• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum simulations with nuclear magnetic resonance system*

    2021-05-06 08:55:16ChudanQiu邱楚丹XinfangNie聶新芳andDaweiLu魯大為
    Chinese Physics B 2021年4期

    Chudan Qiu(邱楚丹), Xinfang Nie(聶新芳),?, and Dawei Lu(魯大為),2,?

    1Shenzhen Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China

    2Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: nuclear magnetic resonance,quantum simulation,quantum phase transition,quantum gravity

    1. Introduction

    In order to predict the evolution of a quantum system,numerical analysis is a traditional but demanding approach.Especially due to the exponential size of Hilbert space as a function of quantum subsystems, the limited number of subsystems for numerical analysis is a major obstacle to addressing quantum problems with desirable accuracy on a classical computer. Conversely,in many cases,the quantum simulation may offer a faster solution with a probably more illustrative perspective. More importantly,the qubits in quantum simulators are intrinsically able to store exponentially large amounts of information compared to classical bits. Furthermore,in recent years, quantum effects play an increasingly substantial role in modern technology, which leads to the new needs for quantum simulation. Meanwhile, the physical platforms, as well as the technologies required,have matured enough to enable the practical implementations,including superconducting circuits,[1,2]trapped ions,[3,4]neutral atoms,[5–7]photons,[8,9]spin-based systems such as impurity spins in solids[10,11]and nuclear magnetic resonance(NMR).

    Among various candidates,nuclear spins manipulated using NMR are usually considered to be competent in smallscale quantum simulations.[12]Twenty years ago, many leading experiments blazed a trail in implementing complex multiqubit gate operations using NMR.[13–15]In the following decades,more sophisticated techniques have been well developed in terms of endeavouring to simulate the dynamics of quantum systems.[16,17]More recently,the state-of-the-art 12-qubit coherent control has been demonstrated.[18,19]

    These experimental advances in controlling spins promise the applications in disparate areas, including many-body physics and quantum gravity. Some problems in the former are formidably hard to tackle with classical computers due to the complexity arisen from the interactions between many quantum individuals. And the quantum gravity which aims at unifying quantum mechanics and Einstein gravity is a fundamental area but with many ideas remaining unveiled experimentally.

    In this review,we present some representative experimental demonstrations in many-body systems and quantum gravity realized with NMR.First,we start with an introduction of NMR fundamentals in Section 2. Next,centered around a key quantity called out-of-time correlator (OTOC), the following Section 3 expounds on three topics where the OTOC serves as an excellent probe: (1) OTOC can differentiate the integrable and non-integrable systems and quantify the butterfly velocity in quantum chaos (Subsection 3.1); (2) OTOC can observe different signatures of many-body localization(MBL)and Anderson localization (AL), as an alternative metric instead of the entanglement entropy(Subsection 3.2);(3)OTOC can detect the dynamical quantum phase transition (DQPT)and mark the critical point in equilibrium dynamical phase transition (EQPT) between the paramagnetic and ferromagnetic phases,surpassing the autocorrelation and the two-body correlation function as regards to the precision and robustness(Subsection 3.3). These results shed light on the underlying connections among quantum chaos,thermalization,and quantum gravity. Accordingly,based on Ryu–Takayanagi(RT)entropy, the profound relation between OTOC and anti-de Sitter/conformal field theory(Ads/CFT)duality directs us to Subsection 4.1. The experiment that RT entropy has been verified on perfect tensor state is elaborated. While the perfect tensors are viewed as the building blocks of the tensor network,this verification makes the first step toward studying quantum gravity experimentally. In the other Subsection 4.2, the successful simulations of geometry properties and local dynamics of quantum spacetime, with respect to quantum tetrahedrons and spinfoam vertex amplitude, respectively, open up an avenue studying loop quantum gravity(LQG).Finally,the challenges and prospects of quantum simulation with NMR are discussed in Section 5.

    2. Basics of NMR

    In the remainder of this article,we will restrict ourselves to the more comprehensible liquid-state NMR. In the liquid solution, where the rapid tumbling averages out the dipole–dipole interactions, the Hamiltonian with spin–spin interactions under the weak coupling approximation reads as(ˉh=1)

    where ωi=γiB0, with gyromagnetic ratio γiof the i-th nuclear spin and static magnetic field B0aligned along z-axis,is the Larmor angular frequency, and Jijis the scalar coupling strength between the i-th and j-th spins.

    Fig.1. CHCl3 as an example of a two-qubit sample with relevant parameters. The 13C and 1H nuclear spins serve as two qubits. The chemical shift(Hz) and J-coupling strength are given by the diagonal and off-diagonal terms in the right table, respectively. Two important parameters characterizing the longitudinal and transverse coherence properties represented by T1 and T2 (see more details in the Subsection 2.4) respectively are also provided.

