• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2?

    2021-05-06 08:54:24XiChen陳熙ZhengZheLin林正喆andLiRongCheng程麗蓉
    Chinese Physics B 2021年4期

    Xi Chen(陳熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程麗蓉)

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    Keywords: two-dimensional(2D)ferromagnetism,spin wave,magnetic anisotropy

    1. Introduction

    Atomically thin two-dimensional (2D) crystals can present exceptional electronic structures as a result of reduced dimensionality. The success in 2D material research brings vast opportunities to pursue emerging physical properties.Various 2D crystals are discovered,ranging from semiconductors,highly correlated materials to superconductors. Recently,magnetic crystals are added to the 2D material family.[1–3]In particular, intrinsic ferromagnetism in 2D materials is a new form of condensed matter. Unlike the ferromagnetism in conventional ultrathin metals, ferromagnetic (FM) 2D materials hold magnetic order in reduced dimensionality and may exhibit new physics for spintronics.

    With the rapid development, 2D materials have permeated into many research areas[4–9]and also bring opportunities for finding ferromagnetism in reduced dimensionality.Although the Mermin–Wagner theorem[10]asserts that 2D longrange FM order cannot exist in isotropic magnetic systems,a recent discovery has found 2D layered systems possessing intrinsic magnetocrystalline anisotropy against thermal fluctuations (e.g., CrI3,[11–15]Cr2Ge2Te6,[16]and CrSiTe3[17]).However, the Curie temperatures of CrI3, Cr2Ge2Te6, and CrSiTe3are only dozens of Kelvin. In recent years,Fe3GeTe2has been found to have a Curie temperature close to room temperature[18–25](150–220 K depending on Fe occupancy).By the doping of the ionic gate, the Curie temperature of atomically thin Fe3GeTe2is dramatically elevated to room temperature.[18,26]The discovery of Fe3GeTe2provides a new chance for ultra-thin spintronics. Magnetically ordered 2D crystals open vast possibilities for novel physical phenomena and new device concepts.

    In this paper, a theoretical model is proposed to understand the magnetic interactions in 2D Fe3GeTe2,and the density functional theory (DFT) calculations are employed to evaluate the key parameters. We uncover the mechanism of magnetic anisotropy in maintaining the magnetic order of 2D systems. The model reveals a new form of long-range ferromagnetism and suggests a physical picture beyond the Stoner model. The Curie temperature of Fe3GeTe2is then predicted by the model. Our theoretical model can also be applied to other 2D itinerant ferromagnetism systems.

    2. Theory

    In traditional theory,the Mermin–Wigner theorem[10]asserts that gapless excitation can occur in systems with continuous symmetry. In isotropic 2D systems,the gapless quasiparticle spectrum leads to a divergence of thermal distribution,which indicates the absence of magnetic order at finite temperature. However,anisotropic 2D systems hold low-energy gaps which protect the long-range magnetic order. To understand the magnetic order in Fe3GeTe2,let us start with the spin wave theory. The possible Heisenberg Hamiltonian in anisotropic 2D systems reads

    In the absence of magnetic anisotropy(i.e., D=0 and λ =0 which leads to Eg=0),the integral goes

    This divergence is consistent with the Mermin–Wagner theorem, indicating that 2D ferromagnetism cannot exist without magnetic anisotropy.

    3. Model and computation

    The 2D Fe3GeTe2lattice(Fig.1(a))has hexagonal symmetry with the primitive cell belonging to the space group Pˉ6m2.The Fe atoms in one primitive cell are located in two inequivalent Wyckoff sites. In each primitive cell,two Fe atoms are located at the same position in the 2D plane at different heights(atoms 1 and 2 in Fig.1(b)).The last Fe atom(atoms 3 in Fig.1(b)) is sandwiched between the two Te atoms. The neighboring Fe atoms 1 and 2 constitute a magnetic group. J1and J2denote its Heisenberg coupling with 1stNNs and 2ndNNs. The magnetization of Fe3GeTe2lattice is mainly decided by these groups. The magnetic moments of atom 3 are then induced by the three adjacent groups(which is explained in supplementary section 3). In the following text, we treat each Fe atom group (composed of 1 and 2) as a whole magnetic object.

