• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nodal superconducting gap in LiFeP revealed by NMR:Contrast with LiFeAs*

    2021-05-06 08:54:24Fang房愛芳Zhou周睿TukadaYang楊杰Deng鄧正Wang望賢成Jin靳常青andGuoQingZheng鄭國慶
    Chinese Physics B 2021年4期
    關(guān)鍵詞:楊杰常青

    A F Fang(房愛芳), R Zhou(周睿), H Tukada, J Yang(楊杰), Z Deng(鄧正),X C Wang(望賢成), C Q Jin(靳常青), and Guo-Qing Zheng(鄭國慶),

    1Department of Physics,Beijing Normal University,Beijing 100875,China

    2Institute of Physics,Chinese Academy of Sciences,and Beijing National Laboratory for Condensed Matter Physics,Beijing 100190,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4Department of Physics,Okayama University,Okayama 700-8530,Japan

    Keywords: iron-based superconductor,nuclear magnetic resonance,superconducting pairing symmetry,spin fluctuations

    1. Introduction

    As the second class of high-temperature superconductors, iron-based superconductors were discovered more than one decade ago.[1]But its superconducting pairing mechanism is still unclear. The phase diagram of iron-pnictides is very similar to that of the cuprates high-temperature superconductor family.[2]Antiferromagnetism and nematic orders exist around the superconducting dome and both compete with superconductivity in these two families.[3]Therefore both spin and nematic fluctuations are suggested to be candidates for the glue of the superconducting pairing.[4]Although,the symmetry of the superconducting gap in cuprates is believed to be d-wave,[5,6]the situation is more complicated for iron-pnictides. Firstly, there are multiple superconducting gaps as first evidenced by the spin-lattice relaxation rate and the Knight shift,[7]instead of a single superconducting energy gap in cuprates. Secondly,the gap symmetry is different in different iron-based families. In FeAs-based superconductors,the superconducting gap is found to be isotropic and fully-opened.[8–11]But for P-doped BaFe2As2which is equivalently doped,previous studies suggest the existence of nodes in the superconducting gaps.[12,13]If As is completely substituted by P,the pnictogen height above the iron plane will become smaller,which is suggested to be an important factor in the theory based on spin fluctuations.[14]Therefore,clarifying the uniqueness of FeP-based superconductor can shed lights on the mechanism of superconduting pairing in iron-pnictides.

    LiFeP is a superconducting material with transition temperature Tc~4.2 K.[15]Its crystal structure is identical to that of LiFeAs(Tc~18 K),[16]but the height of the P site is much lower than that of As. Previous tunnel diode oscillator(TDO)measurements found that the London penetration depth shows a flat temperature dependence in LiFeAs but a linear temperature dependence in LiFeP,suggesting nodeless and nodal superconducting gaps,respectively.[17]However,TDO measurement is only sensitive to the change of penetration depth on the surface of the sample which can be affected by disorder or lattice distortion from the surface. Until now,no bulk measurement on λLhas been done. NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state, from which λLof the bulk sample can be directly deduced.[18,19]Besides the properties of the superconducting state, the electron correlations in the normal state of LiFeP are also of interest. In most iron-based superconductors, strong spin fluctuations have been observed,[11,20–22]and quantum critical point related to the magnetic order is suggested inside the superconducting dome.[19,23]Unlike these compounds, a previous NMR study at B0=4.65 T has suggested that low-energy spin fluctuations are very weak in LiFeP.[24]However, for spinlattice relaxation rate 1/T1measurement,the NMR frequency,which is related to the energy of spin fluctuations, can play an important role. Therefore,1/T1measurements at different fields are needed in order to investigate intrinsic spin fluctuations.

    In this work,we investigate the superconducting gap symmetry of LiFeP and LiFeAs by detailed NMR studies of London penetration depth λL. Nodal superconductivity is revealed in LiFeP while LiFeAs is found to be a nodeless superconductor. For LiFeP,strong spin fluctuations with diffusive characteristics are found by spin-lattice relaxation measurements,which is similar to some cuprate superconductors.

    2. Experiment

    The LiFeAs single crystal and LiFeP polycrystal samples were grown by the solid-state reaction and the self-flux methods,respectively.[15,16]The75As spectra were obtained by integrating the spin echo as a function of frequency at 7.5 T.The31P-NMR spectra were obtained by fast Fourier transform of the spin echo. The pulse width is only 5 μs in order to cover the full spectrum. The T1was measured by using the saturation-recovery method,and obtained by a good fitting of the nuclear magnetization to 1 ?M(t)=M0e1?t/T1,where M(t)is the nuclear magnetization at time t after the single saturation pulse and M0is the nuclear magnetization at thermal equilibrium.

