are 3.1 MV/cm,2.96 MV/cm,2.79 MV/cm, 2.80 MV/cm, 2.59 MV/cm, and 2.58 MV/cm.Comparing with the conventional HEMT, the reductions of the notch-structure HEMTs are 4.5%,10%,9.7%,16.5%,and 16.8%,respectively. The conventional HEMT has the highest peak electric field near the gate electrode edge,and the doublenotch structure HEMT has the lowest peak electric field at the same place. The notch structure at the AlGaN barrier layer has a better modulation on the channel electric field because of the closer distance from the channel and the extension of the depletion. Although the notch structure away from the gate at the AlGaN barrier layer causes a lower peak electric field,the notch structure does suppress the peak electric field near the gate electrode edge where the breakdown often happens.Based on the simulation results, the manufacture parameters of the notch structures are determined as mentioned above.

    Fig.5. Electric field distributions of 6 types of AlGaN/GaN HEMTs.

    3.2. Transfer characteristics

    The measured DC I–V transfer characteristics of the 6 types of AlGaN/GaN HEMTs are shown in Fig.6. The gate voltage is from ?4 V to 2 V.The threshold voltage is ?2.7 V for type-1 HEMT,?2.5 V for type-2 HEMT,?2.2 V for type-3 HEMT,?2.4 V for type-4 HEMT,?2.3 V for type-5 HEMT,and ?2.1 V for type-6 HEMT.And their maximum values of drain current (Ids,max) are 498.7, 444.8, 415.4, 431.1, 415.9,and 381.2 mA/mm, respectively. The notch structure at the AlGaN barrier layer plays an important role in increasing the channel resistance,resulting in reducing the drain current.The double-notch structure has the maximal increase of resistance and the minimum drain current.

    Fig.6. Transfer characteristics of AlGaN/GaN HEMTs with various notch structures.

    The transconductance characteristics of these HEMTs are shown in Fig.7. The gate voltage is also from ?4 V to 2 V. The peak transconductance is 129 mS/mm for type-1 HEMT, 126.9 mS/mm for type-2 HEMT, 121.7 mS/mm for type-3 HEMT,125.1 mS/mm for type-4 HEMT,121.3 mS/mm for type-5 HEMT, and 113.7 mS/mm for type-6 HEMT. But the gate voltage swing (GVS) is more important than the peak transconductance in RF application, and the gate voltage swing is defined as the gate voltage range corresponding to a 20%decrease of the peak transconductance. The GVSs of these 6 types of HEMT are 2 V,2.1 V,2.4 V,2.2 V,2.3 V,and 2.6 V,respectively. The concentration of the 2DEG decreases,which reduces the vertical electrical field near the gate electrode,resulting in a lower peak transconductance. Due to the notch structure at the AlGaN barrier layer, the resistance of the channel increases. When the gate voltage increases, the growth rate of the drain current is limited and not so fast as the case of conventional HEMT. And after the transconductance reaches the saturation region, as the gate voltage increased,the extension of the transconductance decreases.[22,23]The notch-structure HEMTs do have an improvement in the GVS.And the double-notch structure HEMT has a maximum GVS,which is a 30%improvement compared with the conventional HEMT.

    Fig.7. Transconductance characteristics of AlGaN/GaN HEMTs with various notch structures.

    3.3. Leakage current characteristics

    The transfer characteristics of the 6 types of HEMTs in logarithmic coordinate system are shown in Fig.8, when the drain voltage is 6 V.the double-notch structure has the lowest drain current, it also has a close relationship with the resistance in the channel. The subthreshold current and the threshold voltage have the same trend.

    The gate leakage current characteristics of these HEMTs are shown in Fig.9,and the gate voltage ranges from ?4 V to 2 V,and the drain voltage is 0 V.The differences in gate leakage current among the 6 types of HEMTs are within an order of magnitude. According to Figs. 8 and 9, we can conclude that the introduction of the notch structure does not cause the surface damage. And the suppression of the peak electrical field crowding at the gate electrode corner reduces the probability that the electrons are injected into the surface, thus reducing the surface leakage.

    Fig.8. Transfer characteristics of AlGaN/GaN HEMTs with various notch structures.

