• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method

    2021-05-06 12:22:22TrungThnhTrnQuocHoPhmTrungNguyenThoi
    Defence Technology 2021年3期

    Trung Thnh Trn ,Quoc-Ho Phm ,Trung Nguyen-Thoi

    a Department of Mechanics,Le Quy Don Technical University,Hanoi,Viet Nam

    b Division of Computational Mathematics and Engineering,Institute for Computational Science,Ton Duc Thang University,Ho Chi Minh City,Viet Nam

    c Faculty of Civil Engineering,Ton Duc Thang University,Ho Chi Minh City,Viet Nam

    Keywords:Functionally graded porous(FGP)plates Edge-based smoothed finite element method(ES-FEM)Mixed interpolation of tensorial components(MITC)Static bending Free vibration

    ABSTRACT The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP)variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM)associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3),so-called ES-MITC3.This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element.In the ES-MITC3 element,the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge.Materials of the plate are FGP with a power-law index(k)and maximum porosity distributions(Ω)in the forms of cosine functions.The influences of some geometric parameters,material properties on static bending,and natural frequency of the FGP variable-thickness plates are examined in detail.

    1.Introduction

    In recent years,FGP material has attracted great interest from researchers over the world due to porosity appeared in materials during the manufacturing process or intentionally created.Porosities inside materials can be distributed with many different types.They can be distributed uniform,non-uniform,or graded function.Basically,porosity reduces the stiffness of the structure,however with engineering properties such as lightweight,excellent energyabsorbing capability,great thermal resistant properties and so on,they still have been widely applied in various fields including aerospace,automotive industry,and civil engineering.A lot of analytical and numerical studies on the FGP structures have been performed and some of typical work can be summarized as follows.Kim et al.[1]investigated the static bending,free vibration,and buckling of FGP micro-plates using modified couples stress base on the analytical method(AM).Barati and Zenkour[2]analyzed the vibration of the FGP cylindrical shells reinforced by the graphene platelet(GPL)using first-order shear deformation theory(FSDT)and Galerkin’s method.Zenkour[3]developed a new Quasi-3D to calculate the bending of the FGP plates.Zenkour and Barati[4]considered electro-thermoelastic vibration of FGP plates integrated with piezoelectric layers by using AM and they also investigated post-buckling of FG beams reinforced by GPL with geometrical imperfection[5].Daikh and Zenkour analyzed the influence of porosity on the bending of FG sandwich plates[6]and calculated free vibration and buckling of FG sandwich plates in Ref.[7].Sobhy et al.[8]considered the effect of porosity distribution to buckling and free vibration of FG nanoplate using quasi-3D refined theory.Mashat and his co-workers[9]used a quasi 3-D higher-order deformation theory(HSDT)to analyze the bending of FGP plates resting on elastic foundations(EF)under hygro-thermo-mechanical loads.Nguyen et al.developed the polygonal finite element method(PFEM)combined with HSDT to calculate nonlinear static and dynamic responses of FGP plates[10],static bending and free vibration of FGP plates reinforced by GPL[11],and active-controlled vibration of FGP plate reinforced by GPL[12].In addition,Nguyen et al.[13]controlled of geometrically nonlinear responses of smart FGP plates reinforced GPL based on B′ezier extraction of the Non-Uniform Rational B-Spline(NURBS).Rezaei[14,15]based on AM to examine the free vibration of rectangular and porous-cellular plates.Zhao et al.[16]investigated the free vibration of FGP shallow shells using an improved Fourier method,and then analyzed the dynamics of the FGP doubly-curved panels and shells[17].Li et al.[18]analyzed nonlinear vibration and dynamic buckling of the sandwich FGP plate reinforced GPL on the elastic foundation(EF).With the nonlinear problem,Sahmani et al.[19]used the nonlocal method to analyze nonlinear large-amplitude vibrations of FGP micro/nano-plates with GPL reinforce.Wu et al.[20]considered the dynamic of FGP structures by using FEM.

    Variable-thickness structures are extensively used in many types of high-performance surfaces like aircraft,civil engineering,and other engineering fields.Using these structures will help adjust the weight of structural,and hence help maximize the capacity of the material.Gagnon and Gosselin[21]studied the static bending of variable thickness homogeneous plates using the finite strip method(FSM).Sakiyama et al.[22]analyzed the free vibration homogeneous plates using the function approximation method(FAM).Singh and Saxena[23]considered a rectangular variablethickness plate using the Rayleigh-Ritz method based on basis functions satisfying essential boundary conditions(BC).Nerantzaki and Katsikades[24]used an analog equation solution to analyze the free vibration and dynamic behaviors of the variable-thickness plates.Mikami and Yoshimura[25]have applied the collocation method with orthogonal polynomials to calculate the natural frequencies for linear variable-thickness plates based on Reissner-Mindlin plate theory.Al-Kaabi and his colleagues have shown a method based on a variational principle in conjunction with finite difference technique for analysis of the Reissner-Mindlin plate of linearly[26]and parabolically[27]varying thickness.Based on the FSDT,Mizusawa et al.[28]have developed the spline strip method to study the natural frequencies for the tapered rectangular plates.All of these papers only investigate plates with two opposite simply supported(SS)edges perpendicular to the direction of thickness variation.Cheung et al.[29]calculated the free vibration of Reissner-Mindlin variable-thickness plates using the Rayleigh-Ritz method with different BC.Manh and Nguyen[30]combined FSDT with isogeometric analysis(IGA)to study the static bending and buckling of the composite variable-thickness plates.Lieu et al.[31]based on the IGA to compute static bending and free vibration of bi-directional FGM variable-thickness plates.Gupta et al.[32]examined the influence of crack location on the vibration of non-uniform thickness FGM micro-plate and in Ref.[33]Dhurvey simulated the buckling of the composite variable-thickness plates using ANSYS software.Thang et al.[34]investigated the effects of variable thickness on buckling and post-buckling of imperfect sigmoid FGM plates on elastic medium(EM)subjected to compressive loading.Thien et al.[35]developed the IGA to analyze buckling analysis of non-uniform thickness nanoplates in an EM.In addition,Zenkour[36]presented hygrothermal mechanical bending of variable-thickness plates using AM.In Ref.[37],Allam and his colleagues investigated thermoelastic stresses in FG variablethickness rotating annular disks using infinitesimal theory.