    3. Results and discussion

    3.1. London penetration depth in LiFeP: contrast with LiFeAs

    Figure 1(a) shows the75As-NMR central line at various temperatures, which can be well fitted by a single Lorentz function. By cooling down into the superconducting state,the NMR line shifts to lower frequency and broadens almost symmetrically. In the vortex state, the magnetic field B0penetrates into a sample in the unit of quantized flux φ0=2.07×10?15T·m2, thus the field becomes inhomogeneous,leading to the observed broadening in Fig.1(a). The shift of the spectrum is due to the singlet pairing and diamagnetism from the vortex-lattice formation. For Bc1?B0?Bc2,where Bc1and Bc2are the lower and upper critical fields,respectively,the field distribution ?B can be written as[25]which can be detected by the NMR spectrum broadening?f = γn?B , where γnis the gyromagnetic ratio. In both normal state and superconducting state, the spectra can be well fitted by a single Lorentz function. Theoretically, the NMR lineshape in the superconducting state should be asymmetric due to inhomogeneous distribution of the magnetic field. However, the shape we observed is rather symmetric, which is in agreement with the previous NMR study on NaFe1?xCoxAs.[18,19]This might be because the vortex-cores have small random displacements from triangular lattice in a 2D layered system when the correlation between different layers is small. Such displacements will broaden the effective core radius and truncate the high-field tail in the field distribution. Then the line will become more symmetric,like the case in Bi2Sr2CaCu2O8+δ.[26]This can explain why the broadening in LiFeAs is rather symmetric,since iron-based superconductors are also quite 2D.

    Fig.1. (a) 75As-NMR spectra of LiFeAs at various temperatures with magnetic field B0 =7.5 T applied along c-axis. The spectra are fitted by a single Lorentz function. (b) Temperature dependence of the line broadening ?f and London penetration depth λ?2L of LiFeAs. The black dashed curve represents the variation with temperature expected for a conventional s-wave superconductor.[27] The red solid curve represents the simulation by the two-gaps model described in the text.

    The full width at half maximum (FWHM) of a convolution of two Lorentzian functions is the sum of individual FWHMs, so the broadening can be obtained by simply subtracting the T-independent width above Tc, ?f =FWHM(T)?FWHM(T >Tc). In Fig.1(b), we summarize the temperature dependence of ?f and λ?2Lwhich start to saturate below T ~0.2Tc.By using Eq.(1),λL(T →0)=185 nm is calculated,which is consistent with the result,λL=210 nm,obtained by small-angle neutron scattering(SANS).[28]In the London theory, λL?2is proportional to the superconducting carrier density nsas[29]

    where m*is the effective mass of the carriers. When the superconducting correlation length is much smaller than λL,the superconducting carrier density nscan be expressed as[29]

    where ?is the zero temperature value of the superconducting energy gap, and kBis the Boltzmann constant. One can immediately see that λ?2Lshould be nearly temperature independent at low temperatures(T<0.4Tc)for a conventional s-wave superconductor,[27]as shown by the dashed line in Fig.1(b)which is distinct from our results. We therefore simulate our results by assuming two s-wave gaps,?1and ?2. If the contribution to the superfluid density for ?1is α,then it will be 1?α for ?2. The total superfluid density ntotis αns1+(1 ?α)ns2.From Eq.(3), the superfluid density can be further expressed as[29]

    By this way, we simulate the temperature dependence of ?f as shown in Fig.1(b). The parameters ?1=1.2kBTc, ?2=2.8kBTc, and α =0.85 are obtained. The two-gaps feature in the superconducting state was also demonstrated by previous spin-lattice relaxation measurements,[30]in which a‘knee’behavior was observed in temperature-dependent 1/T1.From the fitting by two s-wave gaps,?1=1.3kBTcand ?2=3.0kBTc[30]are obtained,which are in good agreement with the present results. We also note that ?1=1.6kBTcof hole-like Fermi surfaces and ?2=2.3kBTcof electron-like Fermi surfaces were observed by a previous ARPES study in LiFeAs,[31]which are also consistent with our results. Furthermore, the holelike Fermi surfaces were found to be larger than the electronlike Fermi surfaces,[31]which is in agreement with our simulation that α is larger than 0.5. This means that the main contribution to the quasi-particles in the superconducting state is from the smaller superconducting energy gap ?1that is of hole-like Fermi surfaces. Namely, the superconducting energy gap on hole-like Fermi surfaces is smaller than the gap on electron-like surfaces. This is in contrast to the situation in the BaFe2As2family where the superconduting energy gap on hole-like Fermi surfaces is larger.[9]It implies that the pairing mechanism in LiFeAs is indeed unique.[32]More theoretical studies in this regard are needed in the future.

