• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel DOA estimation algorithm using directional antennas in cylindrical conformal arrays

    2021-05-06 12:27:38XiofengGoPingLiXinhongHoGuolinLiZhijieKong
    Defence Technology 2021年3期

    Xio-feng Go ,Ping Li ,Xin-hong Ho ,*,Guo-lin Li ,Zhi-jie Kong

    a Science and Technology on Electromechanical Dynamic Control Laboratory,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing,100081,China

    b China Academy of Launch Vehicle Technology,Beijing,100076,China

    Keywords:Direction of arrival(DOA)Conformal antenna array Interpolation technique Nested array

    ABSTRACT In this paper,a novel direction of arrival(DOA)estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs)is proposed.To eliminate the shadow effect,we divide the CCAs into several subarrays to obtain the complete output vector.Considering the anisotropic radiation pattern of a CCA,which cannot be separated from the manifold matrix,an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector.Then,the cross-correlation matrix(CCM)of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector.Finally,the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT)is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity.Numerical simulations verify the superior performance of the proposed algorithm,especially under a low signal-to-noise ratio(SNR)environment.

    1.Introduction

    Direction of arrival(DOA)estimation,which is an important field of array signal processing,have a variety of applications such as radar detecting,communication networks,and sonar[1-3].For the DOA estimation problem,researchers have investigated several high resolution methods,such as multiple signal classification(MUSIC)[4],estimation of signal parameters via rotational invariance techniques(ESPRIT)[5],propagator method(PM)[6],tensor algorithm[7,8],and so on.Most DOA algorithm are applied on planar antenna arrays,including rectangular arrays[9],twoparallel arrays[10],L-shaped arrays[11].Unlike conventional planar arrays,the conformal array is an array whose elements are mounted on a smooth curved surface of carrier with good aerodynamic performance,such as spherical conformal array,conical conformal array and cylindrical conformal arrays[12].Except for the regular conformal arrays,some irregular conformal arrays has also been designed to obtain better DOA estimation performance,such as multi-face antenna array with three tilt angles[13].Among various types of conformal array,the cylindrical conformal array has a small radar cross section and wide angle coverage[14,15].Therefore,extensive attention has been paid to cylindrical conformal arrays(CCAs).However,CCAs also has some disadvantages due to their conformal geometry.Affected by the curvature of cylindrical carrier,CCAs are subject to the“shadow effect”,which leads to an incomplete steering vector,containing several zero elements.Hence,the existing DOA estimation method cannot be performed directly on the sparse output of CCAs.Furthermore,because of the metallic curved surface,it is difficult to achieve the omnidirectional antenna element of the CCAs[16].Therefore,the antenna element of CCAs is assumed as a directive antenna in vast majority of literatures,whose radiation responses of each antenna element to the same direction are different.In contrast to the planar array,the radiation pattern of CCAs cannot be separated from the element pattern of the manifold matrix,which means that several search-free subspace methods cannot be used directly.

    To solve the above problems,several DOA estimation methods for CCAs have been presented.To eliminate shadow effect,the CCAs is divided into several subarrays to obtain the complete output vector.Then,the MUSIC algorithm is performed on the full-rank output vector of subarray to estimate the angles[17];pseudospectrum searching requires a large number of calculations.To avoid spectral searching,an efficient algorithm for CCAs is presented to estimate the angles with unknown coupling[18].The azimuth angles are obtained by using rank reduction method,which eliminates the coupling coefficients through matrix transformation.To utilize a search-free subspace algorithm on the arbitrary arrays,several techniques such as manifold separation techniques(MST)[19]and array interpolation techniques[20]have been proposed to transform the steering vector of physical arrays into that of uniform linear virtual arrays.The MST can obtain the Vandermonde-structured manifold matrix of virtual arrays,which needs to compute the inverse discrete Fourier transform(IDFT)of the response of the arrays,but the steering vector of CCAs do not satisfy the 2π-periodic property.Unlike the constraint condition of the 2π-periodic discrete set in MST,interpolation techniques can directly transform the real arrays into an arbitrary virtual array by using interpolation matrix.Several novel estimation algorithm for CCAs based on interpolated method has been proposed.A novel algorithm based on interpolated technique has been proposed[21],which transforms the CCAs into a uniform linear virtual array and performs the ESPRIT algorithm on the output of virtual arrays.To estimate the DOAs of more sources,an estimation method for CCAs based on nested arrays is proposed in Ref.[22],which transforms the CCAs into nested arrays and perform MUSIC algorithm to obtain the DOAs.However,these algorithms based on interpolation technique ignore the perturbation of the interpolation matrix on the noise vector.After interpolation,the noise of virtual array is not white Gaussian noise,which may degrade the DOA estimation performance of subspace method.

    The maximum estimable number of signals is constrained by the number of available antenna element for CCAs,which is affected by shadow effect.To obtain more degrees of freedom(DOF),several sparse array structures is presented,including minimum redundancy arrays(MRAs)[23],coprime arrays[24],and nested arrays[25].MRAs are put forward to generate the co-array by utilizing the location differences among sensors under the constraint of a difference co-array consisting of consecutive integers.However,the geometry of an MRA,whose sensor location and DOF do not have a closed-form expression,is difficult to design.Unlike MRAs,coprime arrays and nested arrays is proposed to obtain more DOF with a closed-form expression.However,the co-array of coprime array is not a continuous uniform array.In contrast to other sparse arrays,nested arrays can obtainO(N2)DOF consisting of contiguous integers withNsensors.