    2.1. Initialization

    To emulate a quantum system of interest, the first step should be the preparation of an initial state of the simulated system. According to the Boltzmann distribution, the system is in the thermal equilibrium state under the room temperature,which is unpolarized(see Fig.2(a)). However,it is impossible to cool down to extremely low temperature so as to obtain a state polarized into ground state in the liquid-state NMR. Instead,a pseudo-pure state(PPS)[20,21]is widely adopted

    Fig.2. Pseudo-pure state in initialization and the schematic diagram of experimental setup. For a two-qubit system in the thermal equilibrium, there is no available polarized state to employ, as shown in(a). While a PPS,as illustrated in(b),with an identity part and a tiny amount of extra population in the ground state is valid to be treated as an initialized state. (c)Gate control and the measurement are implemented by the RF coil with the following electrical circuit connected to the computer. On the other hand,the external field B0 is generated by the static field coil. This subfigure is adapted from Ref.[26].

    2.2. Universal gates

    In the case of NMR, the unitary gates of each qubit are carried out by the external radio-frequency (RF) pulses (see Fig.2(c)),which can be written as

    2.3. Measurement

    Finally, with the aid of an RF coil, the transverse magnetization of the ensemble can be obtained. This detection coil is weakly coupled to the nuclear spins so that it barely contributes to the decoherence. However, there remain interactions with the heat bath and inhomogeneity of the static field,which still leads to the decoherence of the nuclear spins.Consequently, the measurement of the nuclear spins is based on the free induction decay (FID). What FID experiments yield are the expectation values of readout operators in the x–y plane, and finally, the time-domain FID signals are converted to frequency-domain NMR spectra via Fourier transform. Though such weak measurement is unable to provide as much information of a single spin as the projective measurement,the ensemble-averaged information can be distilled.For the complete description of the state, i.e., all elements of the density matrix,one should resort to the full quantum state tomography.[13,28]

    2.4. Decoherence

    The decoherence originates from the unwanted interactions with the environment,which leads to the loss of information carried by qubits. As a result, the coherence is a crucial facet of examining whether a quantum system would be entitled to be the physical implementation of a quantum simulator.For the decoherence stemming from the couplings between the spins and the lattice, it is conventionally characterized by the energy relaxation(or longitudinal relaxation)time T1,which is about tens of seconds in a liquid sample. Whereas phase randomization time(or transverse relaxation)T2characterizes the decoherence resulting from the spin–spin couplings. In NMR systems,a more important parameter is denoted by T*2,which is extracted from FID experiments and in turn is termed inhomogeneous dephasing time. The T*2is supposed to be long enough during which the sequences of gates can be implemented. For the complex tasks,the more advanced techniques should be applied to extend T*2so that preserve the information, such as RF selection which improves the T*2at the cost of signal loss.[29,30]

    3. Many-body physics

    3.1. Quantum chaos

    In the classical systems,the integrable and non-integrable systems are related to the regular and chaotic motions,respectively,where the latter display the butterfly effect that the initial diminutive deviations may give rise to considerable differences in a later time. Correspondingly, in the quantum scenario,a small perturbation that spreads over a many-body system may result in large commutators with the operators which are commutative with the perturbation initially.[31]Formally,the quantum version of butterfly effect is relevant to a core concept termed quantum information scrambling, that is, the information stored in local degrees of freedom smears over global degrees of freedom. Scrambling lies at the heart of the dynamics of quantum information.[32]From the experimental perspective, it can be understood by a key observable named out-of-time correlator(OTOC),which first appeared in the context of superconductivity[33]and was defined as

    3.1.1. Integrable and non-integrable systems

    The distinct behaviors of integrable and non-integrable systems can be observed via OTOC.[36]Take the paradigmatic one-dimensional transverse-field Ising chain(TFIC)model as an example,whose Hamiltonian reads as

    Fig.3. Distinct behaviors of (a) integrable (g =1, h =0) and (b) nonintegrable (g=1.05, h=0.5 for left column and g=1, h=1 for right column) cases of Ising spin chain model are distinguished by OTOC F(t).(c)Measurement of butterfly velocity. The OTOCs for three different operators ?Wj are shown with different colors. The inset shows the characteristic time td versus the distance d between two operators, where the butterfly velocity vB can be obtained according to td =d/vB+c with c being the intercept. The figures are adapted from Ref.[36].

    3.1.2. Butterfly velocity

    3.2. Quantum phase transition

    3.2.1. Many-body localization and Anderson localization phases

    Another aspect in connection with the scrambling of information is the thermalization and entanglement entropy. To be more concrete, consider an initial state which is the direct product of two pure subsystems,say A and B,and undergoes an evolution governed by a chaotic Hamiltonian. After a time longer than the thermalization time,the output state turns out to be highly entangled, which suggests that each subsystem is near maximally mixed and thus, corresponds to a thermal ensemble regarding all local measurement observables.[45]Moreover, the degree of entanglement between subsystems can be quantified by the growth of local von Neumann entropy

    MBL is a regime where the entanglement entropy scales logarithmically.[47]This localization results from the strong disorder that struggles against the thermalization and accordingly suppresses the growth of entanglement entropy.Whereas the non-interacting correspondence AL has a saturation as the primary signature (see the dashed lines with non-zero (zero)interaction strength,the right axis in Fig.4).