    Figure 2(a) shows the temperature dependence of the resonance frequency of the NMR coil at various magnetic fields. The superconducting transition temperature Tcof the sample is found to be around 4.2 K at zero field, which is similar to an earlier report determined by DC susceptibility measurements.[15]Figure 2(b)shows the NMR spectrum measured at T =4.2 K by sweeping the magnetic field. We note that only one peak is observed for both31P and7Li nuclei.The total Hamiltonian for the nuclei with spin I can be expressed as[33]

    where K is the Knight shift, eq is the electric field gradient(EFG)along the principle axis z,Q is the nuclear quadrupole moment,and θ is the angle between the magnetic field and the principle axis of the EFG.For31P with I=1/2,only one peak is expected. For7Li with I =3/2, the NMR spectra should contain three lines. The fact that only one peak can be observed in our measurement is probably because the nuclear quadrupole moment Q of7Li is very small[34,35]and the central and satellite lines overlap.

    Fig.2. (a)Temperature dependence of AC susceptibility of LiFeP at various fields. (b)NMR spectrum of LiFeP obtained by sweeping the magnetic fields at 4.2 K.The solid curve is fitted by two Lorentz functions.

    Fig.3. (a) 31P-NMR spectra of LiFeP at various temperatures with B0=0.15 T.The spectra above T =1.2 K are fitted by a single Gaussian function,while the spectra below T =1.2 K are fitted by two Gaussian functions. The left peak (shaded area) is from 7Li nuclei (see text for detail).

    Fig.4. Temperature-dependent line broadening ?f and the London penetration depth λ?2L of LiFeP. The red solid curve is the theoretical calculation based on a d-wave model.[36]

    3.2. Spin fluctuations in LiFeP

    In most iron-pnictides, spin fluctuations have been observed in the normal state and considered as a possible glue for cooper pairs.[11,20–22]However,in both LiFeP and LiFeAs,previous spin-lattice relaxation rate 1/T1measurements show that spin correlations are rather weak.[24,30]For LiFeAs,1/T1was measured at both zero and high fields,[30,37]indicating that the spin correlations are indeed very weak at low energies. This is consistent with the ARPES study which shows that the electron and hole pockets are mismatched, leading to the bad nesting of the Fermi surfaces and then weak spin fluctutions.[37]However, for LiFeP, 1/T1was measured only at 4.65 T.[24]In order to obtain the complete information about spin dynamics, we measure 1/T1at various fields as shown in Fig.5. At 7 T, the spin-lattice relaxation rate divided by temperature,1/T1T,is indeed nearly temperature independent. With decreasing field,1/T1T starts to increase below T ~10 K. At 0.15 T, a strong enhancement of 1/T1T is clearly observed even in the superconducting state,indicating that spin correlations become much stronger at very low energies. In La2?xSrxCuO4, 1/T1T also shows an enhancement with cooling in the superconducting state, which is related to the spin glass transition.[38]In such case, spin correlations should be further enhanced at higher magnetic fields due to the suppression of superconductivity. It means that 1/T1T should have a stronger temperature dependence at higher fields, in contrast to the observation in LiFeP.

    Fig.5. Temperature evolution of 1/T1T of LiFeP at various fields. The arrows mark the onsets of superconducting transition Tc under respective fields. The error bar for 1/T1T is the s.d. in fitting the nuclear magnetization recovery curve and is smaller than the symbol size.

    Fig.6. (a)1/T1T as a function of. The solid curves are the linear fittings of 1/T1T to. (b) 1/T1T as a function of the NMR frequency f0. The solid curves indicate 1/T1T ∝?ln(f). The error bar is smaller than the symbol size.