    In this paper,an effective DOA estimation method for directional CCAs is presented to improve the estimation performance.First,we divide the CCAs into several subarrays to obtain the complete output vector,which eliminate the shadow effect.After subarray division,the number of valid antenna elements is reduced to the half of CCAs.By analyzing the non-orthogonality perturbation on the noise vector caused by the interpolated method,we investigate an improved interpolation method to transform the directional subarrays into omnidirectional nested arrays without perturbation.After that,we use the cross-correlation matrix(CCM)of virtual nested arrays instead of the autocorrelation matrix(ACM)to generate the co-arrays without overlapping elements and noise vectors.Then,the full-rank equivalent covariance matrix is constructed with the output of co-arrays.Finally,the unitary ESPRIT algorithm is conducted on the full-rank matrix to obtain the DOAs with low computational complexity.Several simulations and analyses are provided to verify the effectiveness of proposed algorithm,especially under a low signal-to-noise ratio(SNR)environment.

    The remainder of this paper is organized as follows:The array configuration and signal model are describes in Section 2.Section 3 presents the main body of proposed method.The computational complexity analyses and simulation results are presented in Section 4.Finally,the paper is concluded in Section 5.

    Notation:Matrices are represented boldface uppercase letters,and vectors are represented by the boldface lowercase letters.The superscripts(·)*,(·)T,(·)H,and(·)+represent the conjugate,transpose,complex conjugate transpose and pseudoinverse,respectively.⊙denotes the Khatri-Rao product and‖·‖F(xiàn)represents the Frobenius norm.The symbol vec(·)denotes column vectorization andE[·]denotes the expectation.The symbol[.·]stands for finding floor of a decimal number.Furthermore,the notation I and∏represent the identity matrix and the exchange matrix.

    2.Array configuration and signal model

    Assume there are M directional antennas uniformly mounted in one ring on the surface of a cylinder with radius ofr,composed of a CCA,as shown in Fig.1.

    As shown in Fig.2,the origin is defined as the centroid of the antenna array.Consider that the CCAs receiveskfar-field,narrowband signals withNsnapshotssi(t)(i=1,…,k,t=1,…,N)from distinct DOAs,φi(i=1,…,k).TheM×1 output vector at the t-th snapshot is written in matrix form as follows.

    where s(t)=[s1(t),s2(t),…,sk(t)]Tdenotes thek×1 signal source vector,A(φ)=[a(φ1),a(φ2),…,a(φk)]denotes theM×kmanifold matrix of the array.The n(t)=[n1(t),n2(t),…,nM(t)]TisM×1 complex Gaussian noise vector with a mean of zero and a variance ofσn2,and is statistically independent of the signals.Since the geometry of CCAs is similar to the circular arrays,we review the manifold of directional circular arrays,and thei-th steering vector of circular array ac(φi)is expressed as follows.

    Fig.1.The structure of CCAs.

    Fig.2.The top view geometry of the CCAS.

    wheref(φi-φl(shuí))represents the response ofl-th antenna’s to the angle ofφiandφl(shuí)=2π(l-1)/Mrepresents the central angle corresponding to thel-th antenna.

    Due to the curvature of cylinder,the CCAs are subject to the shadow effect,for which signals emanating from a certain direction may not be received by all the antenna elements,which is different from circular arrays.To depict the shadow effect of CCAs,we define the functionW(φi-φl(shuí))as follow.

    Therefore,the i-th steering vector a(φi)of CCAs is written as

    3.The proposed method

    3.1.Subarray division and improved nested arrays interpolation

    According to the shadow effect of CCAs,the manifold matrix is sparse,which leads to a rank deficiency of covariance matrix of the received signals.The convenient subspace estimation method such as MUSIC and ESPRIT,which need to calculate the eigenvalue decomposition(EVD)operation of covariance matrix,cannot be directly used on the received signals.

    To obtain the complete output vector,we divide the CCAs intoNsubarrays.Each subarray is composed ofelements,whererepresents the largest integer not greater thanThe output vector xiof the i-th subarray can be expressed as:

    where Ai(φ)denotes the manifold matrix ofi-th subarray,and ni(t)denotes the received noise vector of i-th subarray.

    Considering the shadow effect,the angle set of circular sector spanned by the i-th subarray is

    The subarray can also be divided in other ways according to the actual need.After subarray division,the number of valid elements is reduced toN.From Eq.(4),the manifold matrix of CCAs is expressed by the angleφi-φM,which is derived from the local coordinate system of thei-th element.The response of different array element to the same direction is distinct,which cannot be separated from the manifold matrix to simplify calculation.

    To address the above problem,we propose an improved interpolation method to transform the directional CCAs to omnidirectional virtual nested arrays.We choose the corresponding circular sector of the sub-array as the interpolated sector and choose the interpolation stepΔφto calculate the manifold vectors of the sectors,lis the interpolation number.The set of i-th sectorΨiand the set of the manifold matrix ofi-th subarrayAi(Ψi)is written as:

    where the number of elements in the setΨiisl,Ai(Ψi)is anN×lmanifold matrix of physical arrays,whose columns are the steering vectors ofΨi.

    To mitigate the element loss of CCAs caused by shadow effect,we choose the two-level nested array as the desired virtual array,which consists ofNelements.As shown in Fig.3,the location of the virtual arrays is defined as follow.

    wheredis the inter-sensor spacing of inner uniform linear arrays(ULA),which is contained in virtual nested arrays,bis the distance between the first element of virtual arrays and theY-axis,h is the distance betweenX-axis and virtual arrays alongY-axis.

    The manifold matrix of virtual nested arrays is defined as Av(φ),and thei-th column vector of Av(φ)is

    Then,the set of manifold vectors of the virtual nested arrays is computed with the interpolation stepΔφ.

    where Av(Ψi)is anN×lmanifold matrix of virtual nested arrays,whose columns are the steering vectors ofΨi.