    Nevertheless, measuring entanglement entropy is challenging, the pioneering work was achieved only on the small number of particles.[48]Recently, the average correlation length Lcas an alternative has been demonstrated on the NMR platform as effective as entanglement entropy[49](see experimental results (dotted lines) and simulation (solid lines), left axis in Fig.4). The Lcis referred to the contributions of all possible spin correlations with Hamming weight.[50]Armed with the coherent averaging techniques[51]to tune both the interaction strength and the degree of disorder,the average correlation length can be extracted from the intensity of multiple quantum coherence(MQC)based on the measurement of OTOCs.

    Fig.4. Simulations of entanglement entropy and correlation length for many-body localization and Anderson localization. As the increment of interaction strength, the MBL emerges, featured by a slow growth in time of Lc (solid lines,left axis),which is consistent with the approximated Lc obtained by measuring OTOC(dotted lines,left axis),the logarithmic growth of entanglement entropy(dashed lines,right axis). By pronounced contrast,in the AL phase where the interaction is absent(the black lines corresponding to zero interaction strength),Lc is saturated. The figure is adapted from Ref.[49].

    3.2.2. Paramagnetic and ferromagnetic phases

    As an indicator,OTOC also outperforms some other kind of correlators with respect to detecting equilibrium quantum phase transition (EQPT) and dynamical quantum phase transition (DQPT),[52]because OTOC captures the scrambling of quantum information, and both EQPT and DQPT attend rapid spread of quantum information on account of appreciable quantum fluctuations.

    In a recent work,[56]the advantages of OTOC have been demonstrated compared with autocorrelation and two-body correlation function with respect to detecting DQPT and locating the critical point in EQPT.

    Well in accord with the theoretical simulation,the dynamics of OTOC exhibits sharp distinctions between ferromagnetic (ggc).As illustrated in the top panel of Fig.5(a),OTOC stays at certain positive value with comparatively small fluctuations in the g

    Fig.5. Experimental results of DQPT and EQPT for integrable and nonintegrable systems. The comparisons of the OTOC F(t) (top panels), autocorrelation χ(t)(bottom panels), and two-body correlation function C(t)(bottom panels)to detect DQPT in the integrable system and non-integrable system represented by(a)TFIC model and(b)ANNNI model,respectively.Critical points of(c)TFIC model and(d)ANNNI model are marked as the turning points of the long-time averaged OTOC(top panels)and two-body correlation(bottom panels)as functions of the transverse field strength g.The figures are adapted from Ref.[56].

    4. Quantum gravity

    4.1. Ads/CFT correspondence

    4.1.1. Ryu–Takayanagi entropy

    As discussed above, the OTOC has underlying connections with Ads/CFT duality. On this account,Ads/CFT correspondence links the quantum gravity theory and quantum information theory[58]meanwhile inspiring the incorporation of holographic entanglement entropy into the study of quantum gravity. Specifically, the entanglement entropy of the boundary system can be related to the bulk geometry in terms of Ryu–Takayanagi formula,[59,60]which reads as

    4.1.2. Tensor network

    Fig.6. Diagrammatic representation of a tensor network. The coefficients of an N-body system amount to an N-order tensor. A tensor network represents the structure and the amount of entanglement of a quantum manybody state. The tensors are linked by the lines, which correspond to the indices i1,i2,...,iN. Then, the contracted (summed) common indices are represented by the lines connecting to shapes. Then,a tensor network with m unpaired legs can be treated as an m-order tensor. In this sense, the tensor network representation reduces the complexity of quantum many-body problem.

    Moreover,when k ≤3,the reduced density matrix equals an identity and on the other side S(k)=min{k,6 ?k}, which has also been verified,[61]with the proper refinements by taking account of the decoherence, as shown in Fig.7(c). It is noteworthy that the compensations of decoherence errors were accomplished by performing 6-qubit full tomography, which is the largest full state characterization in an NMR system to date.