    Fig.9. Gate leakage current characteristics of AlGaN/GaN HEMTs with various notch structures.

    3.4. DC characteristics

    The output I–V characteristics of the 6 types of HEMTs are shown in Fig.10,the gate voltage ranges from ?2 V to 2 V and the drain voltage from 0 V to 10 V.Their maximum current densities are 560 mA/mm,535.7 mA/mm,491.8 mA/mm,513 mA/mm,484.4 mA/mm,and 401.1 mA/mm,respectively.

    Fig.10. Output I–V characteristics of AlGaN/GaN HEMTs with various notch structures.

    The pulsed I–V characteristics of these HEMTs are shown in Fig.11, the measurement pulse period is 1 ms,and the pulse width is 500 ns. The pulsed I–V characteristics are tested at the quiescent bias of (VGSQ,VDSQ)=(0 V, 0 V)and (VGSQ, VDSQ)= (?8 V, 10 V). According to the curves,the maximal reductions of the 6 types of HEMTs are,respectively, 5.2%, 5.0%, 4.0%, 4.5%, 3.9%, and 3.3% when the gate–source voltage is 2 V. The notch structure can suppress the peak electric field, and the decrease of the electric field helps to impede the injection of hot carriers. And the notch structures are filled with the SiN after the passivation process,it can also reduce the surface trapped charge. Thus,the notchstructure HEMTs have a better suppression of the current collapse. It can be concluded that the current collapse is well suppressed for these notch-structure HEMTs.

    Fig.11. Pulsed I–V characteristics of AlGaN/GaN HEMTs with various notch structures.

    The breakdown characteristics of the 6 types of HEMTs are shown in Fig.12,and the gate voltage is set to be ?6 V.The off-state breakdown voltage is 71 V for type-1 HEMT,73 V for type-2 HEMT,80 V for type-3 HEMT,77 V for type-4 HEMT,87 V for type-5 HEMT,and 101 V for type-6 HEMT.The device breakdown often occurs when the electrical field surges at the edge of the gate. The notch structure at the AlGaN barrier layer helps to delay the surge of the electrical field in the channel and impedes the injection of hot carriers. Thus the notch structure improves the breakdown characteristic of the HEMT,and the double-notch HEMT has the highest breakdown voltage of 101 V, which is a 42.2% improvement compared with the conventional HEMT.

    Fig.12. Breakdown characteristics of AlGaN/GaN HEMTs with various notch structures.

    3.5. Small-signal RF characteristics

    The small-signal RF characteristics of the 6 types of HEMTs are shown in Figs.13 and 14. The gate voltage is set to be ?1 V,the drain voltage is set to be 3.5 V,and the measurement frequency ranges from 100 MHz to 40 GHz. The current gain(h21)is converted from the S-parameters and expressed as

    where the cut-off frequency(fT)corresponds to that at h21=0 dB. The cut-off frequency is 19.3 GHz for type-1 HEMT,19.5 GHz for type-2 HEMT, 20.1 GHz for type-3 HEMT,19.6 GHz for type-4 HEMT,20.2 GHz for type-5 HEMT,and 21.5 GHz for type-6 HEMT.And the values of maximum oscillation frequency fmaxare 32.3 GHz, 33.6 GHz, 34.6 GHz,34.3 GHz, 26.2 GHz, and 26.7 GHz for the HEMTs of type-1,type-2,type-3,type-4,type-5,and type-6 respectively. The distance between the gate and the depletion region increases because of the notch structure at the AlGaN barrier layer,and the capacitance between the gate and the drain (Cgd) decreases. As a result, the cut-off frequency increases, and the double-notch structure HEMT has a maximum cut-off frequency. But the notch structure makes the resistance in channel increase and the maximum oscillation frequency decrease.Although the double notch structure has a maximum fT, the fmaxdoes not increase as the fTincreases.

    Fig.13. Current gain characteristics of AlGaN/GaN HEMTs with various notch structures.

    Fig.14. Maximum oscillation frequency characteristics of AlGaN/GaN HEMTs with various notch structures.