    We review the original interpolation technique in Ref.[18],it utilize interpolation matrix B to map the physical arrays with the desired virtual arrays as follows:

    The interpolation matrix is obtained by the least squares method:

    Then the output vectors of the virtual arrays are computed with the interpolation matrix:

    The covariance matrix of the virtual arrays is where Rxi=E[xi(t)xiH(t)]=Ai(φ)RsAiH(φ)+σn2Iis the covariance matrix of the physical arrays,Rs=E[s(t)sH(t)]represents the correlation matrix of the signal sources,andσn2denotes the noise variance.

    From Eq.(15),the noise termσn2I in the covariance matrix of real arrays has been transformed intoσn2BHB of virtual arrays.The original interpolated technique only focus on transforming the manifold matrix of physical arrays with the desired virtual arrays,but it ignores the perturbation on the noise vector.After interpolation,the noise vector of different virtual array is not orthogonal with each other.This may degrade the estimation performance of subspace algorithm by amplifying the eigenvalue of the noise subspace.

    To reduce the non-orthogonal perturbation of the noise term σn2BHB,we propose an improved interpolation method,which calculate the matrix bB by solving the following optimization problem:

    The Lagrangian function is constructed to solve the constraint optimization problem:

    whereγis the Lagrangian coefficient.The conjugate gradient of the Lagrangian function is

    Fig.3.The geometry of the virtual arrays.Hollow dot denotes the element of the CCAs,and filled dot denotes the element of virtual nested arrays.

    If the ratioεis small enough,the interpolation matrix can be accepted.Otherwise,we need to change the location parameters of the virtual arraysd,bandhto obtain a suitable interpolation matrix.In order to get the suitable location parameters,we define the range of location parameters as follow:

    The optimized location of virtual arrays is obtained by solving the following equations with the constraint of the location range:

    Then the obtained location parameters are the optimized parameters of our desired virtual arrays.Although the interpolation procedure inevitably increases the computational complexity,the interpolation matrix can be calculated off-line and stored in advance.The effect of the improved interpolation method is evaluated in Section 4.

    3.2.Improved Unitary-ESPRIT algorithm for virtual arrays

    Divide the virtual arrays into two subarrays,where the first subarray is composed of the firstelements of the nested arrays,and the second subarray is composed of the lastelements of the nested arrays.The output vector of the subarrays are written as:

    Reversing the output vector of the first sub-array,the vectoris obtained as

    The CCM of different sub-array is calculated as follow.

    According to Eq.(16),the different row vector ofis almost orthogonal,which means thatThen,the noise vectors of virtual arrays are removed by the cross-correlation operation.By vectorizing the CCM Rc,the vector y is obtained:

    Remarks:As mentioned in Ref.[23],the co-arrays generated by utilizing the autocorrelation matrix(ACM)of output vectors contains some redundant elements.Moreover,the output of the coarrays contains noise vectors,which require an additional operation for their removal.In this paper,we using the CCM instead of the ACM in Eq.(28),which generate the co-arrays without overlapping elements and noise vectors.

    According to Eq.(29),the equivalent signal vector p behaves similar to coherent signals,which facilitate the rank deficiency of a covariance matrix.Consider that the covariance matrix of the ULAs is a Toeplitz matrix,the equivalent covariance matrix of the coarrays is reconstructed by using the vector y and its conjugate vector y*.The conjugate vector y*is written as:

    The equivalent matrix Ryis expressed as:

    According to Eq.(30),the matrix Ay(φ)is a Vandermonde matrix,which can be seen as the manifold matrix of a ULA.Then the rotational invariance property of Ay(φ)can be written as

    The subspace methods such as ESPRIT involves the decomposition of complex matrix,which costs a lot of calculations.Compared with the ESPRIT algorithm,the unitary ESPRIT algorithm,is presented to transform the complex matrix into real-valued matrix through unitary transformation,which can estimate the angles with a lower computational complexity[26].The unitary matrix is defined as:

    After the transformation with unitary matrix,the real-valued matrix Ry1is expressed as:

    After performing eigenvalue decomposition(EVD)on the realvalued matrix Ry1,the rotational invariance property is expressed as:

    whereαiis the i-th eigenvalue ofΨy.

    3.3.Algorithm implementation

    The main steps for implementing the proposed algorithm are summarized as follows:

    Fig.4.Comparison of complexity versus the number of antennas.

    Fig.5.Comparison of complexity versus the number of snapshots.

    Step 1:Divide the CCAs into M subarrays,which are composed ofsensors,and the corresponding angle set of circular sector is defined by Eq.(6).

    Step 2:For each subarray,construct a virtual nested array ofNelements with optimized location parametersdb,andh,which are obtained via Eq.(22).Then,calculate the interpolation matrix bB via Eq.(19).

    Table 1Comparison of computational complexity.

    Step 3:Utilizing channel detection to determine the appropriate subarray,calculate the output vectors of the virtual nested arraysby using the interpolation matrixvia Equation(14).

    Step 4:The virtual arrays is divided into two subarrays and the CCM Rcis computed with the output of the subarrays via Equation(28).Then,vectorize the matrix Rcto generate the co-arrays via Equation(29).

    Step 5:Construct the toeplitz matrix Ryas the equivalent covariance matrix using the output vector y and its conjugate vector y*via Eq.(32).

    Step 6:Apply the unitary-ESPRIT algorithm to the covariance matrix Ryto estimate the azimuth anglesbφ.