    Fig.7. Illustration of tensor network and perfect tensor,and the theoretical and experimental results of RT entropy. (a) The disk is a two-dimensional ads with the hexagonal tiling. The solid arc marks the minimal surfacewhich is anchored to the two ends of the boundary region illustrated by the dashed line. The tensor network on the right side is the discrete version of the left ads space. The tensor network is composed of rank-6 tensors represented by a hexagonal node with the links ?, each of which corresponds to a maximally-entangled state. The total tensor network state is obtained by taking inner products in ?, corresponding to connecting legs of nodes to links. (b)A rank-6 perfect tensor with three minimal cuts by virtual surface illustrated by the red solid line. Half of six qubits are bulk qubits and the other half are at boundary. (c) The theoretical results of entanglement entropy S(k) equalling to min{k,6 ?k} are shown by orange dashed line.The refined experimental results with the compensation of decoherence represented by blue squares are consistent with the theory much better than initial results shown by red circles. The maximal entropy of a k-qubit subsystem by assuming a 6-qubit identity is plotted in green dotted line as an upper-bound reference. The figures are adapted from Ref.[61].

    4.2. Loop quantum gravity

    In another aspect of quantum gravity, the nuclei spin states in NMR can also be employed to simulate quantum geometries of spacetime.

    4.2.1. Spin network

    In loop quantum gravity, the quantum states endowed with discrete geometries of quantum spacetime at the Planck scale are represented by spin networks.[63]The time evolution of spin network[64]builds up a (3+1)-dimensional quantum spacetime,then the boundary of which is the spin network.

    4.2.2. Dynamics of quantum geometry

    Vertex amplitudes determine the spinfoam amplitudes,which are the transition amplitudes between the initial and the final spin networks.[68]In principle,if the two-qubit maximally entanglement states can be established between arbitrary two tetrahedra,as illustrated in Fig.8,the vertex amplitudes can be obtained by evaluating the inner product between five quantum tetrahedra states. However, it is beyond the present manageable level for a 20-qubit quantum computer.Instead,the full tomography is also helpful,through which the information about quantum tetrahedra is acquired.[66]

    Fig.8. Spin network and quantum tetrahedra. (a)In a(3+1)-dimensional dynamical quantum spacetime, a 3-sphere S3 encloses a portion of quantum spacetime surrounding a vertex(in black)where the world sheets meet.(b)A spin network(blue)is represented by the intersection between world sheets and S3. Each node of spin network corresponds to a quantum tetrahedron associated with an invariant tensor state|in?. Five tetrahedra are glued through the faces dual to the links to form a closed S3, represented by the connections of links l, each of which carries a half-integer jl. The figures are adapted from Ref.[66].

    5. Outlook

    Apart from the achievements discussed above, NMR simulations also provide new insights into various subjects(see Fig.9) such as quantum state tomography,[69–73]quantum algorithm,[74–76]non-Abelian topological orders,[77,78]Sachdev–Ye–Kitaev model,[79]prethermalization,[80]disordered systems,[81]probabilistic quantum cloning,[82]eigenproblem solving,[83]anti-PT-symmetry,[84]and even photosynthetic light harvesting.[85]However,on the theoretical side,the theories of decoherence and control are required;on the experimental side, the controllability and scalability of the system remain scope to improve.In particular,the spectral crowding that occurs as the number of energy levels increases exponentially with the increasing number of spins hinders liquid NMR from scalability. Though in solid-state NMR,the scalability drawback may be overcome to some extent,the manipulation and measurement of single qubit would be difficult. A promising alternative is the nitrogen-vacancy(NV)centers in diamond,into which the well-developed techniques in controlling spins in NMR have been incorporated.[86]

    Fig.9. Fields on which the NMR simulations shed light.

    The progress on quantum simulation tempts us to envisage that the practical simulators will be built in the near future as the prototype of full-fledged quantum computers. Especially when the point beyond which the classical computer would be inferior to quantum simulations is marked, at least in some cases, it would be a milestone for both physics and computer science.