    To improve the convergence and accuracy of the plate and shell structural analyses,the origin MITC3 element[38]is combined with the ES-FEM[39]to give the so-called ES-MITC3 element[40-45].In the formulation of the ES-MITC3,the system stiffness matrix is employed using strains smoothed over the smoothing domains associated with the edges of the triangular elements.The numerical results of the present study demonstrated that the ESMITC3 has the following superior properties[40]:(1)the ESMITC3 can avoid transverse shear locking phenomenon even with the ratio of the thickness to the length of the structures reach 10-8;(2)the ES-MITC3 has higher accuracy than the existing triangular elements such as MITC3[38],DSG3[46]and CS-DSG3[47];and is a good competitor with the quadrilateral element MITC4 element[48].

    According to the best of authors’knowledge,static bending and free vibration analyses of FGP variable-thickness plates using ESMITC3 have not yet been published,especially with the variable thickness of FGP plates in both directions with any BC.Therefore,this paper aims to fill in this gap by developing the ES-MITC3 method for static bending and free vibration analyses of the FGP variable-thickness plates.The formulation is based on the FSDT due to its simplicity and computational efficiency.The accuracy and reliability of the present approach are verified by comparing with those of other available numerical results.Moreover,the numerical and graphical results illustrate the effect of maximum porosity value,power-law index,and the law of variable thickness on the static bending and free vibration of FGP plates.

    2.The FGP variable-thickness plates

    Consider an FGP variable-thickness plate as depicted in Fig.1 which has laws of variable thickness are shown in Fig.2.Type 1:the plate has a constant thickness as shown in Fig.2(a);Type 2:the thickness varies linearly in thex-axis as shown in Fig.2(b);Type 3:the thickness varies linearly in thex-axis andy-axis as shown in Fig.2(c).

    The FGP with the variation of two constituents and three different distributions of porosity through thickness are presented as[1]:

    in whichΩis the maximum porosity value.The typical material properties of FGP in the thickness direction of the plate are given by the rule:

    Fig.1.The FGP plate model with varying thickness.

    Fig.2.The laws of variable thickness of FGP plates.

    wherePtandPbare the typical material properties at the top and the bottom surfaces,respectively andkis the power-law index.Fig.3(a)shows the normalized distribution of porosity throughthickness.Fig.3(b),(c),(d)show the normalized distributions of three different cases of porosity in whichΩ=0.5,k=0.5,1,10,andPt/Pb=10.The porosity distribution of Case 1 is symmetric with respect to the mid-plane of plates and a center enhanced distribution.Case 2 and Case 3 are bottom and top surface-enhanced distributions,respectively.From Fig.3(a-c),we can see that all cases of distribution porosity increase the hardness of the upper surface of the plate,however,case 3 increases the stiffness of the plate through thickness as not strongly as the other two cases.

    3.The weak form and FEM formulation for FGP plates

    3.1.The first order shear deformation theory for FGP plates

    The displacement fields of FGP plate in present work based on FSDT model can be expressed as[49]:

    in whichu0,v0,w0denotes displacement variables of mid-surface of the plate(z=0)andθx,θyare the rotations of a transverse normal about they-axis andx-axis,respectively.

    For the bending plate,the strain components can be expressed as follows:

    with the membrane strain

    and the bending strain

    and the transverse shear strain is expressed by:

    From Hooke’s law,the linear stress-strain relations of the FGP plates can be expressed as:

    Fig.3.Distribution of porosity and typical material property.

    where

    in whichE(z),υ(z)are the effective Young’s modulus,Poisson’s ratio which is calculated by Eq.(2),respectively.

    3.2.Weak form equations

    To obtain the governing equations of the FGP plates,the Hamilton’s principle is applied in the following form[49]:

    where U,V and K are the strain energy,the work done by external loads and the kinetic energy of plate,respectively.

    The strain energy is expressed as:

    in whichε=[εmκ]Tand

    with A,B,D,and Dscan be given by

    The work done by external transverse loads are expressed by

    The kinetic energy is given by

    As this plate structure has variation thickness,all matrices in Eq.(13),Eq.(14)and Eq.(17)depend on the law of varying thickness.The limits of integration depend on the position of the point on the plate.