    3.4.Complexity analysis

    The main complexity of the algorithm requires the calculation of the CCM,the EVD operation,the pseudo-inverse operation and the least squares method.Because the interpolation matrix could be computed and stored in advance,the interpolation computation should not be considered.The major complexity of the proposed algorithm isO[M2L/2+(M2/16+M/4)3/4+3(M2/16+M/4)k2/4+k3/4].By applying the ESPRIT algorithm to theM/2virtual ULAs,the interpolated ESPRIT algorithm[19]costs approximatelyO[M2L/2+M3/8+3Mk2/2+k3].The interpolated nested MUSIC algorithm[20]and MUSIC algorithm[15],

    which involve spectral searching,require operations ofOkM)],whereNrepresents the number of divided subarrays of CCAs,spectral search step is 0.1°.The comparison of complexities by different algorithm are listed in Table 1.

    In Fig.4,we plot the computatsional complexity of different algorithms when the number of antennas varies from 12 to 20.Here,the number of snapshots isL=100,and the number of signal sources isk=2.In Fig.5,we compare the computational complexity when the number of snapshots changes from 50 to 200,the number of antennas isM=12.As denoted in Figs.4 and 5,the proposed algorithm costs less calculations than MUSIC and interpolated nested MUSIC.This is due to the unitary transformation,which turns the complex covariance matrix into real-valued matrix.The complexity of proposed algorithm is almost as same as that of the interpolated ESPRIT algorithm.

    Fig.6.RMSEs versus SNR with different interpolation method.

    Fig.7.RMSE versus the SNR,L=100 snapshots.

    4.Simulation and analysis

    Several numerical simulations are conducted in this section to assess the performance of proposed algorithm.Each CCA is composed of 12 sensors with the radius of 1.28λ,whereλis the wavelength.Two signal sources with the DOAs of 65°and 85°are considered in the simulation,and the antennas are assumed to be identical,with the antenna gain ofIn the following simulations,the root mean square error(RMSE)and the probability of resolution are considered to be the criteria for assessing DOA estimation performance.

    The RMSE is defined as follows:

    Fig.8.RMSE versus the number of snapshots,SNR=0 dB.

    The probability of the resolution is the probability that the angle difference between the estimated angle and the real angle is less than half of the beam width among several Monte-Carlo experiments,which can be expressed as:whereBWdenotes the beam width,bφi,jis the estimated DOA ofj-th signal source at thei-th Monte-Carlo experiment,φjis the DOA of jth signal source,kis the number of signals,and n is the number of Monte-Carlo trials.

    Simulation 1.We verify the effective of the improved interpolation method on DOA estimation.According to Eqs.(5)and(6),the elements of 1-6,corresponding to the angle set of are chosenas the subarray for interpolation,and the optimized location parameter of the virtual arrays is(d,b,h)=(0.2λ,-1.04λ,0.36λ).We compare the proposed algorithm using the original interpolation method[18]via Eq.(13)with the proposed algorithm using the improved interpolation method via Eq.(19).Except for the interpolation method,the other parts of the compared algorithm are as same as our proposed algorithm.The optimized Lagrangian coefficient is defined asγ=1 and the interpolation step isΔφ=0.1°.Fig.6 demonstrates the RMSEs versus SNR withL=100snapshots under 100 Monte-Carlo experiments.It can be seen from Fig.6,the RMSE of the algorithm using the revised interpolation method is lower than that using the original interpolation algorithm,which verifies the effectiveness of revising the interpolation matrix.Therefore,we choose a Lagrangian coefficientγ=1in the following simulations.

    Simulation 2.We examine the estimation performance of all algorithms versus SNR.The Cram′er-Rao bound(CRB)[27],the MUSIC algorithms[17],the interpolated ESPRIT algorithm[21],and the interpolated nested algorithm[22]are carried out for comparing with our algorithm.The searching grid for the interpolated nested algorithm and the MUSIC algorithms is 0.1°,and the optimized intersensor spacing of the virtual ULA arrays is 0.23λ,where the error ratio is 1.443×10-4.The subarray and the virtual nested array for proposed algorithm and interpolated nested algorithm is the same as that used in Simulation 1.Fig.7 plots the RMSE versus SNR via 100 Monte-Carlo experiments withL=100snapshots.

    Fig.9.RMSE versus the SNR,L=100 snapshots.

    Fig.10.Probability of resolution versus the SNR,L=100 snapshots.

    It is seen from Fig.7,the proposed algorithm performs better than the interpolated nested algorithm and the interpolated ESPRIT algorithm.This finding indicates that the proposed algorithm outperforms the interpolated ESPRIT algorithm due to the larger DOF and aperture obtained by interpolating the CCAs into the nested arrays rather the ULAs.Compared with the interpolated nested algorithm,the proposed algorithm enjoys the better performance because it revises the interpolation matrix and utilizes the CCM instead of the ACM which eliminate additive noise.Although the RMSE of proposed algorithm is close to the curve of MUSIC algorithm,our proposed algorithm have lower computational complexity,which avoids spectral searching.

    Simulation 3.The estimation performance of all algorithm is investigated in terms of the number of snapshots.The SNRs is set to be 0 dB,and the number of snapshots varies from 50 to 200.The RMSEs versus numbers of snapshots via 100 Monte-Carlo experiments under the SNR of 0 dB and 10 dB are illustrated in Fig.8.

    It is seen clearly that our proposed algorithm is superior to other algorithms under low SNR environment.The RMSE of our algorithm is slightly better than MUSIC algorithm under the SNR=0 dB.This is because MUSIC algorithm needs the EVD operation to obtain the noise subspace,which is sensitive to the SNR.On the contrary,our proposed algorithm can estimate the angle precisely under the low-SNR owing to the CCM operation to remove noise vectors.Fig.8 is illustrated that the proposed algorithm is the most efficient one among the tested algorithms under a low-SNR environment.