    In Fig.6(a), we plot the value of 1/T1T measured at 1.5 K and 4.2 K as a function of f0?1/2. The 1/T1T appears to be proportional to f0?1/2, which is a typical behavior of the electronic spin diffusion in one-dimensional (1D)systems.[39]The possibility of two-dimensional(2D)spin diffusion where 1/T1T ∝?ln(f) can not be fully excluded as shown in Fig.6(b), although the fitting for 2D is not as good as the 1D situation. In a cuprate compound Tl2Ba2CuOy,1/T1T ∝?ln(f), which is related to 2D spin diffusion, was found above Tc.[40]In any cases, our results clearly indicate that spin correlations in LiFeP have a diffusion characteristic,meaning that the spin correlation function has an anomalously large contribution at long time. Similar behavior has also been observed in La0.87Ca0.13FePO, but only inside the superconducting state and was suggested to be originated from a spintriplet symmetry of superconducting state.[41,42]In our study,however,we find that the diffusive fluctuations exist far above Tcin the normal state of LiFeP, indicating that they are irrelevant to superconductivity. To the best of our knowledge,the nature of spin diffusion behavior in cuprate superconductors is still unclear,although this behavior has been discovered more than two decades. Thus we hope that our work will draw more theoretical attention for this issue.

    4. Conclusion

    In summary,we investigate the superconducting gap symmetry of LiFeP and LiFeAs by London penetration depth λLmeasurements. In LiFeAs, λLis found to saturate below T ~0.2Tc,meaning that the superconducting gap is fully opened. The temperature dependence of λLis analyzed by a two-gaps model and the two superconducting gaps of LiFeAs are acquired as ?1=1.2kBTcand ?2=2.8kBTc. In contrast,we find that λLdoes not show any saturation with decreasing temperature down to T ~0.03Tcin LiFeP. This indicates the existence of nodes in the superconducting energy gap function of LiFeP.Finally,we perform spin-lattice relaxation measurements at various fields in LiFeP.1/T1T is nearly temperature independent at 7 T,but is strongly enhanced at low fields below T =10 K, suggesting that the spin correlation is enhanced at very low energies. We further find that 1/T1T is proportional to f?1/2, indicating that spin fluctuations have a 1D diffusive characteristic. Such behavior was also observed in some cuprate high-Tcsuperconductors,while its origin still needs more studies.

    Acknowledgment

    We thank S. Kawasaki and K. Matano for assistance in some of the measurements and helpful discussions.