    Substituting Eqs.(11),(15)and(16)into Eq.(10),the weak formulation for static and free vibration of FGP plates,respectively,is finally obtained as

    4.Formulation of an ES-MITC3 method for FGP plates

    4.1.Formulation of finite element based on the MITC3

    The bounded domainΨis discretized intoneMITC3 elements withnnnodes such thatThen the generalized displacements at any pointfor elements of the FGP plate can be approximated as:

    wherenneis the number of nodes of the plate element;N(x)andis the shape function and the nodal degrees of freedom(DOF)of ueassociated with thejth node of the element,respectively.

    The linear membrane and the bending strains of the MICT3 element can be expressed in matrix forms as follows

    where

    To eliminate the shear locking phenomenon as the thickness of the plate becomes very small,the MITC3 element based on FSDT is proposed by Lee et al.[38].In their study,the transverse shear strains of the classical triangular element are independent interpolated by computing at the middle of triangular element edges,named typing points.The transverse shear strain field associated to typing points with 5 DOFs per node can be written as:

    in which

    Fig.4.Three-node triangular element in the local coordinates.

    with

    where

    in whicha=x2-x1,b=y2-y1,c=y3-y1andd=x3-x1are pointed out in andAeis the area of the three-node triangular element shown in Fig.4.

    Substituting the discrete displacement field into Eqs.(18)and(19),we obtained the discrete system equations for static and free vibration analysis of the FGP plate using MITC3 based on FSDT formulation,respectively as

    where K is the stiffness matrix of FGP plate and F represents the load vector.

    with

    whereωis the natural frequency and M is the mass matrix

    4.2.Formulation of an ES-MITC3 method for FGP plates

    In the ES-FEM,a domainΨis divided intonksmoothing domainsΨkbased on edges of elements,such asandfori≠j.An edge-based smoothing domainΨkassociated with the inner edgekis formed by connecting two endnodes of the edge to centroids of adjacent MITC3 elements as shown in Fig.5.

    Now,by applying the ES-FEM[39],the smoothed strain~εk,a smoothed shear strain~γkover the smoothing domainΨkcan be created by computing the integration of the compatible strains,the strainεand the shear strainγ,respectively,in Eqs.(18)and(19)such as:

    Fig.5.The smoothing domainΨk is formed by triangular elements.

    whereΦk(x)is a given smoothing function that satisfies at least unity property∫

    ΨkΦk(x)dΨ=1.In this study,we use the constant smoothing function.

    in whichAkis the area of the smoothing domainΨkand is given by

    wherenekis the number of the adjacent MITC3 elements in the smoothing domainΨk;andAiis the area of theith MITC3 element attached to the edgek.

    By substituting Eqs.(21),(22)and(29)into Eqs.(44)and(45)then,the approximation of the smoothed strains on the smoothing domainΨkcan be expressed by:

    The global stiffness matrix of FGP plate using the ES-MITC3 is assembled by

    where~Kkis the ES-MITC3 stiffness matrix of the smoothing domain Ψkand given by

    in which

    The advantage of the present ES-MITC3 as follows:

    Using three-node triangular elements that are much easily generated automatically even for complicated geometry domains.

    The ES-MITC3 element only uses the 3-node element with the same number of DOF as the MITC3 element,not increasing DOF to improve accuracy.

    5.Accuracy of the proposed method

    Firstly,we consider simple support(SSSS)and fully clamped(CCCC)FGP plates with three cases of distributions of porosity with parameter geometrya=b=1 m,the thickness of the plate is constanth=a/50.Material properties are shown in Table 4 with power-law indexk=1 and maximum porosity valueΩ=0.5.The maximum displacement of plate with different BC are presented in Table 1 and Fig.6.The natural frequencies of the plate are shown in Table 2 and Fig.7.

    Secondly,the authors investigate a rectangular isotropic plate that has linear thickness variations in thex-directions andy-directions,lengtha=0.5 m,b=2a,h0=0.3 m,h1=h2=0.2 m,Young’s moduliE=2 GPa.The plate is one short-edge clamped,subjected to a uniform loadP=2000 Pa.Fig.8 shows the

    Table 1Maximum displacements of the plate with different meshes.

    Fig.6.The convergence of displacement of the plate with different meshes.a)The SSSS plate;b)The CCCC plate.

    Table 2Natural frequencies of the plate with different meshes.

    6.Numerical results and discussions

    In this section,we use the material properties of the FGM plate from the study of Kim et al.[1].The moduli and mass densities of two constituents are shown in Table 4.

    6.1.Static bending of the FGP plates

    In this subsection,we consider an SSSS FGP plate with dimensiona=b=1 m,h0=a/50,the thickness is varied linearly inxaxis andy-axis.The material properties of the FGP plate is shown in Table 2 with porosity distribution of case 1 in whichΩ=0.5 and power-indexk=1.The plate subjected to uniform load with intensityp=-1 alongz-axis.From Fig.9(a)for plates with constant thicknessh0=h1=h2=a/50,it can be seen that the deformation field is symmetric,and the maximum of deflection is at the center of the plate.However,the deflection of the plate with variable thickness is not symmetric,the maximum of deflection will be near the thinner thickness and far away from thicker thickness as shown in Fig.9(b and c).

    Fig.7.The convergence of natural frequency of the plate with different meshes.a)The SSSS plate;b)the CCCC plate.