    Simulation 4.The resolution performance of all algorithm is examined by the probability of resolution.Assume two signal sources with the DOAs of 65°and 75°are considered in the simulation.The number of Monte-Carlo experiments is 200.The RMSEs versus SNR is illustrated in Fig.9,and the probability of successful detection versus SNR is given in Fig.10,where the number of snapshots isL=100.

    From Fig.9,we can see that the estimation performance for closely spaced objects of proposed algorithm is better than the interpolated nested algorithm and the interpolated ESPRIT algorithm,especially in low SNR environment.Affected by the low SNR environment,the MUSIC algorithm and interpolated nested algorithm fail to estimate the DOAs of closely spaced objects when SNR is lower than 5 dB and 6 dB,respectively.Although the RMSE of MUSIC is slightly better than proposed algorithm when SNR is higher than 10 dB,it fails to obtain the DOAs under low SNR environment.Due to the CCM operation and large aperture of virtual nested arrays,the proposed algorithm can obtains the DOAs of closely spaced objects under low SNR environment.It can be seen from Fig.10,the roposed algorithm’s probability of resolution is 100% when SNR varies from 0 dB to 20 dB.Figs.9 and 10 indicate that the resolution performance of proposed algorithm outperforms than other algorithms.

    5.Conclusions

    We have proposed a novel algorithm for DOA estimation in CCAs using directional antennas.By dividing the CCAs into several subarrays,the complete output vectors is obtained without zero elements.Then,an improved interpolation method is used to transform the directional sector-shaped subarray into omnidirectional virtual nested arrays without the perturbation of on the noise vector.To obtain more DOF,the CCM of the nested arrays is used to generate the co-arrays without overlapping elements and a noise vector.Then,the full-rank equivalent matrix is constructed with the output of co-arrays,and the unitary ESPRIT algorithm is conducted on the matrix to obtain the angles.Numerical simulations indicate that the proposed algorithm is able to estimate the DOAs more accurately with lower computational complexity than other estimation algorithms,especially under the low-SNR environment.

    Funding

    This work was supported by the National Natural Science Foundation of China(NSFC)[grant number.61871414].

    Declaration of competing interest

    The authors declare no conflict of interest.