    4. Conclusions

    The 6 types of AlGaN/GaN HEMTs are investigated and the results are listed in Table 1. Compared with the conventional AlGaN/GaN HEMT, the notch structure at the AlGaN barrier layer improves the DC and RF performances. Especially for the double-notch HEMT,it obtains a 30%improvement of gate voltage swing, a 42.2% improvement of breakdown voltage, and a 9% improvement of cut-off frequency.The notch structure also has a good suppression of the current collapse.All these results indicate that the notch-structure HEMT has potential applications in the areas of high power and high frequency.

    Table 1. Results of AlGaN/GaN HEMTs with various notch structures.

    99热6这里只有精品| 亚洲18禁久久av| www.自偷自拍.com| 波多野结衣高清作品| 免费看十八禁软件| www.熟女人妻精品国产| 欧美日韩瑟瑟在线播放| 神马国产精品三级电影在线观看| 国产一区二区在线av高清观看| 俺也久久电影网| 久久草成人影院| 一级毛片高清免费大全| 欧美+亚洲+日韩+国产| 99精品欧美一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 人妻久久中文字幕网| 国产精品亚洲美女久久久| 亚洲国产高清在线一区二区三| 国产主播在线观看一区二区| 99国产精品一区二区蜜桃av| 亚洲av电影不卡..在线观看| 亚洲国产精品合色在线| 国产蜜桃级精品一区二区三区| 99国产精品一区二区蜜桃av| 黄色丝袜av网址大全| 亚洲午夜精品一区,二区,三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产黄色小视频在线观看| 在线看三级毛片| 成人精品一区二区免费| 午夜视频精品福利| 90打野战视频偷拍视频| 99久久精品国产亚洲精品| 人人妻人人看人人澡| 日韩欧美 国产精品| 男女床上黄色一级片免费看| 操出白浆在线播放| 欧美日本视频| 国产一区在线观看成人免费| 国产精品久久视频播放| av黄色大香蕉| 身体一侧抽搐| 午夜福利免费观看在线| 性欧美人与动物交配| 欧美日本视频| 国产不卡一卡二| 岛国在线免费视频观看| 欧美另类亚洲清纯唯美| 欧美日韩综合久久久久久 | 国产精品美女特级片免费视频播放器 | av天堂在线播放| 国产亚洲欧美在线一区二区| 狂野欧美白嫩少妇大欣赏| 国产av麻豆久久久久久久| 99久久久亚洲精品蜜臀av| 波多野结衣高清作品| 后天国语完整版免费观看| 真实男女啪啪啪动态图| 全区人妻精品视频| 国产成人福利小说| 美女高潮的动态| 国产伦一二天堂av在线观看| 国产精品香港三级国产av潘金莲| 一夜夜www| 久久性视频一级片| 精品无人区乱码1区二区| 国产精品 欧美亚洲| 手机成人av网站| 日本 av在线| 嫩草影院入口| 亚洲在线观看片| 999精品在线视频| 国产欧美日韩精品亚洲av| 国产淫片久久久久久久久 | 真人一进一出gif抽搐免费| 欧美一级a爱片免费观看看| 国产一区二区三区视频了| 国产精品一区二区三区四区久久| 