    国产又爽黄色视频| 中文字幕人妻丝袜一区二区| 午夜福利在线观看吧| 免费看十八禁软件| 最近最新免费中文字幕在线| 国产精品99久久99久久久不卡| 老司机亚洲免费影院| 欧美性长视频在线观看| 久久精品亚洲精品国产色婷小说| 欧美日韩国产mv在线观看视频| 国产亚洲精品一区二区www | 国产精品久久久久久精品古装| 亚洲午夜理论影院| 男男h啪啪无遮挡| 男男h啪啪无遮挡| 亚洲av成人一区二区三| 亚洲av片天天在线观看| 亚洲自偷自拍图片 自拍| 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区久久| 欧美人与性动交α欧美软件| 美女福利国产在线| 最近最新中文字幕大全电影3 | 巨乳人妻的诱惑在线观看| 天天影视国产精品| 人人妻,人人澡人人爽秒播| 精品国产亚洲在线| 不卡av一区二区三区| 不卡av一区二区三区| 精品福利观看| 国产精品98久久久久久宅男小说| 日韩免费高清中文字幕av| 大片免费播放器 马上看| 中文字幕精品免费在线观看视频| 欧美日韩国产mv在线观看视频| 免费日韩欧美在线观看| 在线十欧美十亚洲十日本专区| 两性午夜刺激爽爽歪歪视频在线观看 | 无人区码免费观看不卡 | 亚洲精品国产区一区二| 悠悠久久av| 美女视频免费永久观看网站| 蜜桃国产av成人99| 狠狠精品人妻久久久久久综合| 国产无遮挡羞羞视频在线观看| 亚洲欧美日韩另类电影网站| 亚洲成人免费电影在线观看| 欧美中文综合在线视频| 高清av免费在线| 亚洲精品国产色婷婷电影| 多毛熟女@视频| 精品一区二区三区av网在线观看 | 一级毛片女人18水好多| 亚洲午夜理论影院| 欧美亚洲日本最大视频资源| 久久精品亚洲熟妇少妇任你| 超碰97精品在线观看| 久久久国产欧美日韩av| 精品视频人人做人人爽| 在线天堂中文资源库| 精品午夜福利视频在线观看一区 | 成人精品一区二区免费| 曰老女人黄片| 欧美日韩亚洲高清精品| 欧美黑人精品巨大| 宅男免费午夜| 国产在线视频一区二区| 天天添夜夜摸| 一级,二级,三级黄色视频| 男女边摸边吃奶| 久久人妻熟女aⅴ| tocl精华| 久久久精品国产亚洲av高清涩受| 老司机福利观看| 搡老乐熟女国产| 女人爽到高潮嗷嗷叫在线视频| 麻豆乱淫一区二区| 国产日韩欧美在线精品| 亚洲成人国产一区在线观看| 叶爱在线成人免费视频播放| 亚洲五月婷婷丁香| 精品国产一区二区久久| 国产亚洲欧美精品永久| 成人国产av品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 一边摸一边抽搐一进一出视频| 窝窝影院91人妻| 成人18禁在线播放| 欧美乱妇无乱码| 1024香蕉在线观看| 国产一区二区三区在线臀色熟女 | 高清欧美精品videossex| 亚洲专区字幕在线| 少妇猛男粗大的猛烈进出视频| 欧美 亚洲 国产 日韩一| 一边摸一边抽搐一进一出视频| 中文亚洲av片在线观看爽 | 看免费av毛片| 女性被躁到高潮视频| 人人妻,人人澡人人爽秒播| 欧美精品高潮呻吟av久久| 成人国产一区最新在线观看| 国产精品久久久久久精品古装| 老熟女久久久| av欧美777| 精品一区二区三卡| 波多野结衣av一区二区av| 他把我摸到了高潮在线观看 | 国产熟女午夜一区二区三区| 国产人伦9x9x在线观看| 精品一区二区三区av网在线观看 | 妹子高潮喷水视频| 99久久人妻综合| 无遮挡黄片免费观看| 色在线成人网| 男女床上黄色一级片免费看| 99re6热这里在线精品视频| 国产午夜精品久久久久久| 国产一区二区三区在线臀色熟女 | 视频区图区小说| 一进一出抽搐动态| 色精品久久人妻99蜜桃| 99香蕉大伊视频| 久久久久视频综合| 欧美黄色淫秽网站| 日韩中文字幕视频在线看片| 亚洲国产av影院在线观看| 久久性视频一级片| 亚洲国产av影院在线观看| 2018国产大陆天天弄谢| 国产成人免费无遮挡视频| www日本在线高清视频| 亚洲五月色婷婷综合| 欧美亚洲日本最大视频资源| 欧美av亚洲av综合av国产av| 精品亚洲成a人片在线观看| 亚洲成人免费av在线播放| 欧美黄色片欧美黄色片| 在线天堂中文资源库| 久久人妻熟女aⅴ| av福利片在线| 天天操日日干夜夜撸| 免费观看a级毛片全部| 一本—道久久a久久精品蜜桃钙片| av天堂久久9| 在线观看舔阴道视频| 国产亚洲午夜精品一区二区久久| 啦啦啦在线免费观看视频4| 亚洲自偷自拍图片 自拍| av免费在线观看网站| 日韩免费av在线播放| 成年动漫av网址| a级片在线免费高清观看视频| 