    少妇被粗大的猛进出69影院| 久久久久国内视频| 一a级毛片在线观看| 国产成人系列免费观看| 午夜激情av网站| 国产欧美日韩一区二区三区在线| 精品国内亚洲2022精品成人 | 中文字幕人妻熟女乱码| 欧美黑人欧美精品刺激| 飞空精品影院首页| 一二三四在线观看免费中文在| 精品国内亚洲2022精品成人 | 91精品国产国语对白视频| 9色porny在线观看| 国产精品欧美亚洲77777| 国产欧美日韩综合在线一区二区| 一区福利在线观看| 无遮挡黄片免费观看| 成人国产一区最新在线观看| 大型黄色视频在线免费观看| 身体一侧抽搐| 亚洲国产欧美日韩在线播放| 午夜视频精品福利| 久久人人97超碰香蕉20202| 999久久久国产精品视频| 少妇粗大呻吟视频| 天天躁夜夜躁狠狠躁躁| 999久久久国产精品视频| 亚洲 国产 在线| 好男人电影高清在线观看| 国产男靠女视频免费网站| videos熟女内射| 精品亚洲成国产av| 99国产极品粉嫩在线观看| 亚洲欧美色中文字幕在线| 国产xxxxx性猛交| 成年动漫av网址| 一区二区日韩欧美中文字幕| 下体分泌物呈黄色| 国产精品一区二区精品视频观看| 亚洲欧美精品综合一区二区三区| 老熟妇乱子伦视频在线观看| 成年版毛片免费区| 亚洲五月色婷婷综合| 国产精品 欧美亚洲| 成人18禁高潮啪啪吃奶动态图| 黄色a级毛片大全视频| 欧美最黄视频在线播放免费 | 久久性视频一级片| 男人操女人黄网站| 黄色片一级片一级黄色片| 国产亚洲欧美98| 欧美成人免费av一区二区三区 | 91九色精品人成在线观看| 中文字幕精品免费在线观看视频| 热99国产精品久久久久久7| 国产精品国产高清国产av | 国产黄色免费在线视频| 国产精品偷伦视频观看了| 中文字幕人妻熟女乱码| 日本vs欧美在线观看视频| 69精品国产乱码久久久| 三级毛片av免费| 日本vs欧美在线观看视频| 亚洲第一欧美日韩一区二区三区| 久久久久视频综合| 欧美日韩亚洲国产一区二区在线观看 | 精品人妻1区二区| avwww免费| 亚洲成av片中文字幕在线观看| 国产午夜精品久久久久久| 久久久久久久午夜电影 | 久久久久久久午夜电影 | 国产精品 国内视频| 亚洲欧美一区二区三区黑人| 亚洲av欧美aⅴ国产| 十八禁人妻一区二区| 国产国语露脸激情在线看| 国产成人免费观看mmmm| 大片电影免费在线观看免费| 国产高清国产精品国产三级| 国产激情欧美一区二区| 亚洲成人手机| 久久久久国产精品人妻aⅴ院 | 人成视频在线观看免费观看| 最近最新免费中文字幕在线| 18在线观看网站| av福利片在线| 婷婷丁香在线五月| 国产精品 欧美亚洲| 看免费av毛片| 在线国产一区二区在线| 欧美激情久久久久久爽电影 | 1024视频免费在线观看| 在线观看日韩欧美| 亚洲免费av在线视频| 国产亚洲欧美精品永久| 一级毛片精品| 亚洲午夜精品一区,二区,三区| 国产99白浆流出| 亚洲美女黄片视频| 男女床上黄色一级片免费看| 人成视频在线观看免费观看| 国产精品 国内视频| 亚洲av欧美aⅴ国产| 国产色视频综合| av片东京热男人的天堂| 麻豆av在线久日| 国产一区二区三区在线臀色熟女 | 又紧又爽又黄一区二区| 欧美日韩亚洲高清精品| 免费黄频网站在线观看国产| 另类亚洲欧美激情| 天堂√8在线中文| 免费观看人在逋| 国产黄色免费在线视频| 99热网站在线观看| 国产精品 欧美亚洲| 免费一级毛片在线播放高清视频 | 久久久久久久久久久久大奶| 久99久视频精品免费| 欧美中文综合在线视频| 国产精品电影一区二区三区 | 亚洲九九香蕉| 这个男人来自地球电影免费观看| 极品人妻少妇av视频| 制服人妻中文乱码| 久久久久国产精品人妻aⅴ院 | 国产欧美日韩综合在线一区二区| 国产精品久久电影中文字幕 | 涩涩av久久男人的天堂| 精品乱码久久久久久99久播| 亚洲九九香蕉| 成年人黄色毛片网站| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩高清在线视频| 亚洲色图av天堂| 丝瓜视频免费看黄片| 国产av一区二区精品久久| 久久国产精品大桥未久av| 亚洲五月天丁香| 免费少妇av软件| 国产精品久久久人人做人人爽| 国产午夜精品久久久久久| cao死你这个sao货| 美女 人体艺术 gogo| 久久人妻av系列| 99国产精品一区二区三区| 不卡一级毛片| 亚洲欧美色中文字幕在线| 久久香蕉国产精品| 国产黄色免费在线视频| e午夜精品久久久久久久| 久久国产精品人妻蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 999久久久精品免费观看国产| 亚洲国产精品sss在线观看 | 身体一侧抽搐| 国产不卡一卡二| 久久久久久久午夜电影 | 最近最新免费中文字幕在线| 十分钟在线观看高清视频www| 黑人欧美特级aaaaaa片| 超碰成人久久| 午夜视频精品福利| 国产精品久久久人人做人人爽| 午夜福利在线免费观看网站| 久久精品91无色码中文字幕| 成人国语在线视频| 午夜免费鲁丝| 欧美日韩av久久| 男人舔女人的私密视频| 1024香蕉在线观看| 99国产精品一区二区蜜桃av | 黑人巨大精品欧美一区二区mp4| 黑人巨大精品欧美一区二区蜜桃| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 亚洲精品乱久久久久久| 中文字幕av电影在线播放| 中文亚洲av片在线观看爽 | 欧美成人免费av一区二区三区 | 91成人精品电影| 欧美日韩中文字幕国产精品一区二区三区 | 母亲3免费完整高清在线观看| 国产成人欧美在线观看 | 精品人妻熟女毛片av久久网站| av超薄肉色丝袜交足视频| 狂野欧美激情性xxxx| 国产1区2区3区精品| 亚洲专区国产一区二区| 波多野结衣av一区二区av| 黄色视频不卡| 后天国语完整版免费观看| 国产精品一区二区在线不卡| 欧美不卡视频在线免费观看 | 欧美激情久久久久久爽电影 | www.