欧美日韩福利视频一区二区| 91在线观看av| 久久人人精品亚洲av| 我要搜黄色片| 成人18禁在线播放| 国产高潮美女av| 国产黄a三级三级三级人| 女警被强在线播放| 99国产精品一区二区三区| www日本黄色视频网| 亚洲国产精品成人综合色| 99热这里只有精品一区 | 亚洲精品中文字幕一二三四区| 精品午夜福利视频在线观看一区| 亚洲专区国产一区二区| 变态另类丝袜制服| 国产69精品久久久久777片 | 午夜精品久久久久久毛片777| 日日夜夜操网爽| 日本免费一区二区三区高清不卡| 香蕉丝袜av| 99久国产av精品| 精品福利观看| 亚洲精品美女久久av网站| 亚洲人成电影免费在线| 欧美绝顶高潮抽搐喷水| 国产又色又爽无遮挡免费看| 国产精华一区二区三区| 国产精品电影一区二区三区| 欧美av亚洲av综合av国产av| 日韩欧美免费精品| 午夜福利成人在线免费观看| 国产一区二区三区视频了| 日韩三级视频一区二区三区| 三级毛片av免费| 国产伦一二天堂av在线观看| 色吧在线观看| 国内精品久久久久久久电影| 国产黄片美女视频| 床上黄色一级片| 久久久久性生活片| 国产精品99久久99久久久不卡| 美女黄网站色视频| 久久久久性生活片| 国语自产精品视频在线第100页| 国产精品久久久久久精品电影| 亚洲五月婷婷丁香| 丁香六月欧美| 一a级毛片在线观看| 丝袜人妻中文字幕| 99热精品在线国产| 欧美在线黄色| 俺也久久电影网| 国产激情欧美一区二区| 美女免费视频网站| 性色avwww在线观看| 一级毛片女人18水好多| 91麻豆精品激情在线观看国产| 久久性视频一级片| 亚洲专区字幕在线| 男女床上黄色一级片免费看| 亚洲成a人片在线一区二区| 无限看片的www在线观看| 亚洲美女视频黄频| 午夜精品久久久久久毛片777| 欧美日本视频| 精品国产三级普通话版| 18禁黄网站禁片午夜丰满| 欧美日韩国产亚洲二区| 在线免费观看的www视频| 精品熟女少妇八av免费久了| 曰老女人黄片| 亚洲中文av在线| 久久久国产成人精品二区| 国产精品1区2区在线观看.| 亚洲18禁久久av| 久9热在线精品视频| 久久精品国产综合久久久| 一区福利在线观看| 亚洲人与动物交配视频| 亚洲专区国产一区二区| 极品教师在线免费播放| 真实男女啪啪啪动态图| 日韩欧美国产一区二区入口| av视频在线观看入口| 国产 一区 欧美 日韩| 午夜视频精品福利| 最近最新免费中文字幕在线| 亚洲av片天天在线观看| 1024香蕉在线观看| 女人被狂操c到高潮| 一级黄色大片毛片| 欧美性猛交╳xxx乱大交人| 国产激情久久老熟女| 999久久久精品免费观看国产| 舔av片在线| 欧洲精品卡2卡3卡4卡5卡区| 久久欧美精品欧美久久欧美| 十八禁人妻一区二区| 人人妻人人看人人澡| 久久亚洲精品不卡| 国产视频内射| 日本黄大片高清| 我要搜黄色片| 可以在线观看毛片的网站| 精品久久久久久,| 日韩高清综合在线| 特级一级黄色大片| 日韩三级视频一区二区三区| 国产av一区在线观看免费| 亚洲专区中文字幕在线| 又大又爽又粗| 日本熟妇午夜| 欧美黄色片欧美黄色片| 亚洲avbb在线观看| 午夜福利高清视频| 国产黄色小视频在线观看| 黑人欧美特级aaaaaa片| 国产不卡一卡二| 国产淫片久久久久久久久 | 成人三级做爰电影| 午夜福利高清视频| 桃红色精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 97超视频在线观看视频| 色av中文字幕| 午夜免费成人在线视频| 国产欧美日韩一区二区精品| av福利片在线观看| 午夜亚洲福利在线播放| 免费一级毛片在线播放高清视频| 欧美又色又爽又黄视频| 成年女人永久免费观看视频| 亚洲色图 男人天堂 中文字幕| 一级毛片女人18水好多| 一区二区三区激情视频| 亚洲美女视频黄频| 啪啪无遮挡十八禁网站| 国产成人一区二区三区免费视频网站| 