    Fig.8.Displacement at some points of the plate.

    Table 3Nondimensional natural frequenciesω*.

    Table 4Material properties of the FGP plate.

    Fig.9.The visualization of the deformation of an SSSS FGP plate(top view).

    Fig.10.Displacement at some points of the plate and stress at the point of plate that has maximum deflection along with z-axis.

    Table 5Maximum of deflection of the FGP plate.

    In Fig.10(a),the deflection of some points alongx-aix withy=0.5 m(type 1,type 2)andy=7/12(type 3)are presented.Fig.10(b-d)show the stress at the point of plate that has maximum deflection.Maximum of deflection and stress are shown in Table 5.This phenomenon shows that the variation of plate thickness significant effects on the static bending response of the FGP plate.

    In order to investigate the effect of power-indexkto static bending of the FGP plate.We change thekfrom 0 to 10 for all cases of porosity distribution.From Fig.11 and Table 6,it can be observed that with the sameΩvalue,the maximum deflection of FGP plate in porosity distribution of case 3 is greatest and the smallest result is for the porosity distribution of case 1.Whenkincreases,the volume of metal increases,the stiffness of the FGP plate will be reduced and hence the deflection increases.

    Next,the authors investigate the effect of maximum porosityvalueΩon bending of the FGP plate.Maximum porosity values are chosen asΩ=0,0.2,0.4,0.6,0.8,1 for all cases of porosity distribution.From to Fig.12 and Table 7,whenk=0(the material of the plate is ceramic),it can be seen that the deflection of FGP plate in porosity distribution of case 1 is the smallest,and the deflection of FGP plate with porosity distribution of case 2 and case 3 are the same.These results are appropriate because,with the homogeneous FGP plate,the porosity distributions of cases 2 and 3 are symmetric,and the values of stiffness obtained are not different.Withknot equal to zero,the deflection of FGP plate in porosity distribution of case 1 is the smallest,and the largest is for the porosity distribution of case 3.This also proves that when the porosity is more distributed on the upper surface of the FGP plate according to thickness,stiffness of the plate is reduced(case 3).

    Table 6The maximum deflection of FGP plate(type 3)with different values of k(μm).

    Fig.11.The maximum deflection of FGP plate(type 3)with different of values of k.

    Fig.12.The maximum deflection of FGP plate(type 3)with different values of k.

    Table 7The maximum deflection of FGP plate(type 3)with different values ofΩ(μm).

    Table 8Natural frequencies of the FGP plate.

    6.2.Free vibration of FGP plates

    In this subsection,an SSSS FGP plate is considered with geometric parameters:a=b=1 m,h0=a/50,the thickness is varied linearly inx-axis andy-axis(type 3).The material properties of the FGP plate are similar to the static bending problem with porosity distributionΩ=0.5 and power-indexk=1.The first six natural frequencies of the FGP plate are shown in Table 8 and the first six mode shape are presented in Fig.13.In these figures,the mode shape of vibration of the variable-thickness FGP plate is not symmetric because the thickness at each position on the plate is different.The maximum values of the mode shape are traveled toward a smaller thickness.

    Fig.13.The first six mode shapes of the FGP plate(type 3).

    Fig.14.The first natural frequencies of FGP plate with different values of k.

    Table 9The first natural frequencies of the FGP plate with different values of k(Hz).

    Now,we investigate the influence of power-law indexkon free vibration of the FGP plate.Power-law index gets valuesk=0,2,4,6,8,10 for all cases of porosity distribution.In Fig.14 and Table 9,it can be seen that with the sameΩvalue,the first natural frequency of the FGP plate in porosity distribution of case 1 is greatest,and the smallest is for the porosity distribution of case 3.WithΩ=0.25,0.5,0.75 whenkincreases from 0 to 1,the first natural frequencies of the FGP plate will be reduced,butkincreases from 1 to 10 when the first natural frequencies of the FGP plate will increase.However,withΩ=1 the first natural frequencies of the FGP plate with porosity distribution of case 1 and case 2 increase whenkchanges from 2 to 10.In case 3 the first natural frequencies of the FGP plate increase from 4 to 10.

    Finally,the effect of maximum porosity distribution on the free vibration of the FGP plate(type 3)is considered.The value of maximum porosityΩchanges from 0 to 1 for all cases of porosity distribution.From Fig.15 to Table 10,in can be found that whenk=0(the material of plate is ceramic),the first natural frequencies of FGP plate in porosity distribution of case 1 increase,the first natural frequencies in case 2 and case 3 are similar.Withkvaries from zero,the first natural frequency of FGP plate in porosity distribution of case 1 is the largest,and the smallest is for the porosity distribution of case 3.

    7.Conclusions

    In this paper,the static and free vibration analyses of the FGP variable-thickness plates are studied using the ES-MITC3.Numerical results of static bending and free vibration obtained by the present approach are compared to other available solutions.From the present formulation and the numerical results,we can withdraw some following points:

    -For static and free vibration analyses of the FGP variablethickness plates,the ES-MITC3 element which can eliminate“the shear locking”phenomenon will give the more accurate results than the standard triangular elements and the original MITC3 element.