    猜你喜歡
    楊杰常青
    Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
    退!退!退!“退堂鼓專家”喜提高考作文題
    如此取暖!
    裝病的老爸
    三月三(2015年2期)2015-02-05 16:35:49
    神奇的菜
    三月三(2014年3期)2014-03-13 11:29:08
    又是酒駕釀的禍!
    這種“親熱”要不得!
    欲速則不達(dá)
    山東農(nóng)機(jī)化(2013年1期)2013-09-05 02:19:26
    奇殺
    小小說月刊(2013年3期)2013-05-14 14:55:17
    悠悠久久av| 国产午夜精品久久久久久| 叶爱在线成人免费视频播放| 很黄的视频免费| 久久影院123| 欧美黄色淫秽网站| 亚洲精品中文字幕在线视频| 久久影院123| 免费一级毛片在线播放高清视频 | 国产av又大| 中亚洲国语对白在线视频| 中文字幕人妻丝袜制服| 日韩视频一区二区在线观看| 亚洲av熟女| 亚洲精华国产精华精| 国产精品偷伦视频观看了| 99香蕉大伊视频| 很黄的视频免费| 校园春色视频在线观看| 亚洲欧洲精品一区二区精品久久久| 我的亚洲天堂| 国产亚洲精品一区二区www| 777久久人妻少妇嫩草av网站| 99国产精品一区二区三区| 成人国产一区最新在线观看| 黑丝袜美女国产一区| 99在线视频只有这里精品首页| av天堂久久9| 成年版毛片免费区| 国产欧美日韩一区二区三| 高清黄色对白视频在线免费看| 亚洲免费av在线视频| 国产亚洲精品综合一区在线观看 | 亚洲欧美激情综合另类| 午夜福利影视在线免费观看| 啦啦啦免费观看视频1| 国产亚洲精品久久久久5区| 很黄的视频免费| 久久久久久久久中文| 麻豆久久精品国产亚洲av | 色播在线永久视频| 99国产极品粉嫩在线观看| 女性生殖器流出的白浆| 十分钟在线观看高清视频www| 99久久99久久久精品蜜桃| 黑人巨大精品欧美一区二区蜜桃| 嫩草影院精品99| 极品人妻少妇av视频| 精品高清国产在线一区| 色在线成人网| 国产有黄有色有爽视频| av天堂久久9| 不卡av一区二区三区| 亚洲av五月六月丁香网| 国产精品野战在线观看 | 狂野欧美激情性xxxx| 99精品久久久久人妻精品| 性少妇av在线| 亚洲国产中文字幕在线视频| 淫妇啪啪啪对白视频| 亚洲av成人一区二区三| 色老头精品视频在线观看| 精品国产亚洲在线| av中文乱码字幕在线| 男女下面进入的视频免费午夜 | 精品久久蜜臀av无| 久久人人爽av亚洲精品天堂| 超碰97精品在线观看| 深夜精品福利| 99精品久久久久人妻精品| 一级毛片精品| 亚洲成人免费av在线播放| 嫩草影院精品99| 亚洲成a人片在线一区二区| 亚洲av成人一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av第一区精品v没综合| 欧美成人免费av一区二区三区| 欧美日韩瑟瑟在线播放| 亚洲第一av免费看| 一边摸一边抽搐一进一小说| 国产aⅴ精品一区二区三区波| 亚洲中文字幕日韩| 99精品欧美一区二区三区四区| 两性夫妻黄色片| 50天的宝宝边吃奶边哭怎么回事| 最好的美女福利视频网| av网站免费在线观看视频| 法律面前人人平等表现在哪些方面| 一边摸一边抽搐一进一出视频| 亚洲片人在线观看| 免费看十八禁软件| 一级毛片高清免费大全| 日本欧美视频一区| 十八禁人妻一区二区| 精品第一国产精品| 久久久久亚洲av毛片大全| 99国产综合亚洲精品| 可以免费在线观看a视频的电影网站| 免费在线观看视频国产中文字幕亚洲| 一区福利在线观看| 大香蕉久久成人网| 黑人操中国人逼视频| 亚洲成人精品中文字幕电影 | 怎么达到女性高潮| 久久国产乱子伦精品免费另类| 亚洲精品中文字幕一二三四区| 成人亚洲精品av一区二区 | 真人一进一出gif抽搐免费| 精品国内亚洲2022精品成人| 在线观看一区二区三区激情| 一区二区三区精品91| 91老司机精品| 波多野结衣高清无吗| 久久中文字幕人妻熟女| 精品午夜福利视频在线观看一区| 黄网站色视频无遮挡免费观看| 久久精品影院6| 午夜老司机福利片| 国产精品免费视频内射| 国产三级黄色录像| 高清av免费在线| 久久国产精品影院| 黄色视频不卡| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看| 99国产精品免费福利视频| 99久久国产精品久久久| 欧美日韩av久久| a级片在线免费高清观看视频| 麻豆国产av国片精品| 色综合婷婷激情| 无遮挡黄片免费观看| av网站免费在线观看视频| 久久热在线av| 国产精品综合久久久久久久免费 | 亚洲五月天丁香| 成人影院久久| 99久久久亚洲精品蜜臀av| 国产精品爽爽va在线观看网站 | 国产亚洲精品久久久久5区| 精品欧美一区二区三区在线| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 正在播放国产对白刺激| 亚洲国产欧美日韩在线播放| 国产伦人伦偷精品视频| 午夜免费鲁丝| 日韩 欧美 亚洲 中文字幕| 十八禁人妻一区二区| 免费一级毛片在线播放高清视频 | 亚洲国产精品一区二区三区在线| 男女高潮啪啪啪动态图| 波多野结衣高清无吗| 亚洲av熟女| 久久人人爽av亚洲精品天堂| 搡老岳熟女国产| a在线观看视频网站| 亚洲色图综合在线观看| av欧美777| 午夜精品在线福利| 亚洲一区二区三区不卡视频| 天堂动漫精品| 久久久国产一区二区| 亚洲三区欧美一区| 国产精品av久久久久免费| 熟女少妇亚洲综合色aaa.| 动漫黄色视频在线观看| 嫩草影院精品99| 日韩欧美在线二视频| 国产无遮挡羞羞视频在线观看| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 12—13女人毛片做爰片一| 久久中文字幕一级| 亚洲在线自拍视频| 国产在线观看jvid| 99香蕉大伊视频| 老司机亚洲免费影院| 久久精品国产清高在天天线| 国产亚洲欧美98| 亚洲欧美日韩另类电影网站| 成人18禁高潮啪啪吃奶动态图| 热re99久久精品国产66热6| 午夜福利,免费看| 99riav亚洲国产免费| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 欧美一区二区三区| av免费在线观看网站| 亚洲美女黄片视频| 美女高潮到喷水免费观看| 亚洲人成电影观看| 亚洲精品国产一区二区精华液| 欧美乱码精品一区二区三区| 999久久久国产精品视频| 日本精品一区二区三区蜜桃| 18美女黄网站色大片免费观看| 欧美一级毛片孕妇| 午夜91福利影院| 少妇粗大呻吟视频| 岛国视频午夜一区免费看| 久久午夜亚洲精品久久| 亚洲色图综合在线观看| 在线永久观看黄色视频| 97超级碰碰碰精品色视频在线观看| 热99国产精品久久久久久7| 女人被躁到高潮嗷嗷叫费观| 午夜福利影视在线免费观看| 热re99久久精品国产66热6| 国产又爽黄色视频| 亚洲久久久国产精品| 男女之事视频高清在线观看| 一进一出抽搐动态| 精品一区二区三区av网在线观看| 国产精品1区2区在线观看.| 欧美在线黄色| 国产一区二区三区在线臀色熟女 | 欧美不卡视频在线免费观看 | 美女高潮到喷水免费观看| 久久九九热精品免费| 久久伊人香网站| 国产亚洲精品久久久久久毛片| 久久精品人人爽人人爽视色| 久久久久久久久免费视频了| 日韩成人在线观看一区二区三区| 久久久国产成人免费| 不卡av一区二区三区| 亚洲第一青青草原| 久久性视频一级片| 亚洲国产中文字幕在线视频| 国产精品二区激情视频| 国产av又大| 中文字幕av电影在线播放| 欧美日韩黄片免| 99在线人妻在线中文字幕| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 超碰97精品在线观看| 99热只有精品国产| 99香蕉大伊视频| 国产激情欧美一区二区| 97碰自拍视频| 啦啦啦 在线观看视频| 后天国语完整版免费观看| 欧美大码av| 色哟哟哟哟哟哟| 久久中文字幕人妻熟女| 国产日韩一区二区三区精品不卡| 99久久人妻综合| 黑丝袜美女国产一区| 成人亚洲精品av一区二区 | 久久久久亚洲av毛片大全| 国产精品久久久久久人妻精品电影| 精品熟女少妇八av免费久了| 国产高清国产精品国产三级| www日本在线高清视频| 欧美日本亚洲视频在线播放| 久久精品成人免费网站| 亚洲欧洲精品一区二区精品久久久| 欧美精品亚洲一区二区| 国产主播在线观看一区二区| 夜夜爽天天搞| 一级毛片高清免费大全| 欧美一区二区精品小视频在线| 色综合站精品国产| 后天国语完整版免费观看| 又黄又粗又硬又大视频| 日韩精品免费视频一区二区三区| 91国产中文字幕| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三区在线| 五月开心婷婷网| 亚洲成国产人片在线观看| 国产精品乱码一区二三区的特点 | 欧美日本亚洲视频在线播放| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 亚洲熟女毛片儿| 久久精品影院6| 麻豆国产av国片精品| 亚洲国产欧美网| 欧美av亚洲av综合av国产av| 日韩av在线大香蕉| 国产高清videossex| 悠悠久久av| 欧美日韩亚洲综合一区二区三区_| 欧美一级毛片孕妇| 国产精品99久久99久久久不卡| 美女高潮喷水抽搐中文字幕| 99热国产这里只有精品6| 午夜91福利影院| 在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 50天的宝宝边吃奶边哭怎么回事| 午夜免费观看网址| 夫妻午夜视频| 在线观看免费视频网站a站| aaaaa片日本免费| 欧美亚洲日本最大视频资源| 嫁个100分男人电影在线观看| 欧美乱码精品一区二区三区| 精品国产美女av久久久久小说| 99久久国产精品久久久| 国产精品久久久久成人av| 日韩欧美一区视频在线观看| 国产成人影院久久av| 久久热在线av| www.