男女床上黄色一级片免费看| 成人免费观看视频高清| 交换朋友夫妻互换小说| 制服诱惑二区| 老司机午夜十八禁免费视频| 婷婷丁香在线五月| 国产熟女午夜一区二区三区| 99久久精品国产亚洲精品| 91麻豆av在线| 正在播放国产对白刺激| 看免费av毛片| 91九色精品人成在线观看| 欧美乱码精品一区二区三区| 热99国产精品久久久久久7| 搡老熟女国产l中国老女人| 麻豆乱淫一区二区| 国产深夜福利视频在线观看| 日韩欧美一区二区三区在线观看 | 天堂8中文在线网| 在线播放国产精品三级| 午夜福利视频精品| 日日摸夜夜添夜夜添小说| 手机成人av网站| 色婷婷久久久亚洲欧美| 手机成人av网站| 国产老妇伦熟女老妇高清| a级毛片黄视频| 在线观看www视频免费| 亚洲专区中文字幕在线| 国产野战对白在线观看| 一区二区日韩欧美中文字幕| 他把我摸到了高潮在线观看 | 色视频在线一区二区三区| 免费在线观看视频国产中文字幕亚洲| 久久久久久人人人人人| 99re在线观看精品视频| 亚洲男人天堂网一区| 露出奶头的视频| 国产亚洲精品久久久久5区| 麻豆av在线久日| 女警被强在线播放| 黑人猛操日本美女一级片| 精品卡一卡二卡四卡免费| 老司机深夜福利视频在线观看| 我的亚洲天堂| 国产老妇伦熟女老妇高清| 不卡一级毛片| 亚洲五月色婷婷综合| 婷婷成人精品国产| 搡老熟女国产l中国老女人| 精品国产亚洲在线| 国产在线观看jvid| 国产精品九九99| 超色免费av| 制服人妻中文乱码| 欧美 亚洲 国产 日韩一| 日本黄色视频三级网站网址 | 久久精品亚洲精品国产色婷小说| 国产精品久久久久久精品电影小说| 国产亚洲av高清不卡| 97在线人人人人妻| 国产精品二区激情视频| 亚洲国产精品一区二区三区在线| 性少妇av在线| 中文字幕av电影在线播放| 一二三四在线观看免费中文在| 亚洲精品国产精品久久久不卡| avwww免费| 日韩欧美一区视频在线观看| 午夜福利,免费看| 99精国产麻豆久久婷婷| 国产福利在线免费观看视频| 久久天躁狠狠躁夜夜2o2o| tocl精华| 夜夜夜夜夜久久久久| 久久ye,这里只有精品| 久久人人爽av亚洲精品天堂| 亚洲av片天天在线观看| 五月天丁香电影| 国产精品亚洲一级av第二区| 成人国产一区最新在线观看| 久久国产精品男人的天堂亚洲| 两个人免费观看高清视频| 日本黄色日本黄色录像| 欧美成狂野欧美在线观看| 精品国内亚洲2022精品成人 | 国产成+人综合+亚洲专区| 97人妻天天添夜夜摸| 美女视频免费永久观看网站| 啦啦啦 在线观看视频| 国产麻豆69| 老司机在亚洲福利影院| 在线观看免费视频网站a站| 男人操女人黄网站| 真人做人爱边吃奶动态| 亚洲少妇的诱惑av| 久久人妻福利社区极品人妻图片| 国产成人欧美在线观看 | 看免费av毛片| 99久久99久久久精品蜜桃| 欧美日韩成人在线一区二区| 69精品国产乱码久久久| 亚洲人成伊人成综合网2020| www.精华液| 99国产精品99久久久久| 亚洲午夜精品一区,二区,三区| 蜜桃国产av成人99| 99精品欧美一区二区三区四区| 满18在线观看网站| 黄色片一级片一级黄色片| 成人精品一区二区免费| 男女午夜视频在线观看| 一本一本久久a久久精品综合妖精| 色在线成人网| 欧美精品一区二区大全| 青青草视频在线视频观看| 色在线成人网| 国产成人影院久久av| 在线观看免费高清a一片| 国产xxxxx性猛交| 视频在线观看一区二区三区| 午夜免费鲁丝| 一个人免费看片子| 日韩大码丰满熟妇| 精品卡一卡二卡四卡免费| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 欧美国产精品va在线观看不卡| 考比视频在线观看| 亚洲成a人片在线一区二区| 少妇 在线观看| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| 啦啦啦在线免费观看视频4| 美女国产高潮福利片在线看| 欧美另类亚洲清纯唯美| 成人精品一区二区免费| 丝瓜视频免费看黄片| 99re6热这里在线精品视频| 欧美成狂野欧美在线观看| 黑人欧美特级aaaaaa片| 中文字幕制服av| 国产av精品麻豆| 男女免费视频国产| 亚洲九九香蕉| 亚洲伊人久久精品综合| 欧美精品啪啪一区二区三区| avwww免费| 亚洲av国产av综合av卡| 久久ye,这里只有精品| 亚洲情色 制服丝袜| 中文字幕制服av| 亚洲人成77777在线视频| 午夜激情久久久久久久| 午夜日韩欧美国产| 18禁裸乳无遮挡动漫免费视频| 