    -The law of variable thickness significant effects on displacement,stress,and free vibration of the plates.The material parameters also change the stiffness and mass of the plates.Specifically,with the same geometry and BC,when the power-indexkincreases,the“stiffness”of the plate will decrease and when the maximum porosity distributionsΩincrease,the“stiffness”of plate will decrease,respectively.

    Fig.15.Natural frequencies of the FGP plate with different values ofΩ.

    Table 10The natural frequencies of the FGP plate with different values ofΩ(Hz).

    -Numerical results in present work are useful for calculation,design,and testing of material parameters in engineering and technologies.

    -The present approach can be developed for investigating the plates with laws of variable thickness and also for analysing the FGP plates subjected to other loads.

    Data availability

    The data used to support the findings of this study are included within the article.

    Declaration of competing interest

    The authors declare that they have no conflicts of interest.

    AcknowledgmentsThis research is funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant number 107.02-2019.330.

    韩国精品一区二区三区| 嫁个100分男人电影在线观看| 大香蕉久久成人网| 老司机影院毛片| 欧美午夜高清在线| 国产精品1区2区在线观看. | 美女福利国产在线| xxxhd国产人妻xxx| 欧美人与性动交α欧美精品济南到| 亚洲av第一区精品v没综合| 国产精品久久久av美女十八| 亚洲国产精品sss在线观看 | 岛国在线观看网站| 成年版毛片免费区| av免费在线观看网站| 9热在线视频观看99| av免费在线观看网站| 国产99白浆流出| 亚洲国产看品久久| 亚洲av日韩在线播放| 国产亚洲欧美98| 丁香六月欧美| 精品人妻1区二区| 精品人妻熟女毛片av久久网站| 亚洲五月天丁香| 国产精品免费大片| 在线观看66精品国产| avwww免费| 日本a在线网址| 欧美丝袜亚洲另类 | 亚洲欧洲精品一区二区精品久久久| 久久久久国产精品人妻aⅴ院 | 黄色丝袜av网址大全| 热re99久久国产66热| 中文字幕高清在线视频| 日韩欧美在线二视频 | 五月开心婷婷网| 国产91精品成人一区二区三区| 老熟女久久久| 麻豆乱淫一区二区| 国产一区二区三区视频了| 国产欧美日韩一区二区三区在线| 男人舔女人的私密视频| 91成人精品电影| 国产不卡一卡二| 另类亚洲欧美激情| 国产欧美日韩精品亚洲av| 日本精品一区二区三区蜜桃| av有码第一页| 亚洲一码二码三码区别大吗| 久久99一区二区三区| 国产成人免费观看mmmm| 久久精品亚洲精品国产色婷小说| 国产野战对白在线观看| 日韩精品免费视频一区二区三区| 999久久久精品免费观看国产| 又紧又爽又黄一区二区| 欧美日韩精品网址| 欧美日韩精品网址| 日本黄色视频三级网站网址 | 18禁美女被吸乳视频| 老鸭窝网址在线观看| 又大又爽又粗| 亚洲人成电影免费在线| 欧美丝袜亚洲另类 | 激情在线观看视频在线高清 | 免费看十八禁软件| 亚洲精品粉嫩美女一区| 99热只有精品国产| 人妻 亚洲 视频| av欧美777| 午夜福利,免费看| 人人妻人人澡人人爽人人夜夜| 亚洲av熟女| 欧美成狂野欧美在线观看| 日本wwww免费看| 夜夜躁狠狠躁天天躁| 少妇猛男粗大的猛烈进出视频| 高清欧美精品videossex| 手机成人av网站| 老汉色∧v一级毛片| 丰满饥渴人妻一区二区三| 婷婷成人精品国产| 国产精品九九99| 99久久国产精品久久久| 亚洲国产精品合色在线| 久久精品aⅴ一区二区三区四区| 国产精品久久视频播放| 