    Fig.1. Structure and magnetic coupling of Fe3GeTe2. (a)The structure of Fe3GeTe2 with the primitive cell shown by dashed lines. (b)The atomic group composed of atoms 1 and 2,and the coupling J1 with 1st NNs and J2 with 2nd NNs. (c)6×1 supercell and four different configurations for the magnetization of the atomic groups. The arrows denote the directions of magnetic moments on the Fe atomic groups.

    It is worth discussing the choice of DFT functional here. To verify the reliability of LDA, we also perform comparison calculations using the Perdew–Burke–Ernzerhof(PBE)functional[41]and the hybrid Heyd–Scuseria–Ernzerhof(HSE06) functional.[42,43]The LDA functional gives a magnetic moment m = 4.55μBper primitive cell, which is in the range of experimental values (m=3.60–4.89 μB).[20,21]However, the obtained magnetic moments by the PBE (m=6.32μB)and HSE06(m=7.11μB)functionals are drastically overestimated. The band structures (supplementary Fig.S1)show a feature of band shift in FM Fe3GeTe2monolayer.The PBE or HSE06 functional present a larger band shift than LDA. The disagreement between theoretical (PBE or HSE06) and experimental magnetic moments also appears in the case of Fe-based superconductors.[44]This suggests that LDA, which is used throughout this work, is suitable to describe the electronic structure of Fe3GeTe2.

    Within the Heisenberg model, the interatomic couplings are evaluated via the energy-mapping method.[45]A 6×1 supercell(Fig.1(c))is employed as a model. The configurations α, β, γ, and δ exhibit different magnetic moments on the Fe atomic groups. DFT calculations without SOC count the energy of Heisenberg coupling without magnetic anisotropy.According to the Heisenberg model,their energies read

    Based on the DFT total energies without SOC,the Heisenberg coupling parameters J1and J2are obtained by the ordinary least squares method(see supplementary section 2).

    4. Results and discussion

    4.1. DFT calculations

    The mission of DFT calculations is to obtain the spin S of the Fe atomic group and the parameters in Eq.(1)(D,λ,J1and J2). LDA provides a total magnetic moment m=4.55μBper primitive cell,and the magnetic moment of the Fe atomic group is 3.58 μB. In DFT, the calculations of magnetic moments are based on atomic Wigner–Seitz radii, which are somewhat vague. Here we take an integral on the magnetic moment and can convince that S=2 is the spin owing by the Fe atomic group.

    Next, D and λ can be fitted from the MAE calculation. DFT calculations reveal that 2D Fe3GeTe2monolayer is uniaxial with the easy axis along the z-direction perpendicular to the 2D surface. Based on the hexagonal symmetry of Fe3GeTe2, the MAE only depends on θ, which is the angle between lattice magnetization and the z axis.[46]According to Eq. (1), the MAE can be written as MAE =(D+n1λ)S2sin2θ. On the other hand, the MAE of a hexagonal crystal can be fit into[46]MAE ≈K sin2θ. DFT calculation results (Fig.3(c)) fit K = 2.46 meV/cell. So we get D+n1λ ≈K/S2=0.62 meV.

    4.2. Magnon spectrum

    The magnon spectrum can be obtained from the spin wave Hamiltonian Eq.(5).The hexagonal Fe3GeTe2has 1stNN and 2ndNN number n1=6 and n2=6. The Bloch Hamiltonian for the lattice reads

    Fig.2. Magnon spectrum and the Curie temperature. (a) The energy spectrum of spin wave magnon. (b) Three-dimensional plot of the magnon spectrum. (c)The magnetic moment of one primitive cell versus temperature T.

    4.3. Curie temperature

    We now provide a rough estimate of the Curie temperature based on nonlinear spin wave theory. We use the expressions Eqs.(2)and(3)for spin operators, and expand them to fourth order in the bosonic operators

    At intermediate temperatures,there is a finite number of spin waves that are accounted for the high-order terms in bosonic operators when substituting the previous expansion in the spin Hamiltonian. The spin Hamiltonian contains four field operators and therefore is not rigorously solvable. Here, the effect of the spin wave population in the Hamiltonian is described by the substitution

    Here Ciis the perturbation terms. The last step removes the constant term (do not affect the physics of Hamiltonian) and ignores the high-order perturbation. Using a mean-field approximation,we have

    By Eqs.(12)and(13)we have

    The above formulas result in a substitution DS →DM,λS →λM, J1S →J1M, and J2S →J2M in the Hamiltonian HSWA.So, the magnetization is expressed by a self-consistent equation