熟女人妻精品国产| av不卡在线播放| 极品少妇高潮喷水抽搐| 五月开心婷婷网| 一级作爱视频免费观看| 人人澡人人妻人| 成人特级黄色片久久久久久久| 亚洲精品一二三| 久久精品国产亚洲av高清一级| 女人被狂操c到高潮| 成人永久免费在线观看视频| 国产日韩欧美亚洲二区| 精品免费久久久久久久清纯 | 国产精品亚洲一级av第二区| av在线播放免费不卡| 精品福利永久在线观看| 精品欧美一区二区三区在线| 一本大道久久a久久精品| tube8黄色片| 丝袜美腿诱惑在线| 性少妇av在线| 欧美乱码精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 五月开心婷婷网| 国产精品偷伦视频观看了| 怎么达到女性高潮| 国产成人欧美| 国产午夜精品久久久久久| 欧美精品一区二区免费开放| 我的亚洲天堂| 久久婷婷成人综合色麻豆| 精品乱码久久久久久99久播| 大香蕉久久成人网| 国产精品一区二区免费欧美| 少妇 在线观看| a级片在线免费高清观看视频| 最新的欧美精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 又紧又爽又黄一区二区| 精品乱码久久久久久99久播| 久久精品亚洲av国产电影网| 亚洲情色 制服丝袜| 一边摸一边做爽爽视频免费| 另类亚洲欧美激情| a级毛片在线看网站| 精品午夜福利视频在线观看一区| netflix在线观看网站| 乱人伦中国视频| 欧美激情 高清一区二区三区| 久久性视频一级片| 91老司机精品| 12—13女人毛片做爰片一| 久久香蕉国产精品| 国产区一区二久久| 午夜91福利影院| 国产xxxxx性猛交| 国产亚洲精品久久久久5区| 欧美黄色淫秽网站| 看黄色毛片网站| 老鸭窝网址在线观看| 制服诱惑二区| 看黄色毛片网站| 国产日韩欧美亚洲二区| 亚洲国产精品一区二区三区在线| 91麻豆av在线| 又紧又爽又黄一区二区| 91精品三级在线观看| 精品国产一区二区久久| 色播在线永久视频| 色在线成人网| 久久精品国产亚洲av高清一级| 高清av免费在线| 亚洲三区欧美一区| 19禁男女啪啪无遮挡网站| 国产亚洲欧美98| 国产精品免费视频内射| 深夜精品福利| 在线观看免费午夜福利视频| 少妇猛男粗大的猛烈进出视频| av天堂在线播放| 国产成人精品久久二区二区91| 免费av中文字幕在线| 欧美 亚洲 国产 日韩一| 久久国产精品男人的天堂亚洲| 日韩人妻精品一区2区三区| 男女高潮啪啪啪动态图| 国产成人欧美| 国产男女超爽视频在线观看| 国产精品亚洲av一区麻豆| 91在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| 狠狠狠狠99中文字幕| 多毛熟女@视频| 成人特级黄色片久久久久久久| 男女床上黄色一级片免费看| 午夜老司机福利片| 99国产精品一区二区三区| 国产主播在线观看一区二区| 超色免费av| 一级毛片精品| 亚洲成人免费av在线播放| 免费人成视频x8x8入口观看| 日韩欧美在线二视频 | 日韩欧美免费精品| 欧洲精品卡2卡3卡4卡5卡区| 一边摸一边做爽爽视频免费| 老汉色av国产亚洲站长工具| 国产精品秋霞免费鲁丝片| www日本在线高清视频| 精品一品国产午夜福利视频| 18禁裸乳无遮挡免费网站照片 | 黄色怎么调成土黄色| 日韩制服丝袜自拍偷拍| 男女之事视频高清在线观看| 国产精品久久电影中文字幕 | 香蕉丝袜av| √禁漫天堂资源中文www| 国产99白浆流出| 亚洲九九香蕉| 夫妻午夜视频| 成人国产一区最新在线观看| 欧美日韩亚洲综合一区二区三区_| 精品第一国产精品| 国产野战对白在线观看| 高清毛片免费观看视频网站 | 夫妻午夜视频| 欧美日韩亚洲高清精品| 天堂中文最新版在线下载| 欧洲精品卡2卡3卡4卡5卡区| 老司机靠b影院| 亚洲av第一区精品v没综合| 色综合欧美亚洲国产小说| 成人永久免费在线观看视频| 黄色女人牲交| 欧美色视频一区免费| 在线观看舔阴道视频| 午夜福利乱码中文字幕| 免费观看a级毛片全部| 国产亚洲精品一区二区www | 亚洲精品乱久久久久久| 国产精品99久久99久久久不卡| 国产无遮挡羞羞视频在线观看| 99在线人妻在线中文字幕 | av中文乱码字幕在线| a级毛片在线看网站| 一区二区三区国产精品乱码| 欧美精品高潮呻吟av久久| 99riav亚洲国产免费| 亚洲国产欧美网| 国产又色又爽无遮挡免费看| 男人的好看免费观看在线视频 | 国产精品美女特级片免费视频播放器 | 韩国av一区二区三区四区| 国产av一区二区精品久久| 99热国产这里只有精品6| 搡老熟女国产l中国老女人| 一进一出好大好爽视频| 欧美日韩视频精品一区| 亚洲国产欧美网| 人妻 亚洲 视频| 日本wwww免费看| 水蜜桃什么品种好| 午夜福利免费观看在线| 成人18禁在线播放| 乱人伦中国视频| av超薄肉色丝袜交足视频| 亚洲av片天天在线观看| 久久亚洲精品不卡| av福利片在线| 老司机亚洲免费影院| 大香蕉久久网| 大码成人一级视频| 国产一区二区三区视频了| 亚洲欧美一区二区三区黑人| 搡老乐熟女国产| 亚洲成人免费av在线播放| 欧美亚洲 丝袜 人妻 在线| 一本综合久久免费| 亚洲成人国产一区在线观看| 热99re8久久精品国产| 曰老女人黄片| 国产一区二区激情短视频| 欧美大码av| 久久国产乱子伦精品免费另类| 老鸭窝网址在线观看| 9色porny在线观看| 精品亚洲成国产av| 久久精品成人免费网站| 男男h啪啪无遮挡| avwww免费| 成人黄色视频免费在线看| 午夜福利影视在线免费观看| 黄片小视频在线播放| 操美女的视频在线观看| 黑人巨大精品欧美一区二区mp4| 99国产综合亚洲精品| 国产高清国产精品国产三级| 免费看a级黄色片| 国产精品偷伦视频观看了| 脱女人内裤的视频| 一级a爱片免费观看的视频| 制服诱惑二区| 国产精品国产高清国产av | 久久ye,这里只有精品| 女人高潮潮喷娇喘18禁视频| 少妇裸体淫交视频免费看高清 | 免费在线观看完整版高清| 国产区一区二久久| 999精品在线视频| 亚洲黑人精品在线| 国产1区2区3区精品| 久久久精品免费免费高清| 日本wwww免费看| 999久久久精品免费观看国产| 久久精品国产亚洲av高清一级| 亚洲色图综合在线观看| 久久久精品免费免费高清| 最新在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 高清黄色对白视频在线免费看| 