国产激情欧美一区二区| 亚洲第一av免费看| 一区二区三区精品91| 人妻丰满熟妇av一区二区三区 | av网站免费在线观看视频| 国产精品 欧美亚洲| 久久国产精品影院| 亚洲中文av在线| av福利片在线| 热99国产精品久久久久久7| 日韩 欧美 亚洲 中文字幕| 啪啪无遮挡十八禁网站| 9色porny在线观看| 成人国产一区最新在线观看| 男女免费视频国产| 亚洲情色 制服丝袜| 婷婷成人精品国产| 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 曰老女人黄片| 亚洲成av片中文字幕在线观看| 免费观看a级毛片全部| 免费一级毛片在线播放高清视频 | 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 校园春色视频在线观看| 999精品在线视频| 国产精品.久久久| 亚洲欧美激情综合另类| 亚洲欧美日韩另类电影网站| 亚洲av美国av| 99久久精品国产亚洲精品| 中文字幕精品免费在线观看视频| 欧美午夜高清在线| 极品人妻少妇av视频| 国产乱人伦免费视频| 亚洲色图av天堂| 亚洲欧美精品综合一区二区三区| 精品一区二区三区av网在线观看| 搡老熟女国产l中国老女人| 亚洲va日本ⅴa欧美va伊人久久| 91在线观看av| 欧美国产精品va在线观看不卡| 国产在线一区二区三区精| 国产不卡一卡二| 国产精品99久久99久久久不卡| 亚洲aⅴ乱码一区二区在线播放 | 丁香欧美五月| 黄片小视频在线播放| 日韩欧美免费精品| av福利片在线| 最新美女视频免费是黄的| 99久久精品国产亚洲精品| 国产一区二区三区综合在线观看| 国产av精品麻豆| 在线观看免费日韩欧美大片| 国产区一区二久久| av天堂久久9| 好看av亚洲va欧美ⅴa在| 一区二区三区激情视频| 国产精品久久久av美女十八| 一二三四社区在线视频社区8| 男女下面插进去视频免费观看| av福利片在线| 91大片在线观看| 不卡av一区二区三区| 日本五十路高清| 国产三级黄色录像| 久久亚洲真实| 成年女人毛片免费观看观看9 | 91字幕亚洲| 天天添夜夜摸| 久久久久久亚洲精品国产蜜桃av| 丰满饥渴人妻一区二区三| 久久国产精品大桥未久av| 国产区一区二久久| 亚洲国产中文字幕在线视频| 亚洲av日韩精品久久久久久密| 久久久久久久午夜电影 | 国产高清激情床上av| 老司机影院毛片| 一级作爱视频免费观看| 国产成人一区二区三区免费视频网站| av天堂久久9| 啦啦啦在线免费观看视频4| 9热在线视频观看99| 国产野战对白在线观看| 久久香蕉国产精品| 香蕉国产在线看| 午夜成年电影在线免费观看| 国产免费男女视频| 黑人巨大精品欧美一区二区蜜桃| 男女床上黄色一级片免费看| 亚洲精品自拍成人| 人妻久久中文字幕网| 精品久久久精品久久久| 欧美 日韩 精品 国产| 亚洲成av片中文字幕在线观看| tocl精华| 欧美激情久久久久久爽电影 | 999久久久国产精品视频| 在线看a的网站| 久久人人爽av亚洲精品天堂| 天天影视国产精品| 日本一区二区免费在线视频| 亚洲中文字幕日韩| 亚洲国产精品一区二区三区在线| 看黄色毛片网站| 久久久精品免费免费高清| 欧美日韩一级在线毛片| 午夜两性在线视频| 精品免费久久久久久久清纯 | 免费观看人在逋| 制服人妻中文乱码| 一a级毛片在线观看| 亚洲熟女精品中文字幕| 老司机深夜福利视频在线观看| 亚洲av美国av| 多毛熟女@视频| 韩国精品一区二区三区| tocl精华| 麻豆成人av在线观看| 久久精品人人爽人人爽视色| 国内久久婷婷六月综合欲色啪| 日韩制服丝袜自拍偷拍| 欧美日韩视频精品一区| 欧美精品啪啪一区二区三区| 国产三级黄色录像| 黄片播放在线免费| 日韩精品免费视频一区二区三区| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| 桃红色精品国产亚洲av| 高清欧美精品videossex| 亚洲久久久国产精品| 777米奇影视久久| 黄色 视频免费看| 满18在线观看网站| 看片在线看免费视频| 精品一品国产午夜福利视频| 欧美丝袜亚洲另类 | 欧美精品亚洲一区二区| 欧美日韩乱码在线| 中文字幕高清在线视频| 老汉色av国产亚洲站长工具| 在线播放国产精品三级| 精品一区二区三卡| 久久久久久亚洲精品国产蜜桃av| 999久久久国产精品视频| 一级,二级,三级黄色视频| 亚洲av成人一区二区三| 国产一区二区三区综合在线观看| 国产激情久久老熟女| 韩国精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 一边摸一边抽搐一进一出视频| 视频区欧美日本亚洲| 久久久久精品国产欧美久久久| 女人高潮潮喷娇喘18禁视频| 国产精品美女特级片免费视频播放器 | 亚洲专区中文字幕在线| 黄色丝袜av网址大全| 亚洲成人手机| 免费在线观看影片大全网站| 91麻豆精品激情在线观看国产 | 国产精品香港三级国产av潘金莲| 欧美激情极品国产一区二区三区| 色婷婷av一区二区三区视频| 欧美乱色亚洲激情| 精品人妻在线不人妻| 国产成人影院久久av| 91大片在线观看| 国产一区二区三区视频了| 岛国毛片在线播放| 免费不卡黄色视频| 