丁香六月欧美| 国产亚洲av高清不卡| 新久久久久国产一级毛片| 国产在线观看jvid| 19禁男女啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 国产精品 欧美亚洲| 淫妇啪啪啪对白视频| 悠悠久久av| 国产真人三级小视频在线观看| 露出奶头的视频| 国产精品秋霞免费鲁丝片| 国产成人免费无遮挡视频| 999精品在线视频| 久久久久精品人妻al黑| 在线观看免费午夜福利视频| 美女福利国产在线| 日韩欧美国产一区二区入口| 精品人妻在线不人妻| 高清黄色对白视频在线免费看| 午夜老司机福利片| 黑人欧美特级aaaaaa片| 又紧又爽又黄一区二区| 国产日韩欧美在线精品| 男女免费视频国产| 国产精品免费大片| 免费日韩欧美在线观看| 精品人妻在线不人妻| 亚洲人成电影观看| 免费久久久久久久精品成人欧美视频| 老司机亚洲免费影院| 免费少妇av软件| 亚洲黑人精品在线| 91麻豆av在线| 岛国在线观看网站| 欧美黑人精品巨大| 一区二区三区精品91| 一级毛片女人18水好多| 18禁观看日本| 叶爱在线成人免费视频播放| 18禁黄网站禁片午夜丰满| 性少妇av在线| 黄色怎么调成土黄色| 激情视频va一区二区三区| 岛国毛片在线播放| 亚洲伊人久久精品综合| 高清欧美精品videossex| 男人舔女人的私密视频| 99精国产麻豆久久婷婷| 夜夜夜夜夜久久久久| 国产成+人综合+亚洲专区| 久久毛片免费看一区二区三区| 无人区码免费观看不卡 | 另类精品久久| 亚洲视频免费观看视频| 丝袜人妻中文字幕| 国产精品 欧美亚洲| 国产精品久久久久久精品电影小说| 亚洲国产看品久久| 婷婷丁香在线五月| 人人澡人人妻人| 精品国产亚洲在线| 亚洲成av片中文字幕在线观看| 中文欧美无线码| 丁香六月欧美| 嫩草影视91久久| 一夜夜www| 搡老乐熟女国产| 蜜桃国产av成人99| 国产欧美日韩精品亚洲av| 精品国产乱码久久久久久小说| 亚洲欧美一区二区三区久久| 他把我摸到了高潮在线观看 | 亚洲中文日韩欧美视频| 好男人电影高清在线观看| 国产一区二区激情短视频| 国产精品美女特级片免费视频播放器 | 国产一区二区 视频在线| av免费在线观看网站| 黄片小视频在线播放| 亚洲伊人久久精品综合| 97人妻天天添夜夜摸| 99在线人妻在线中文字幕 | 亚洲性夜色夜夜综合| 国产极品粉嫩免费观看在线| 啦啦啦视频在线资源免费观看| 国产精品影院久久| 久久久久久久久久久久大奶| 91老司机精品| 涩涩av久久男人的天堂| 色精品久久人妻99蜜桃| 精品少妇久久久久久888优播| www.自偷自拍.com| 国产成人精品在线电影| 法律面前人人平等表现在哪些方面| 999久久久精品免费观看国产| 久久久国产精品麻豆| 一级毛片电影观看| 国产视频一区二区在线看| av有码第一页| 免费av中文字幕在线| 亚洲欧美精品综合一区二区三区| 国产91精品成人一区二区三区 | 欧美日韩精品网址| 另类亚洲欧美激情| 如日韩欧美国产精品一区二区三区| 啦啦啦视频在线资源免费观看| 伊人久久大香线蕉亚洲五| 中文字幕人妻丝袜制服| 亚洲综合色网址| 欧美激情久久久久久爽电影 | 亚洲久久久国产精品| 波多野结衣一区麻豆| 久久精品国产综合久久久| 国产不卡一卡二| 99精品久久久久人妻精品| 一本综合久久免费| 日韩成人在线观看一区二区三区| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久| 成人av一区二区三区在线看| 91av网站免费观看| 一级毛片电影观看| 少妇粗大呻吟视频| videosex国产| 日韩大片免费观看网站| 男男h啪啪无遮挡| 美女午夜性视频免费| 免费观看a级毛片全部| 黄色视频在线播放观看不卡| 亚洲精品国产精品久久久不卡| 国产男女内射视频| 老司机靠b影院| 国产成人精品在线电影| 国产单亲对白刺激| 久热爱精品视频在线9| 亚洲精品美女久久久久99蜜臀| 国产麻豆69| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美亚洲国产| 亚洲国产欧美在线一区| 激情视频va一区二区三区| 亚洲性夜色夜夜综合| 黑人猛操日本美女一级片| 国产高清视频在线播放一区| 久久人妻福利社区极品人妻图片| 久久久国产一区二区| av天堂在线播放| 18禁裸乳无遮挡动漫免费视频| 黑人欧美特级aaaaaa片| 狠狠精品人妻久久久久久综合| 狠狠婷婷综合久久久久久88av| 国产男女内射视频| 老汉色∧v一级毛片| 