国产欧美日韩精品一区二区| 91字幕亚洲| 亚洲中文av在线| 无人区码免费观看不卡| 亚洲av片天天在线观看| 女人高潮潮喷娇喘18禁视频| 免费观看人在逋| 精品日产1卡2卡| 欧美乱色亚洲激情| 精品人妻1区二区| 亚洲性夜色夜夜综合| 久久久久性生活片| 无限看片的www在线观看| 欧美av亚洲av综合av国产av| 两个人视频免费观看高清| 欧美中文综合在线视频| 激情在线观看视频在线高清| 草草在线视频免费看| 最近最新免费中文字幕在线| 天堂影院成人在线观看| 欧美日韩黄片免| 亚洲精品粉嫩美女一区| 精品一区二区三区四区五区乱码| 亚洲专区字幕在线| 中文字幕人成人乱码亚洲影| 欧美黑人巨大hd| 日本在线视频免费播放| 精品不卡国产一区二区三区| 99热只有精品国产| 欧美性猛交黑人性爽| 天堂动漫精品| 宅男免费午夜| 99久久国产精品久久久| 又黄又爽又免费观看的视频| 欧美黑人欧美精品刺激| 两人在一起打扑克的视频| 一二三四在线观看免费中文在| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| 熟女电影av网| 国产成年人精品一区二区| 热99re8久久精品国产| 超碰成人久久| 99精品欧美一区二区三区四区| 欧美黄色淫秽网站| 欧美三级亚洲精品| 免费观看人在逋| 亚洲av成人精品一区久久| 欧美日本亚洲视频在线播放| 99riav亚洲国产免费| 香蕉久久夜色| 在线永久观看黄色视频| 国产淫片久久久久久久久 | 男人舔女人的私密视频| 母亲3免费完整高清在线观看| 波多野结衣巨乳人妻| 国产91精品成人一区二区三区| 国产单亲对白刺激| 最好的美女福利视频网| 热99re8久久精品国产| 亚洲电影在线观看av| 亚洲欧美日韩卡通动漫| netflix在线观看网站| 日本精品一区二区三区蜜桃| 久久午夜综合久久蜜桃| 国产真人三级小视频在线观看| 精品熟女少妇八av免费久了| 免费在线观看影片大全网站| 一边摸一边抽搐一进一小说| 国产精品99久久99久久久不卡| 在线观看美女被高潮喷水网站 | 国产成人av教育| 精品一区二区三区视频在线观看免费| 丝袜人妻中文字幕| 在线观看免费视频日本深夜| 久久精品91无色码中文字幕| 手机成人av网站| 观看美女的网站| 久久久久久久久中文| 亚洲av成人av| 国产精品一区二区免费欧美| 婷婷六月久久综合丁香| 国产日本99.免费观看| 999精品在线视频| 日韩高清综合在线| 国产视频一区二区在线看| 岛国在线免费视频观看| 香蕉久久夜色| 国内毛片毛片毛片毛片毛片| 亚洲国产日韩欧美精品在线观看 | bbb黄色大片| 国产午夜福利久久久久久| 色精品久久人妻99蜜桃| 国产精品99久久99久久久不卡| 黄频高清免费视频| 不卡av一区二区三区| 舔av片在线| 国产1区2区3区精品| 国产高清视频在线观看网站| 亚洲人成网站高清观看| 美女黄网站色视频| xxx96com| 国产成年人精品一区二区| 亚洲欧洲精品一区二区精品久久久| 国产一区在线观看成人免费| 成人三级做爰电影| 最新中文字幕久久久久 | 国产三级中文精品| 国产成人一区二区三区免费视频网站| 又粗又爽又猛毛片免费看| 99在线视频只有这里精品首页| 亚洲熟女毛片儿| 一个人观看的视频www高清免费观看 | 国产精品久久久av美女十八| 欧美一级毛片孕妇| 中文字幕人成人乱码亚洲影| 美女扒开内裤让男人捅视频| 亚洲国产精品999在线| xxxwww97欧美| 亚洲自拍偷在线| x7x7x7水蜜桃| 国产av在哪里看| bbb黄色大片| 老熟妇仑乱视频hdxx| 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 在线观看午夜福利视频| 亚洲熟女毛片儿| 18禁裸乳无遮挡免费网站照片| 免费av不卡在线播放| 夜夜爽天天搞| 小说图片视频综合网站| 欧美成人一区二区免费高清观看 | 