    At a given temperature T, the magnetization M(T) can then be derived by numerically solving this equation. This equation implies that the temperature T reduces quasiparticle energy and decreases the low-energy gap of magnon. The effect destroys the magnetic order in the system. The numerical results are shown in Fig.2(c). M(T)drastically decreases with increasing temperature when T >100 K. According to the results,we get a Curie temperature Tc=154 K.In a recent experiment,[18]the magnetic hysteresis of monolayer and bilayer Fe3GeTe2is detected to vanish at T =100 K.People also used polar refractive magnetic circular dichroism microscopy to measure layer-dependent Tcof Fe3GeTe2and detected a Curie temperature of about 70 K with a size of 2μm.[18]These experiment results are generally consistent with our calculation.

    4.4. Stoner ferromagnetism

    Fe3GeTe2monolayer is metallic with a non-integer magnetic moment. This inspires us to apply the Stoner model to understand the mechanism of yielding the magnetic order.The DFT bands of Fe3GeTe2monolayer(Fig.3(a))show a feature of band shift. The shapes of corresponding spin-up and spindown bands are similar. The spin-up band has lower energy,while the spin-down band has higher energy. From the density of states (DOS) (Fig.3(b)), we can see that the electron states near the Fermi level are mainly contributed by Fe 3d orbitals.To calculate the average band splitting ?near the Fermi level, five corresponding bands (bold lines in Fig.3(a)) are chosen. Their average energy gap is ?=1.17 eV.According to the Stoner model,[47]we have ?=Um0,where m0=m/3=1.52 μBis the average magnetic moment per Fe atom. Then the Hubbard U=0.77 eV is determined.It is worth noting that this U is the result of electron interactions within LDA,which does not have to add it into LDA (if U is added to LDA, the exchange-correlation is stronger and that results in a band profile more close to PBE (see supplementary Fig.S1(d)) and a larger magnetic moment m). By spin-non-polarized DFT calculations,we obtain a DOS DNM(EF)=1.76 states/eV/atom at the Fermi level of non-magnetic (NM) Fe3GeTe2monolayer.Finally, the Stoner criterion, i.e., UDNM(EF)=1.36>1, is examined to establish. This criterion reveals that the ferromagnetism of Fe3GeTe2monolayer is spontaneous. To further consider the influence of magnetic anisotropy, SOC is added to the calculation of Hubbard U. For the magnetization angle θ =0?–90?,U =0.78–0.77 eV, which changes only by 1%.Thus,the SOC has little effect on the electron correlation. The magnetic anisotropy should arise from the energy difference of the crystal field acting on the itinerant electrons with different magnetization directions.

    To understand the formation of ferromagnetism in Fe3GeTe2, we further analyze the mechanism by the Stoner model. When a rigid band splitting ? happens in NM Fe3GeTe2(Fig.3(d)), the spin-up electron number n↑is then larger than the spin-down electron number n↓,for which their sum n↑+n↓=n should be a constant and equal to the total electron number. By the DOS of NM Fe3GeTe2, the electron numbers per Fe atom can be counted as

    Then we express the magnetic moment per atom as m0(?)=n↑?n↓, by which an inverse function ?=?(m0)can be obtained numerically. On the other hand,the band splitting ?is decided by the Hubbard model. On every Fe atom,the repulsion between spin-up and spin-down electrons in 3d orbitals leads to an energy difference of single quasiparticle,i.e.,

    Then the band splitting reads ?=U(n↑?n↓)=Um0.The above two equations,?=?(m0)and ?=U(n↑?n↓)=Um0,are plotted in Fig.3(d) with increasing m0. It can be seen that they have a trivial intersection m0=0 and a non-trivial intersection m0=1.9 which is close to the previous DFT calculation (m0=1.52). The above analysis provides an understanding of the spontaneous magnetization in Fe3GeTe2.

    Fig.3. (a) Spin-resolved band structure of Fe3GeTe2 monolayer without SOC. Red (blue) lines denote spin-up (spin-down) bands. (b)DOS of Fe3GeTe2 monolayer. (c)MAE of Fe3GeTe2 monolayer. (d)Band shift and the Stone criterion.