自偷自拍.com| 国产黄色免费在线视频| 真人做人爱边吃奶动态| 成人国产一区最新在线观看| 亚洲九九香蕉| 国产国语露脸激情在线看| 国产精品98久久久久久宅男小说| 女人精品久久久久毛片| 久久国产亚洲av麻豆专区| 亚洲国产毛片av蜜桃av| cao死你这个sao货| 免费av中文字幕在线| 老司机靠b影院| 欧美激情高清一区二区三区| 黑人猛操日本美女一级片| 免费在线观看亚洲国产| e午夜精品久久久久久久| 黄色毛片三级朝国网站| 国产av在哪里看| 黄色成人免费大全| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久久5区| 夫妻午夜视频| 高清欧美精品videossex| 国产精品久久久人人做人人爽| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 一区福利在线观看| 午夜精品久久久久久毛片777| 免费在线观看视频国产中文字幕亚洲| 18禁国产床啪视频网站| 精品久久久久久电影网| 一边摸一边抽搐一进一出视频| 亚洲熟妇熟女久久| 首页视频小说图片口味搜索| 欧美成人午夜精品| 天天添夜夜摸| 制服人妻中文乱码| 亚洲伊人色综图| 18禁裸乳无遮挡免费网站照片 | 久9热在线精品视频| 在线观看66精品国产| 交换朋友夫妻互换小说| 国产精品98久久久久久宅男小说| 国产黄色免费在线视频| 久久精品91蜜桃| 亚洲人成电影观看| 国产无遮挡羞羞视频在线观看| 国产精品偷伦视频观看了| 国产精品亚洲一级av第二区| 青草久久国产| 12—13女人毛片做爰片一| 波多野结衣一区麻豆| 身体一侧抽搐| 成人黄色视频免费在线看| 在线观看www视频免费| 在线观看免费日韩欧美大片| 麻豆久久精品国产亚洲av | 欧美日本亚洲视频在线播放| www国产在线视频色| 亚洲欧美日韩无卡精品| 中出人妻视频一区二区| 精品一品国产午夜福利视频| 精品久久久久久成人av| 午夜福利一区二区在线看| 色尼玛亚洲综合影院| 男女做爰动态图高潮gif福利片 | 99精品在免费线老司机午夜| 女性生殖器流出的白浆| 欧美日韩国产mv在线观看视频| 黑丝袜美女国产一区| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 国产成+人综合+亚洲专区| 国产精品av久久久久免费| 日韩免费高清中文字幕av| 国产亚洲精品久久久久5区| 超碰成人久久| 亚洲aⅴ乱码一区二区在线播放 | 日本一区二区免费在线视频| 国产av在哪里看| 十分钟在线观看高清视频www| 无遮挡黄片免费观看| 91麻豆av在线| 免费av毛片视频| www.熟女人妻精品国产| 免费在线观看完整版高清| 50天的宝宝边吃奶边哭怎么回事| 国产精品日韩av在线免费观看 | 亚洲精品在线观看二区| 中文字幕色久视频| 男女做爰动态图高潮gif福利片 | 好看av亚洲va欧美ⅴa在| 日韩欧美免费精品| 欧美日韩av久久| 久久精品91无色码中文字幕| 不卡一级毛片| 久久久国产成人免费| 大型黄色视频在线免费观看| 十分钟在线观看高清视频www| 天天躁狠狠躁夜夜躁狠狠躁| 夫妻午夜视频| 天堂动漫精品| 亚洲av成人一区二区三| 狠狠狠狠99中文字幕| 水蜜桃什么品种好| 黄片大片在线免费观看| 亚洲国产欧美日韩在线播放| 老司机午夜十八禁免费视频| 美女午夜性视频免费| 日韩欧美在线二视频| 久久中文看片网| 一级毛片女人18水好多| 嫩草影院精品99| 欧美人与性动交α欧美软件| 亚洲精华国产精华精| 亚洲欧美激情在线| 国产极品粉嫩免费观看在线| 亚洲精品一区av在线观看| 国产精品亚洲av一区麻豆| 欧美在线黄色| 最新美女视频免费是黄的| 亚洲av成人av| 亚洲国产欧美网| 男女之事视频高清在线观看| 久久国产精品影院| 久久香蕉激情| 色在线成人网| 高清在线国产一区| 亚洲精品粉嫩美女一区| 欧美乱色亚洲激情| 中国美女看黄片| 亚洲精品中文字幕在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品999在线| 欧美中文综合在线视频| 日韩欧美三级三区| 99国产精品99久久久久| 日日干狠狠操夜夜爽| 国产精品一区二区精品视频观看| 一区二区三区精品91| 日韩免费av在线播放| 十分钟在线观看高清视频www| 男人舔女人下体高潮全视频| 久久久久久久久免费视频了| 国产三级黄色录像| 久久精品亚洲熟妇少妇任你| 