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费| 久久久色成人| 国产爱豆传媒在线观看| 精品无人区乱码1区二区| 好男人电影高清在线观看| 国产精品美女特级片免费视频播放器 | 欧美成人性av电影在线观看| 岛国在线观看网站| 亚洲精华国产精华精| 婷婷精品国产亚洲av| 久久久久久久精品吃奶| 免费av不卡在线播放| 母亲3免费完整高清在线观看| 欧美不卡视频在线免费观看| 亚洲精华国产精华精| 欧美乱码精品一区二区三区| 久久中文看片网| 少妇丰满av| 久久亚洲真实| 成人欧美大片| 黄色女人牲交| 久久热在线av| 欧美黑人欧美精品刺激| 可以在线观看毛片的网站| 国产一区二区在线av高清观看| 日日夜夜操网爽| 久久香蕉国产精品| 9191精品国产免费久久| 观看美女的网站| 一个人看视频在线观看www免费 | 久99久视频精品免费| 日韩欧美 国产精品| 精品熟女少妇八av免费久了| av天堂在线播放| 国产麻豆成人av免费视频| 黄色日韩在线| 两个人视频免费观看高清| 色老头精品视频在线观看| 欧美性猛交黑人性爽| 级片在线观看| 88av欧美| 国产激情偷乱视频一区二区| 中文字幕熟女人妻在线| 亚洲自偷自拍图片 自拍| а√天堂www在线а√下载| 成人高潮视频无遮挡免费网站| 69av精品久久久久久| 精品福利观看| 国产亚洲av嫩草精品影院| 麻豆久久精品国产亚洲av| 99精品久久久久人妻精品| 欧美+亚洲+日韩+国产| 在线看三级毛片| 久久国产乱子伦精品免费另类| 少妇的丰满在线观看| 亚洲国产看品久久| av黄色大香蕉| 九色成人免费人妻av| 一区二区三区国产精品乱码| 观看美女的网站| 欧美激情久久久久久爽电影| 十八禁人妻一区二区| 不卡一级毛片| 国内精品久久久久久久电影| 美女免费视频网站| 天堂影院成人在线观看| 国产成人福利小说| 成人永久免费在线观看视频| 欧美黑人巨大hd| 国产亚洲精品久久久久久毛片| 亚洲五月婷婷丁香| 又粗又爽又猛毛片免费看| 成年免费大片在线观看| 国产主播在线观看一区二区| 国产成人av激情在线播放| 国产精品九九99| 久久久久免费精品人妻一区二区| 免费人成视频x8x8入口观看| 欧美三级亚洲精品| 在线免费观看不下载黄p国产 | 级片在线观看| 床上黄色一级片| 99久久99久久久精品蜜桃| 黄频高清免费视频| 久久国产精品影院| 在线观看日韩欧美| 久久国产乱子伦精品免费另类| 亚洲av电影不卡..在线观看| 97超视频在线观看视频| 久久久久久久久中文| 搡老妇女老女人老熟妇| 白带黄色成豆腐渣| 男人和女人高潮做爰伦理| 欧美一区二区精品小视频在线| 国产日本99.免费观看| 五月伊人婷婷丁香| 天堂影院成人在线观看| 国产亚洲欧美在线一区二区| 亚洲欧美日韩东京热| 母亲3免费完整高清在线观看| 日本黄色视频三级网站网址| 国产成人av教育| 国产成人系列免费观看| 天堂影院成人在线观看| 久久久久久久午夜电影| 成人高潮视频无遮挡免费网站| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 精品午夜福利视频在线观看一区| 久久99热这里只有精品18| 夜夜躁狠狠躁天天躁| 亚洲av日韩精品久久久久久密| 久久精品亚洲精品国产色婷小说| 中国美女看黄片| 老熟妇仑乱视频hdxx| 成人鲁丝片一二三区免费| 日本 av在线| 夜夜躁狠狠躁天天躁| 国产精品自产拍在线观看55亚洲| 成人国产综合亚洲| 后天国语完整版免费观看| av中文乱码字幕在线| 蜜桃久久精品国产亚洲av| 日本精品一区二区三区蜜桃| 搡老熟女国产l中国老女人| 色播亚洲综合网| 亚洲中文字幕一区二区三区有码在线看 | av天堂中文字幕网| 熟女人妻精品中文字幕| 五月伊人婷婷丁香| 亚洲在线自拍视频| 国内毛片毛片毛片毛片毛片| 国产精品亚洲一级av第二区| 久久这里只有精品19| 国产精品香港三级国产av潘金莲| 