    5. Conclusion

    In this work, we attempt to unravel the origin of 2D ferromagnetism in Fe3GeTe2monolayer. By combining the theoretical model and DFT simulations,a physical picture is built to describe the magnetic interactions in 2D Fe3GeTe2. DFT calculations are employed to evaluate the Heisenberg coupling and magnetic anisotropy. The model reveals long-range ferromagnetic order in 2D systems should be maintained by magnetic anisotropy. The predicted Curie temperature agrees with a recent experiment. The Stoner model provides an insight into the spontaneous magnetization in Fe3GeTe2and results in a prediction close to DFT calculations. Our model is successful in understanding the magnetization mechanism in 2D Fe3GeTe2. In future studies, the model can be extended to other 2D systems.

    日韩av在线大香蕉| 操出白浆在线播放| 黄色丝袜av网址大全| 亚洲成av人片在线播放无| 999久久久精品免费观看国产| 久久亚洲精品不卡| 人成视频在线观看免费观看| 亚洲男人的天堂狠狠| 亚洲成av人片在线播放无| 两个人的视频大全免费| 亚洲精品国产精品久久久不卡| 老鸭窝网址在线观看| 午夜老司机福利片| 看片在线看免费视频| 日本黄色视频三级网站网址| 欧美午夜高清在线| 久久精品成人免费网站| 久久人妻av系列| 老熟妇乱子伦视频在线观看| 欧美黑人精品巨大| 久久精品成人免费网站| 黄色a级毛片大全视频| 黄色成人免费大全| 久久精品夜夜夜夜夜久久蜜豆 | 91国产中文字幕| 亚洲男人的天堂狠狠| 在线十欧美十亚洲十日本专区| 午夜免费成人在线视频| 国产黄色小视频在线观看| 久久久久性生活片| 特级一级黄色大片| 国产又色又爽无遮挡免费看| 99久久无色码亚洲精品果冻| 成人18禁在线播放| 动漫黄色视频在线观看| 黄色视频不卡| 很黄的视频免费| 麻豆一二三区av精品| 色哟哟哟哟哟哟| 久久久久久久久久黄片| 可以在线观看的亚洲视频| 国内精品久久久久精免费| 妹子高潮喷水视频| 久久久水蜜桃国产精品网| 国产91精品成人一区二区三区| 天堂动漫精品| 成人手机av| 制服人妻中文乱码| 亚洲熟女毛片儿| 久久精品国产亚洲av香蕉五月| 国产成人精品无人区| 亚洲第一欧美日韩一区二区三区| 国产乱人伦免费视频| 99re在线观看精品视频| 又大又爽又粗| 亚洲 欧美一区二区三区| 国产精品日韩av在线免费观看| 黄片大片在线免费观看| 国产精品电影一区二区三区| av中文乱码字幕在线| 亚洲人成77777在线视频| 美女 人体艺术 gogo| 成人18禁在线播放| 亚洲在线自拍视频| 亚洲av中文字字幕乱码综合| 夜夜躁狠狠躁天天躁| 亚洲av片天天在线观看| 黑人巨大精品欧美一区二区mp4| 久久人人精品亚洲av| 日韩三级视频一区二区三区| 久久久久九九精品影院| 女警被强在线播放| 久久人妻av系列| 久久久久久久久中文| 亚洲国产精品合色在线| 一进一出抽搐gif免费好疼| 国产爱豆传媒在线观看 | 久久性视频一级片| 欧美一级毛片孕妇| 国产1区2区3区精品| 日韩精品中文字幕看吧| 岛国在线观看网站| 国产精品亚洲一级av第二区| 老司机在亚洲福利影院| 久久久久免费精品人妻一区二区| 亚洲欧美日韩高清在线视频| 午夜久久久久精精品| 成人精品一区二区免费| 老熟妇乱子伦视频在线观看| 亚洲中文字幕日韩| av天堂在线播放| 久久这里只有精品中国| av在线天堂中文字幕| 亚洲欧美日韩高清专用| √禁漫天堂资源中文www| 在线观看舔阴道视频| 欧美成人午夜精品| 每晚都被弄得嗷嗷叫到高潮| 国产一区在线观看成人免费| 亚洲狠狠婷婷综合久久图片| 亚洲精品中文字幕一二三四区| 免费在线观看黄色视频的| 天堂影院成人在线观看| 国产午夜精品论理片| 午夜视频精品福利| 在线永久观看黄色视频| 精品免费久久久久久久清纯| 久99久视频精品免费| 亚洲人成网站高清观看| 欧美精品啪啪一区二区三区| ponron亚洲| 1024香蕉在线观看| 狠狠狠狠99中文字幕| 女警被强在线播放| 日韩欧美国产在线观看| 亚洲va日本ⅴa欧美va伊人久久| 黄色 视频免费看| 午夜福利18| av有码第一页| 国产精品 国内视频| 香蕉国产在线看| 一卡2卡三卡四卡精品乱码亚洲| 女警被强在线播放| 亚洲一区高清亚洲精品| www.精华液| 在线播放国产精品三级| 亚洲人成网站高清观看| 国产伦在线观看视频一区| 精品不卡国产一区二区三区| 精华霜和精华液先用哪个| 国产午夜精品久久久久久| 日本一二三区视频观看| 色综合欧美亚洲国产小说| 日韩大尺度精品在线看网址| www日本在线高清视频| 12—13女人毛片做爰片一| 日韩精品免费视频一区二区三区| 国产三级中文精品| 两个人的视频大全免费| 欧美一区二区精品小视频在线| 美女免费视频网站| 国产精品av久久久久免费| 日韩av在线大香蕉| 一级作爱视频免费观看| 97超级碰碰碰精品色视频在线观看| 一级毛片高清免费大全| 国产乱人伦免费视频| 波多野结衣高清无吗| 国产在线观看jvid| 亚洲国产精品999在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品,欧美在线| 日本a在线网址| 国产成人av教育| 成人精品一区二区免费| 男人舔女人的私密视频| 黄色 视频免费看| 精品乱码久久久久久99久播| 久久中文字幕一级| 国产成人系列免费观看| 日韩精品中文字幕看吧| 国产久久久一区二区三区| 久久亚洲真实| 午夜免费观看网址| 日韩中文字幕欧美一区二区| 91大片在线观看| 欧美色视频一区免费| 无人区码免费观看不卡| 九色成人免费人妻av| 国产高清视频在线播放一区| 一区二区三区国产精品乱码| 久久这里只有精品19| 亚洲av电影在线进入| 精品电影一区二区在线| 国产1区2区3区精品| 在线看三级毛片| 中文字幕人妻丝袜一区二区| 久久久久久九九精品二区国产 | 黄色 视频免费看| 国产1区2区3区精品| 亚洲欧美激情综合另类| 国产亚洲精品久久久久5区| 五月伊人婷婷丁香| 老司机在亚洲福利影院| 日韩欧美国产在线观看| 一本一本综合久久| 久久久久久久午夜电影| 亚洲真实伦在线观看| 国产精品乱码一区二三区的特点| 国产激情久久老熟女| 国模一区二区三区四区视频 | 欧美一区二区精品小视频在线| 在线国产一区二区在线| 最新在线观看一区二区三区| av在线天堂中文字幕| 午夜影院日韩av| 国产午夜精品论理片| 久久热在线av| 香蕉久久夜色| 国产熟女xx| 欧美日本视频| 国产精品亚洲美女久久久| 亚洲成av人片在线播放无| 亚洲精品中文字幕在线视频| 搡老熟女国产l中国老女人| 免费看日本二区| 久久亚洲真实| 国产欧美日韩一区二区三| 欧美成人午夜精品| 啦啦啦观看免费观看视频高清| 99精品久久久久人妻精品| 国产亚洲欧美在线一区二区| 国产男靠女视频免费网站| 熟妇人妻久久中文字幕3abv| 人妻久久中文字幕网| 国内精品久久久久精免费| 国语自产精品视频在线第100页| 