国产精品乱码一区二三区的特点 | 亚洲色图综合在线观看| 人人妻,人人澡人人爽秒播| 黄频高清免费视频| 校园春色视频在线观看| 精品国产亚洲在线| 午夜福利在线免费观看网站| 欧美日韩亚洲国产一区二区在线观看 | 麻豆乱淫一区二区| 大香蕉久久网| 99久久综合精品五月天人人| 天堂俺去俺来也www色官网| 国产午夜精品久久久久久| 亚洲一区高清亚洲精品| 一级a爱视频在线免费观看| 欧美日本中文国产一区发布| 亚洲一区高清亚洲精品| 在线观看免费视频日本深夜| 五月开心婷婷网| 自拍欧美九色日韩亚洲蝌蚪91| 热re99久久精品国产66热6| 一二三四社区在线视频社区8| 99久久国产精品久久久| 91精品国产国语对白视频| 91字幕亚洲| 狠狠婷婷综合久久久久久88av| 可以免费在线观看a视频的电影网站| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 99精国产麻豆久久婷婷| 老司机福利观看| 手机成人av网站| 日韩欧美一区视频在线观看| 久久这里只有精品19| 亚洲 欧美一区二区三区| 国产亚洲一区二区精品| 99精品欧美一区二区三区四区| 亚洲精品粉嫩美女一区| 最新的欧美精品一区二区| 亚洲免费av在线视频| 久热爱精品视频在线9| 日本黄色日本黄色录像| 免费在线观看黄色视频的| 久久精品亚洲熟妇少妇任你| 深夜精品福利| e午夜精品久久久久久久| 欧美日韩av久久| 十八禁网站免费在线| 免费在线观看亚洲国产| 久久国产精品影院| 美女高潮到喷水免费观看| 夜夜夜夜夜久久久久| 精品福利观看| 欧美黑人精品巨大| 满18在线观看网站| 正在播放国产对白刺激| 欧美+亚洲+日韩+国产| 黄色成人免费大全| 黄色毛片三级朝国网站| 黄片小视频在线播放| 91麻豆av在线| 婷婷精品国产亚洲av在线 | 91精品国产国语对白视频| 久久精品aⅴ一区二区三区四区| 99热网站在线观看| 不卡一级毛片| 99国产精品一区二区蜜桃av | 另类亚洲欧美激情| 操出白浆在线播放| 一本大道久久a久久精品| 久久天堂一区二区三区四区| 成人黄色视频免费在线看| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区三| 人人妻人人澡人人看| 国产精品免费视频内射| 精品久久久久久久毛片微露脸| 嫁个100分男人电影在线观看| 最新在线观看一区二区三区| 欧美日韩瑟瑟在线播放| 性少妇av在线| 欧美精品av麻豆av| 精品国产一区二区三区四区第35| 无人区码免费观看不卡| 一区二区三区激情视频| 丝袜美腿诱惑在线| 黑人猛操日本美女一级片| 亚洲 国产 在线| a在线观看视频网站| 又黄又爽又免费观看的视频| 国产免费现黄频在线看| 久久影院123| 国产真人三级小视频在线观看| 三级毛片av免费| 久久婷婷成人综合色麻豆| 最新的欧美精品一区二区| 亚洲一区中文字幕在线| 视频区欧美日本亚洲| 久久国产精品人妻蜜桃| 欧美在线黄色| 久9热在线精品视频| 久久久久国产精品人妻aⅴ院 | 99香蕉大伊视频| 欧美国产精品va在线观看不卡| 国产精品国产av在线观看| 国产麻豆69| 激情在线观看视频在线高清 | 热re99久久国产66热| 一本一本久久a久久精品综合妖精| 很黄的视频免费| 一边摸一边做爽爽视频免费| 露出奶头的视频| 正在播放国产对白刺激| 日韩制服丝袜自拍偷拍| 中国美女看黄片| 咕卡用的链子| 精品乱码久久久久久99久播| 中文字幕色久视频| 亚洲三区欧美一区| 日本a在线网址| 正在播放国产对白刺激| 国产亚洲精品第一综合不卡| 久久精品亚洲av国产电影网| 一级a爱视频在线免费观看| 欧美老熟妇乱子伦牲交| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 最近最新中文字幕大全免费视频| 国精品久久久久久国模美| 另类亚洲欧美激情| 久久久国产成人精品二区 | 亚洲精品国产区一区二| 国产av精品麻豆| 精品一区二区三区av网在线观看| 日本欧美视频一区| 99香蕉大伊视频| 久久国产精品影院| 亚洲国产精品一区二区三区在线| 国产99久久九九免费精品| avwww免费| x7x7x7水蜜桃| 精品一区二区三区视频在线观看免费 | 国产精品免费视频内射| 久久人妻福利社区极品人妻图片| 国产精品一区二区免费欧美| 国产不卡一卡二| 十分钟在线观看高清视频www| 热re99久久精品国产66热6| 成人手机av| 久久久久久人人人人人| 女人精品久久久久毛片| 精品一品国产午夜福利视频| 久久国产精品人妻蜜桃| 亚洲精品美女久久av网站| 精品高清国产在线一区| 久久人妻福利社区极品人妻图片| 9热在线视频观看99| 这个男人来自地球电影免费观看| 免费在线观看影片大全网站| 色婷婷av一区二区三区视频| 精品视频人人做人人爽| 免费av中文字幕在线| 精品乱码久久久久久99久播| 在线观看免费高清a一片| 欧美日韩亚洲综合一区二区三区_| 热99国产精品久久久久久7| 久久亚洲真实| 亚洲精品国产区一区二| 性少妇av在线| 日韩精品免费视频一区二区三区| xxx96com| 国产一区二区三区在线臀色熟女 | 丁香欧美五月| 欧美精品av麻豆av| 亚洲精品国产精品久久久不卡| 