怎么达到女性高潮| 一夜夜www| 国产精品久久久久久久电影 | 99久久99久久久精品蜜桃| 色播亚洲综合网| 三级国产精品欧美在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 久久人妻av系列| or卡值多少钱| 黄色成人免费大全| 99久久国产精品久久久| 国产主播在线观看一区二区| 一级毛片精品| 日韩av在线大香蕉| 久久久久久九九精品二区国产| 少妇的丰满在线观看| 久久中文看片网| 9191精品国产免费久久| 国模一区二区三区四区视频 | 一卡2卡三卡四卡精品乱码亚洲| 黄片小视频在线播放| 黑人操中国人逼视频| 国产精品 国内视频| 999久久久国产精品视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品美女久久av网站| 99国产精品一区二区三区| 免费观看的影片在线观看| 国产av在哪里看| 伦理电影免费视频| 国产一区二区三区在线臀色熟女| 三级男女做爰猛烈吃奶摸视频| 黄色片一级片一级黄色片| avwww免费| 国产av麻豆久久久久久久| 亚洲欧美日韩卡通动漫| 老熟妇仑乱视频hdxx| 午夜福利成人在线免费观看| 床上黄色一级片| 国产毛片a区久久久久| 欧美色视频一区免费| 精华霜和精华液先用哪个| 午夜精品一区二区三区免费看| 国产伦人伦偷精品视频| 999精品在线视频| 99久国产av精品| 长腿黑丝高跟| 曰老女人黄片| 国产成人aa在线观看| 国产精品香港三级国产av潘金莲| 国产精品野战在线观看| 亚洲五月天丁香| 久久欧美精品欧美久久欧美| 精品久久久久久久久久久久久| 久久久精品欧美日韩精品| 日本成人三级电影网站| 桃色一区二区三区在线观看| 欧美黄色片欧美黄色片| 日本熟妇午夜| 亚洲人成电影免费在线| 男女做爰动态图高潮gif福利片| 一区二区三区国产精品乱码| 在线观看午夜福利视频| 国产野战对白在线观看| 夜夜躁狠狠躁天天躁| а√天堂www在线а√下载| 12—13女人毛片做爰片一| 熟女少妇亚洲综合色aaa.| 九色成人免费人妻av| 精品福利观看| 免费在线观看亚洲国产| 日韩欧美三级三区| 日本熟妇午夜| 亚洲成人久久爱视频| 国产精品av视频在线免费观看| 真人做人爱边吃奶动态| 久久天躁狠狠躁夜夜2o2o| 亚洲真实伦在线观看| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯| 日韩欧美 国产精品| 日本三级黄在线观看| 亚洲性夜色夜夜综合| 成年女人看的毛片在线观看| 老司机福利观看| 视频区欧美日本亚洲| 熟女电影av网| 中出人妻视频一区二区| 国产三级黄色录像| 久久国产精品影院| 成人鲁丝片一二三区免费| 久久精品影院6| 国产精品99久久99久久久不卡| 久久久久性生活片| 日本精品一区二区三区蜜桃| 亚洲av片天天在线观看| 18禁美女被吸乳视频| 国产精品99久久99久久久不卡| 午夜福利视频1000在线观看| 日韩免费av在线播放| 午夜激情欧美在线| av国产免费在线观看| 两个人看的免费小视频| 51午夜福利影视在线观看| 18禁观看日本| 国产 一区 欧美 日韩| 91在线精品国自产拍蜜月 | 国产一区二区三区在线臀色熟女| 久久精品91蜜桃| 亚洲avbb在线观看| 黄色视频,在线免费观看| av在线蜜桃| 亚洲第一电影网av| 一个人免费在线观看电影 | 精品99又大又爽又粗少妇毛片 | 在线观看免费视频日本深夜| 国产单亲对白刺激| 色综合站精品国产| 亚洲精品在线美女| 美女扒开内裤让男人捅视频| 听说在线观看完整版免费高清| 三级男女做爰猛烈吃奶摸视频| 在线观看免费午夜福利视频| 18禁黄网站禁片免费观看直播| 免费在线观看日本一区| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产一区二区入口| 日韩欧美在线二视频| 国产一区二区激情短视频|