国产精品乱码一区二三区的特点| 精品国产超薄肉色丝袜足j| 国产又色又爽无遮挡免费看| 国产不卡一卡二| 亚洲片人在线观看| 久久精品国产亚洲av香蕉五月| 国产精品一及| 亚洲熟妇熟女久久| 色噜噜av男人的天堂激情| 日韩欧美 国产精品| 成人永久免费在线观看视频| 色尼玛亚洲综合影院| 亚洲色图 男人天堂 中文字幕| 91成年电影在线观看| 国产一区在线观看成人免费| 午夜两性在线视频| 日韩大尺度精品在线看网址| 99热6这里只有精品| 狠狠狠狠99中文字幕| 免费电影在线观看免费观看| 12—13女人毛片做爰片一| 欧美日韩国产亚洲二区| 成人三级做爰电影| 日日干狠狠操夜夜爽| 男女下面进入的视频免费午夜| 亚洲精品一卡2卡三卡4卡5卡| 人妻丰满熟妇av一区二区三区| 可以在线观看的亚洲视频| 日本a在线网址| 老汉色av国产亚洲站长工具| 五月伊人婷婷丁香| 亚洲全国av大片| av免费在线观看网站| 在线国产一区二区在线| 国产又黄又爽又无遮挡在线| 色哟哟哟哟哟哟| 成年版毛片免费区| 亚洲av片天天在线观看| 国产aⅴ精品一区二区三区波| 日本撒尿小便嘘嘘汇集6| 亚洲精品久久国产高清桃花| 18禁黄网站禁片免费观看直播| 黄色 视频免费看| 国产精品98久久久久久宅男小说| 9191精品国产免费久久| 亚洲人成网站高清观看| 亚洲精品国产一区二区精华液| 久久久精品国产亚洲av高清涩受| 一边摸一边抽搐一进一小说| 老司机福利观看| 看片在线看免费视频| 国产精品99久久99久久久不卡| 久久精品人妻少妇| 两个人免费观看高清视频| 久久精品综合一区二区三区| 麻豆国产97在线/欧美 | videosex国产| 欧美黑人欧美精品刺激| 午夜a级毛片| 日韩欧美精品v在线| 波多野结衣高清无吗| 免费在线观看影片大全网站| 变态另类成人亚洲欧美熟女| 岛国在线观看网站| 国产伦在线观看视频一区| 真人做人爱边吃奶动态| 国产在线精品亚洲第一网站| 久久香蕉精品热| 久久亚洲精品不卡| 俄罗斯特黄特色一大片| 欧美成狂野欧美在线观看| 久久久久久久久免费视频了| 国产午夜福利久久久久久| 欧美又色又爽又黄视频| 国产精品免费一区二区三区在线| 黄频高清免费视频| av福利片在线| 中文字幕最新亚洲高清| 亚洲va日本ⅴa欧美va伊人久久| 超碰成人久久| 亚洲最大成人中文| 国产伦在线观看视频一区| 亚洲国产日韩欧美精品在线观看 | 日韩精品青青久久久久久| 国产爱豆传媒在线观看 | 久久精品国产亚洲av高清一级| 久久中文字幕一级| 成在线人永久免费视频| 亚洲狠狠婷婷综合久久图片| 亚洲无线在线观看| 色综合站精品国产| 国产精品日韩av在线免费观看| 天堂√8在线中文| 九色成人免费人妻av| 九色成人免费人妻av| АⅤ资源中文在线天堂| 国产欧美日韩精品亚洲av| 中文字幕人妻丝袜一区二区| 亚洲精品色激情综合| 黄片小视频在线播放| 久久中文看片网| 美女黄网站色视频| 俄罗斯特黄特色一大片| 国产片内射在线| 亚洲中文字幕一区二区三区有码在线看 | 99riav亚洲国产免费| 欧美成人一区二区免费高清观看 | 九色成人免费人妻av| 日韩三级视频一区二区三区| 久久香蕉国产精品| 国产亚洲欧美在线一区二区| 国产精品日韩av在线免费观看| 90打野战视频偷拍视频| a级毛片a级免费在线| 黄色视频,在线免费观看| 听说在线观看完整版免费高清| 国产精品av久久久久免费| 黄频高清免费视频| cao死你这个sao货| 母亲3免费完整高清在线观看| 免费看十八禁软件| 成人手机av| 欧美日韩福利视频一区二区| 国产成人av教育| 成人国语在线视频| 欧美日韩精品网址| 国产精品免费一区二区三区在线| 一个人观看的视频www高清免费观看 | 成人国产一区最新在线观看| 亚洲av成人av| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 不卡一级毛片| 岛国在线免费视频观看| 免费一级毛片在线播放高清视频| 