真人做人爱边吃奶动态| 亚洲中文av在线| 怎么达到女性高潮| 1024香蕉在线观看| 日韩欧美在线二视频 | 日本vs欧美在线观看视频| 国产精品久久久久久精品古装| 日韩人妻精品一区2区三区| 亚洲一区二区三区不卡视频| 在线国产一区二区在线| 亚洲精品美女久久av网站| 亚洲精品国产一区二区精华液| 99久久人妻综合| 别揉我奶头~嗯~啊~动态视频| 亚洲专区国产一区二区| 中文字幕另类日韩欧美亚洲嫩草| 日日摸夜夜添夜夜添小说| 亚洲精品一二三| 欧美色视频一区免费| 韩国av一区二区三区四区| 国产欧美亚洲国产| aaaaa片日本免费| 欧美激情久久久久久爽电影 | 亚洲熟女毛片儿| av超薄肉色丝袜交足视频| 午夜福利影视在线免费观看| 欧美激情极品国产一区二区三区| 国产激情久久老熟女| 波多野结衣av一区二区av| 看片在线看免费视频| 天堂动漫精品| 美国免费a级毛片| 夜夜爽天天搞| 12—13女人毛片做爰片一| 女人精品久久久久毛片| 国产精品久久久人人做人人爽| 亚洲精品久久午夜乱码| 精品国产乱码久久久久久男人| 亚洲精品一卡2卡三卡4卡5卡| 男人操女人黄网站| 极品少妇高潮喷水抽搐| www.熟女人妻精品国产| 国产亚洲欧美在线一区二区| 岛国在线观看网站| 后天国语完整版免费观看| 亚洲伊人色综图| 欧美日韩亚洲国产一区二区在线观看 | 久久狼人影院| 高清av免费在线| 午夜影院日韩av| 很黄的视频免费| 国产在线观看jvid| 国产激情久久老熟女| 80岁老熟妇乱子伦牲交| 午夜成年电影在线免费观看| 亚洲片人在线观看| 国产精品免费大片| 国产又色又爽无遮挡免费看| 成人三级做爰电影| 啦啦啦免费观看视频1| 大片电影免费在线观看免费| 国产真人三级小视频在线观看| 777米奇影视久久| 国产淫语在线视频| 中出人妻视频一区二区| 一级a爱片免费观看的视频| 免费不卡黄色视频| 免费看a级黄色片| 色婷婷av一区二区三区视频| 99国产极品粉嫩在线观看| 精品久久久久久电影网| 国产精品影院久久| 日本vs欧美在线观看视频| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www| tube8黄色片| 亚洲一区高清亚洲精品| 免费黄频网站在线观看国产| 国产单亲对白刺激| 精品国产一区二区三区四区第35| 老司机福利观看| 成年动漫av网址| 国产精品永久免费网站| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 在线免费观看的www视频| 亚洲 欧美一区二区三区| 亚洲av日韩在线播放| 老汉色∧v一级毛片| 大码成人一级视频| 一二三四社区在线视频社区8| 欧美人与性动交α欧美软件| 国产av又大| 天天影视国产精品| 免费在线观看日本一区| 天天操日日干夜夜撸| 免费在线观看影片大全网站| 一级片'在线观看视频| 啦啦啦 在线观看视频| 国产精品国产高清国产av | 波多野结衣av一区二区av| 人人澡人人妻人| 18禁美女被吸乳视频| 身体一侧抽搐| 高清av免费在线| 五月开心婷婷网| 亚洲精品一卡2卡三卡4卡5卡| 无人区码免费观看不卡| 精品国产美女av久久久久小说| 美女福利国产在线| 午夜亚洲福利在线播放| 国产精品1区2区在线观看. | 女同久久另类99精品国产91| 日韩欧美免费精品| 午夜91福利影院| 日韩欧美免费精品| 欧美不卡视频在线免费观看 | 亚洲国产精品sss在线观看 | 国产精华一区二区三区| 每晚都被弄得嗷嗷叫到高潮| bbb黄色大片| 精品久久久久久,| 亚洲avbb在线观看| a级片在线免费高清观看视频| 国产精品一区二区免费欧美| 国产精品.久久久| 一二三四在线观看免费中文在| 性少妇av在线| 日本精品一区二区三区蜜桃| 又黄又爽又免费观看的视频| 黄色片一级片一级黄色片| 欧美午夜高清在线| 中文字幕精品免费在线观看视频| 麻豆国产av国片精品| 国产主播在线观看一区二区| 欧美日韩国产mv在线观看视频| 91国产中文字幕| 国产一区在线观看成人免费| 美女福利国产在线| 高清毛片免费观看视频网站 | 欧美老熟妇乱子伦牲交| 免费在线观看视频国产中文字幕亚洲| 久久香蕉激情| 国产免费av片在线观看野外av| 色播在线永久视频| 99国产精品一区二区蜜桃av | 日本a在线网址| 狂野欧美激情性xxxx| 国产深夜福利视频在线观看| 狂野欧美激情性xxxx| 国产av一区二区精品久久| 伦理电影免费视频| 18禁国产床啪视频网站| 欧美最黄视频在线播放免费 | 天天躁狠狠躁夜夜躁狠狠躁| 国产高清videossex| 久久久水蜜桃国产精品网| 欧美乱色亚洲激情| 一边摸一边抽搐一进一小说 | 又大又爽又粗| 黄网站色视频无遮挡免费观看| 午夜精品久久久久久毛片777| 精品亚洲成国产av| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 天天躁日日躁夜夜躁夜夜| 99国产精品一区二区蜜桃av | 久久精品亚洲av国产电影网| 亚洲专区中文字幕在线| 99久久综合精品五月天人人| 窝窝影院91人妻| 老汉色av国产亚洲站长工具| 91在线观看av| 人成视频在线观看免费观看| 老汉色∧v一级毛片| 极品人妻少妇av视频| 丁香欧美五月|