丝袜美腿诱惑在线| 正在播放国产对白刺激| 欧美日韩亚洲高清精品| 黄频高清免费视频| 9色porny在线观看| 国产日韩欧美亚洲二区| a级毛片在线看网站| 成人永久免费在线观看视频 | 大片电影免费在线观看免费| 好男人电影高清在线观看| 十八禁人妻一区二区| 香蕉久久夜色| 久久久久精品人妻al黑| 成人国语在线视频| 日本黄色视频三级网站网址 | 在线天堂中文资源库| 色尼玛亚洲综合影院| 精品亚洲成a人片在线观看| 后天国语完整版免费观看| 一边摸一边抽搐一进一出视频| av有码第一页| 一级毛片电影观看| 男女午夜视频在线观看| 如日韩欧美国产精品一区二区三区| 午夜日韩欧美国产| 深夜精品福利| 欧美大码av| 国产精品麻豆人妻色哟哟久久| 亚洲成a人片在线一区二区| www.自偷自拍.com| av福利片在线| 每晚都被弄得嗷嗷叫到高潮| www.自偷自拍.com| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 一边摸一边抽搐一进一小说 | av网站在线播放免费| 亚洲精品久久成人aⅴ小说| 日韩中文字幕视频在线看片| 日韩成人在线观看一区二区三区| 精品久久久久久电影网| 精品亚洲乱码少妇综合久久| 99久久精品国产亚洲精品| 新久久久久国产一级毛片| 十分钟在线观看高清视频www| 亚洲成人免费av在线播放| 久久久久视频综合| 丁香欧美五月| 色综合欧美亚洲国产小说| 在线观看免费视频网站a站| 婷婷丁香在线五月| 国产精品香港三级国产av潘金莲| 亚洲精品乱久久久久久| 极品少妇高潮喷水抽搐| 亚洲伊人久久精品综合| 丝瓜视频免费看黄片| 精品久久久久久电影网| 日韩欧美国产一区二区入口| 黄色片一级片一级黄色片| 好男人电影高清在线观看| 精品久久久久久电影网| 涩涩av久久男人的天堂| 国产成人免费观看mmmm| 婷婷丁香在线五月| 黄网站色视频无遮挡免费观看| 免费女性裸体啪啪无遮挡网站| 丝袜美足系列| 亚洲av日韩精品久久久久久密| 一级毛片女人18水好多| 人人妻人人爽人人添夜夜欢视频| √禁漫天堂资源中文www| 午夜免费成人在线视频| 制服诱惑二区| 亚洲中文字幕日韩| 啪啪无遮挡十八禁网站| 亚洲欧美一区二区三区久久| 国产一区二区三区综合在线观看| 9色porny在线观看| 亚洲成人国产一区在线观看| 黑人猛操日本美女一级片| 国产不卡一卡二| 亚洲第一欧美日韩一区二区三区 | 日韩视频在线欧美| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| 欧美精品一区二区免费开放| 黑人巨大精品欧美一区二区mp4| 男女下面插进去视频免费观看| 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 窝窝影院91人妻| 欧美黑人欧美精品刺激| av天堂久久9| 欧美午夜高清在线| 欧美国产精品一级二级三级| 久久久精品免费免费高清| 免费av中文字幕在线| 精品人妻在线不人妻| 亚洲国产中文字幕在线视频| tube8黄色片| 十分钟在线观看高清视频www| 老熟妇仑乱视频hdxx| 十八禁人妻一区二区| 777久久人妻少妇嫩草av网站| 满18在线观看网站| 757午夜福利合集在线观看| 一夜夜www| 超碰成人久久| 高清黄色对白视频在线免费看| 在线 av 中文字幕| 久久亚洲真实| 色老头精品视频在线观看| 黄频高清免费视频| 无限看片的www在线观看| 国内毛片毛片毛片毛片毛片| 天天躁日日躁夜夜躁夜夜| 国产三级黄色录像| 窝窝影院91人妻| 在线天堂中文资源库| 一级毛片精品| 久久久国产精品麻豆| 国产成人免费无遮挡视频| 亚洲精品国产精品久久久不卡| 中文字幕av电影在线播放| 欧美激情极品国产一区二区三区| 窝窝影院91人妻| 性高湖久久久久久久久免费观看| 免费一级毛片在线播放高清视频 | 国产一卡二卡三卡精品| 一级毛片电影观看| 在线永久观看黄色视频| 免费av中文字幕在线| 另类亚洲欧美激情| 正在播放国产对白刺激| 他把我摸到了高潮在线观看 | 午夜福利视频在线观看免费| 国产成人免费观看mmmm| 男女午夜视频在线观看| 国产区一区二久久| 丝瓜视频免费看黄片| 精品一区二区三区四区五区乱码| 丝瓜视频免费看黄片| 亚洲国产av影院在线观看| 日本五十路高清| 色婷婷av一区二区三区视频| 十八禁高潮呻吟视频| 国产成人免费观看mmmm| 色在线成人网| 777米奇影视久久| 久久国产精品男人的天堂亚洲| 欧美日韩福利视频一区二区| 变态另类成人亚洲欧美熟女 |