丰满的人妻完整版| 亚洲成a人片在线一区二区| 久久香蕉精品热| 国产精品精品国产色婷婷| 观看免费一级毛片| 久久国产乱子伦精品免费另类| 欧美成狂野欧美在线观看| 色老头精品视频在线观看| 国产精品自产拍在线观看55亚洲| 国产精品一区二区免费欧美| 亚洲成人中文字幕在线播放| 国产麻豆成人av免费视频| 亚洲中文字幕日韩| 日日干狠狠操夜夜爽| 亚洲av成人一区二区三| 免费在线观看完整版高清| 亚洲狠狠婷婷综合久久图片| 色精品久久人妻99蜜桃| 别揉我奶头~嗯~啊~动态视频| 97超级碰碰碰精品色视频在线观看| 校园春色视频在线观看| 黄色a级毛片大全视频| 亚洲一区二区三区不卡视频| 亚洲专区国产一区二区| 日本免费一区二区三区高清不卡| 美女免费视频网站| 亚洲国产欧洲综合997久久,| 99国产综合亚洲精品| 这个男人来自地球电影免费观看| 国产熟女午夜一区二区三区| 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 亚洲一区二区三区色噜噜| 国产亚洲欧美在线一区二区| 久久精品国产99精品国产亚洲性色| 女人爽到高潮嗷嗷叫在线视频| 久久国产乱子伦精品免费另类| 我要搜黄色片| av片东京热男人的天堂| 超碰成人久久| 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 桃色一区二区三区在线观看| 淫妇啪啪啪对白视频| 天天一区二区日本电影三级| 成人av一区二区三区在线看| 男人舔女人下体高潮全视频| 国产三级黄色录像| a级毛片在线看网站| 热99re8久久精品国产| 色尼玛亚洲综合影院| 国产亚洲精品综合一区在线观看 | 91成年电影在线观看| 99riav亚洲国产免费| 首页视频小说图片口味搜索| 亚洲在线自拍视频| 免费在线观看视频国产中文字幕亚洲| 成人特级黄色片久久久久久久| 亚洲成人精品中文字幕电影| 亚洲熟妇中文字幕五十中出| 亚洲aⅴ乱码一区二区在线播放 | 亚洲欧美精品综合一区二区三区| 男人舔奶头视频| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区蜜桃av| 99热6这里只有精品| 99热这里只有是精品50| 免费在线观看视频国产中文字幕亚洲| 老汉色∧v一级毛片| 草草在线视频免费看| 免费看美女性在线毛片视频| 国产熟女午夜一区二区三区| 色尼玛亚洲综合影院| 搞女人的毛片| 成人国产一区最新在线观看| 免费在线观看完整版高清| 亚洲aⅴ乱码一区二区在线播放 | 欧美成人午夜精品| 巨乳人妻的诱惑在线观看| 久久欧美精品欧美久久欧美| 国产黄a三级三级三级人| 久久久久性生活片| 亚洲一区二区三区不卡视频| 九色国产91popny在线| 精品欧美国产一区二区三| 一区二区三区国产精品乱码| 国产在线观看jvid| 日韩高清综合在线| 淫妇啪啪啪对白视频| 亚洲真实伦在线观看| 一个人观看的视频www高清免费观看 | 99国产精品一区二区三区| 人人妻,人人澡人人爽秒播| 深夜精品福利| 免费看十八禁软件| 国产激情久久老熟女| 亚洲va日本ⅴa欧美va伊人久久| 亚洲真实伦在线观看| 久久久国产精品麻豆| 在线观看日韩欧美| 精品国产乱子伦一区二区三区| 午夜两性在线视频| 精品国产美女av久久久久小说| 狠狠狠狠99中文字幕| www国产在线视频色| 色哟哟哟哟哟哟| 日韩高清综合在线| 国产精品一区二区精品视频观看| 在线观看美女被高潮喷水网站 | 男女床上黄色一级片免费看| 俺也久久电影网| 天堂影院成人在线观看| 黄色成人免费大全| 国产精品久久久人人做人人爽| 亚洲国产欧美一区二区综合| 成年免费大片在线观看| 亚洲av成人一区二区三| 麻豆久久精品国产亚洲av| 成人国产一区最新在线观看| 长腿黑丝高跟| 国产精品精品国产色婷婷| 成人av在线播放网站| 可以在线观看毛片的网站| 亚洲成人久久性| av有码第一页| 好男人在线观看高清免费视频| 国产在线精品亚洲第一网站| 