日韩高清综合在线| 91字幕亚洲| 最新在线观看一区二区三区| 久热这里只有精品99| 淫妇啪啪啪对白视频| 午夜福利免费观看在线| 欧美日韩瑟瑟在线播放| 十八禁人妻一区二区| 亚洲专区中文字幕在线| 狂野欧美激情性xxxx| 国产精品国产av在线观看| 黄色a级毛片大全视频| 亚洲中文av在线| 亚洲自偷自拍图片 自拍| 1024视频免费在线观看| 精品电影一区二区在线| www国产在线视频色| 精品国产美女av久久久久小说| 国产99久久九九免费精品| 亚洲九九香蕉| 亚洲精品成人av观看孕妇| 黑人巨大精品欧美一区二区蜜桃| 校园春色视频在线观看| 亚洲精品美女久久久久99蜜臀| 男男h啪啪无遮挡| 欧美成人性av电影在线观看| 精品国产超薄肉色丝袜足j| 国产麻豆69| 欧美在线黄色| 人人妻人人添人人爽欧美一区卜| 久久人妻福利社区极品人妻图片| 久久国产精品影院| 国产成人av教育| 美女午夜性视频免费| 9色porny在线观看| 老熟妇乱子伦视频在线观看| 黄片大片在线免费观看| 精品人妻1区二区| 熟女少妇亚洲综合色aaa.| 久久精品国产亚洲av香蕉五月| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美国产一区二区入口| 国产野战对白在线观看| 精品熟女少妇八av免费久了| 亚洲 欧美 日韩 在线 免费| 日韩大码丰满熟妇| 色老头精品视频在线观看| 亚洲av美国av| 性欧美人与动物交配| 亚洲成人免费av在线播放| 午夜免费激情av| 午夜91福利影院| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 黄色视频,在线免费观看| 咕卡用的链子| 精品国产乱码久久久久久男人| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 国产精品乱码一区二三区的特点 | 男女床上黄色一级片免费看| 久久人人爽av亚洲精品天堂| 天堂动漫精品| 脱女人内裤的视频| 99精国产麻豆久久婷婷| 国产亚洲精品久久久久久毛片| 亚洲人成伊人成综合网2020| 他把我摸到了高潮在线观看| 9191精品国产免费久久| 色精品久久人妻99蜜桃| 日韩欧美国产一区二区入口| 国产片内射在线| 淫秽高清视频在线观看| 九色亚洲精品在线播放| 女警被强在线播放| 午夜福利一区二区在线看| 男男h啪啪无遮挡| 国产精品 国内视频| 久久人人97超碰香蕉20202| 午夜久久久在线观看| 亚洲中文av在线| 精品福利观看| 人人妻人人澡人人看| 日韩精品免费视频一区二区三区| 国产成人免费无遮挡视频| 一个人观看的视频www高清免费观看 | 一区在线观看完整版| 国产欧美日韩一区二区三区在线| 五月开心婷婷网| 免费在线观看亚洲国产| ponron亚洲| 精品国产一区二区久久| 99久久人妻综合| 国产欧美日韩综合在线一区二区| 亚洲欧美激情在线| 亚洲五月天丁香| 亚洲av五月六月丁香网| 亚洲国产欧美一区二区综合| 欧美精品亚洲一区二区| 久久久久国内视频| 在线观看www视频免费| 别揉我奶头~嗯~啊~动态视频| 日韩精品青青久久久久久| 国产区一区二久久| 啦啦啦免费观看视频1| 国产精品永久免费网站| 国产精品免费一区二区三区在线| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲欧美在线一区二区| 咕卡用的链子| 高清黄色对白视频在线免费看| 黄色成人免费大全| 国产色视频综合| 老熟妇仑乱视频hdxx| 两人在一起打扑克的视频| 精品国产一区二区三区四区第35| 免费av中文字幕在线| 美女高潮喷水抽搐中文字幕| 我的亚洲天堂| 国产伦人伦偷精品视频| 一进一出抽搐gif免费好疼 | 神马国产精品三级电影在线观看 | 国产三级黄色录像| 午夜激情av网站| 久久这里只有精品19| av视频免费观看在线观看| 亚洲欧美一区二区三区久久| 91国产中文字幕| 国产又爽黄色视频| 国产成人免费无遮挡视频| 麻豆av在线久日| 涩涩av久久男人的天堂| 久久人人爽av亚洲精品天堂| 高清黄色对白视频在线免费看| 亚洲专区中文字幕在线| 国产片内射在线| 中文字幕另类日韩欧美亚洲嫩草| 麻豆久久精品国产亚洲av | 亚洲成av片中文字幕在线观看| 757午夜福利合集在线观看| 99热国产这里只有精品6| 一进一出好大好爽视频| 欧美乱色亚洲激情| 一级作爱视频免费观看| 久久亚洲精品不卡| 91九色精品人成在线观看| 香蕉国产在线看| 午夜福利欧美成人| 亚洲午夜理论影院| 欧美成狂野欧美在线观看| 亚洲片人在线观看| 9191精品国产免费久久| 国产av又大| 国产精品久久久人人做人人爽| 高清欧美精品videossex| 18禁黄网站禁片午夜丰满| 日韩欧美三级三区| 9热在线视频观看99| e午夜精品久久久久久久| 成年人免费黄色播放视频| 一级a爱视频在线免费观看|