啦啦啦视频在线资源免费观看| 久久亚洲精品不卡| av片东京热男人的天堂| 亚洲三区欧美一区| 18禁美女被吸乳视频| 亚洲精品av麻豆狂野| 日韩欧美一区视频在线观看| 久久这里只有精品19| 精品少妇一区二区三区视频日本电影| 叶爱在线成人免费视频播放| 人人妻人人添人人爽欧美一区卜| 亚洲第一av免费看| 无人区码免费观看不卡| 亚洲五月色婷婷综合| 男女床上黄色一级片免费看| 18禁黄网站禁片午夜丰满| 妹子高潮喷水视频| 亚洲精品自拍成人| 亚洲欧美一区二区三区久久| 十八禁网站免费在线| 国产精品 欧美亚洲| 99国产极品粉嫩在线观看| bbb黄色大片| 少妇粗大呻吟视频| 一边摸一边抽搐一进一小说 | 丝袜美腿诱惑在线| 99国产精品99久久久久| 国产欧美日韩一区二区三| 国产精品亚洲av一区麻豆| 日韩免费av在线播放| 国产成人影院久久av| 99国产精品一区二区三区| 视频区欧美日本亚洲| 夜夜躁狠狠躁天天躁| 两个人免费观看高清视频| 国产亚洲欧美98| 一进一出抽搐gif免费好疼 | 欧美精品一区二区免费开放| 亚洲午夜精品一区,二区,三区| 欧美久久黑人一区二区| 久久国产精品人妻蜜桃| 午夜福利乱码中文字幕| 十分钟在线观看高清视频www| 飞空精品影院首页| 成人手机av| 成人特级黄色片久久久久久久| 夜夜爽天天搞| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成人免费电影在线观看| 一级片免费观看大全| 亚洲自偷自拍图片 自拍| 老司机影院毛片| 亚洲精品av麻豆狂野| 人人妻人人爽人人添夜夜欢视频| 欧美中文综合在线视频| 国产又爽黄色视频| 精品欧美一区二区三区在线| 乱人伦中国视频| 免费在线观看黄色视频的| 天堂俺去俺来也www色官网| 啪啪无遮挡十八禁网站| 国产精品乱码一区二三区的特点 | 老司机在亚洲福利影院| 国产精品av久久久久免费| 国产99久久九九免费精品| 欧美老熟妇乱子伦牲交| 丰满人妻熟妇乱又伦精品不卡| 精品国产一区二区三区四区第35| 两人在一起打扑克的视频| 三上悠亚av全集在线观看| 男人操女人黄网站| 亚洲熟女毛片儿| 亚洲精品自拍成人| 9热在线视频观看99| 久久中文字幕一级| 精品卡一卡二卡四卡免费| 亚洲av成人av| 我的亚洲天堂| 欧美激情 高清一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久久精品aⅴ一区二区三区四区| 大片电影免费在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美丝袜亚洲另类 | 久久国产精品影院| 国产精品av久久久久免费| 色播在线永久视频| 啦啦啦 在线观看视频| 亚洲在线自拍视频| 久久亚洲精品不卡| 99久久综合精品五月天人人| 国产亚洲精品第一综合不卡| 色婷婷av一区二区三区视频| 欧美+亚洲+日韩+国产| 欧美成狂野欧美在线观看| 丰满饥渴人妻一区二区三| 18禁裸乳无遮挡免费网站照片 | 又黄又爽又免费观看的视频| 精品免费久久久久久久清纯 | 少妇裸体淫交视频免费看高清 | 国产免费现黄频在线看| 看免费av毛片| 欧美日本中文国产一区发布| 亚洲在线自拍视频| 午夜福利,免费看| 两个人看的免费小视频| 99热只有精品国产| 精品第一国产精品| 99热只有精品国产| 国产aⅴ精品一区二区三区波| 18禁国产床啪视频网站| 国产高清videossex| 80岁老熟妇乱子伦牲交| 高清av免费在线| 亚洲精品久久成人aⅴ小说| www.精华液| 国产不卡一卡二| 欧洲精品卡2卡3卡4卡5卡区| 国产高清激情床上av| svipshipincom国产片| 久久国产精品男人的天堂亚洲| 亚洲第一欧美日韩一区二区三区| 精品亚洲成国产av| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 色综合欧美亚洲国产小说| 国产不卡一卡二| 老司机福利观看| 亚洲精品久久成人aⅴ小说| 午夜久久久在线观看| 一区二区日韩欧美中文字幕| 黄色丝袜av网址大全| 黄片小视频在线播放| 黄色a级毛片大全视频| 成年人免费黄色播放视频| 9色porny在线观看| 99re6热这里在线精品视频| 99精品在免费线老司机午夜| 亚洲中文av在线| 亚洲成人手机| 亚洲av电影在线进入| 9191精品国产免费久久| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲| 久久99一区二区三区| 欧美日韩精品网址| 亚洲一区二区三区欧美精品| 精品国产亚洲在线| 波多野结衣一区麻豆| 精品电影一区二区在线| 国产精品秋霞免费鲁丝片| 国产男靠女视频免费网站| 精品久久蜜臀av无| avwww免费| 国产高清videossex| 日本精品一区二区三区蜜桃| 啦啦啦视频在线资源免费观看| 国产一区二区三区在线臀色熟女 | 一本大道久久a久久精品| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| 丝袜人妻中文字幕| 飞空精品影院首页| 很黄的视频免费| 美女午夜性视频免费| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三| xxxhd国产人妻xxx| 亚洲av电影在线进入| av不卡在线播放| 一级片免费观看大全| 成人特级黄色片久久久久久久| av福利片在线| 人人妻,人人澡人人爽秒播| 色综合欧美亚洲国产小说| 日韩欧美一区二区三区在线观看 | 999久久久精品免费观看国产| 无人区码免费观看不卡| 在线视频色国产色| www.熟女人妻精品国产| 亚洲熟妇中文字幕五十中出 | 天天躁日日躁夜夜躁夜夜| 亚洲一码二码三码区别大吗| 亚洲精品一卡2卡三卡4卡5卡| 高清毛片免费观看视频网站 | 免费在线观看视频国产中文字幕亚洲| 大型av网站在线播放| 午夜两性在线视频| 久久午夜亚洲精品久久| 免费在线观看影片大全网站| 国产熟女午夜一区二区三区| 精品国产超薄肉色丝袜足j| 亚洲五月天丁香| 亚洲午夜精品一区,二区,三区| 99国产综合亚洲精品| 91精品国产国语对白视频| 日本精品一区二区三区蜜桃| 免费av中文字幕在线|