国产一级毛片七仙女欲春2| 国产成年人精品一区二区| 精品欧美国产一区二区三| 免费在线观看日本一区| 少妇粗大呻吟视频| 琪琪午夜伦伦电影理论片6080| 可以在线观看的亚洲视频| 波多野结衣巨乳人妻| 午夜福利在线在线| 中文字幕熟女人妻在线| 国产视频内射| 成人高潮视频无遮挡免费网站| 日韩精品免费视频一区二区三区| 久久亚洲真实| 最新美女视频免费是黄的| 999久久久精品免费观看国产| 久久精品影院6| 99热6这里只有精品| 国产免费男女视频| 啦啦啦免费观看视频1| 久久精品国产亚洲av高清一级| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| 精品国产美女av久久久久小说| 禁无遮挡网站| 真人做人爱边吃奶动态| 亚洲自拍偷在线| 啪啪无遮挡十八禁网站| 免费观看精品视频网站| 两个人免费观看高清视频| 日本撒尿小便嘘嘘汇集6| 国产99白浆流出| 免费人成视频x8x8入口观看| 国产亚洲精品综合一区在线观看 | 久久伊人香网站| 色在线成人网| 在线观看午夜福利视频| 一级毛片精品| 国产在线观看jvid| 又大又爽又粗| 丁香六月欧美| 中文字幕人成人乱码亚洲影| 一本久久中文字幕| 看黄色毛片网站| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡免费网站照片| 可以在线观看毛片的网站| 精品久久久久久,| 日韩大码丰满熟妇| 久久 成人 亚洲| 精华霜和精华液先用哪个| 99riav亚洲国产免费| 真人做人爱边吃奶动态| 亚洲国产看品久久| 欧美成狂野欧美在线观看| 亚洲午夜理论影院| 两个人免费观看高清视频| 国内久久婷婷六月综合欲色啪| 久久婷婷人人爽人人干人人爱| 91麻豆av在线| 欧美av亚洲av综合av国产av| 欧美3d第一页| 97人妻精品一区二区三区麻豆| 熟女少妇亚洲综合色aaa.| 国产三级在线视频| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看 | 亚洲欧美精品综合一区二区三区| 精品免费久久久久久久清纯| 国产亚洲精品av在线| videosex国产| 可以在线观看毛片的网站| 日本精品一区二区三区蜜桃| 亚洲男人的天堂狠狠| 91字幕亚洲| 这个男人来自地球电影免费观看| 欧美高清成人免费视频www| 国产精品久久久久久精品电影| aaaaa片日本免费| 在线观看免费视频日本深夜| 亚洲成av人片免费观看| 国产精品综合久久久久久久免费| 很黄的视频免费| 国产一区在线观看成人免费| 高清在线国产一区| 岛国视频午夜一区免费看| 成年女人毛片免费观看观看9| 精品国产亚洲在线| 亚洲精品中文字幕一二三四区| 日日夜夜操网爽| 国产欧美日韩一区二区三| 亚洲免费av在线视频| 欧美日韩黄片免| 真人一进一出gif抽搐免费| 熟妇人妻久久中文字幕3abv| 老汉色av国产亚洲站长工具| 欧美中文综合在线视频| 神马国产精品三级电影在线观看 | 亚洲成av人片在线播放无| 在线免费观看的www视频| 精品日产1卡2卡| 亚洲精品在线观看二区| 欧美乱妇无乱码| 黄色成人免费大全| 男女之事视频高清在线观看| 看片在线看免费视频| 日韩欧美三级三区| 欧美中文综合在线视频| 午夜福利18| 黄色片一级片一级黄色片| 在线观看www视频免费| 欧美黑人巨大hd| 又黄又粗又硬又大视频| 亚洲av日韩精品久久久久久密| 黑人欧美特级aaaaaa片| 草草在线视频免费看| 狂野欧美激情性xxxx| 亚洲av成人不卡在线观看播放网| 两性夫妻黄色片| 欧美日韩精品网址| 精品免费久久久久久久清纯| 国产成人精品久久二区二区免费| 中文字幕人妻丝袜一区二区| 伦理电影免费视频| av欧美777| 国产v大片淫在线免费观看| 午夜免费成人在线视频| 操出白浆在线播放| 我的老师免费观看完整版| 丝袜人妻中文字幕| 国产黄片美女视频| 亚洲一码二码三码区别大吗| 久久精品亚洲精品国产色婷小说| 国产三级黄色录像|