• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-time tracking control and vibration suppression based on the concept of virtual control force for flexible two-link space robot

    2021-05-06 12:08:08RongHuaLeiLiChen
    Defence Technology 2021年3期

    Rong-Hua Lei,Li Chen

    School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou,350116,China

    Keywords:Finite-time Terminal sliding mode Flexible links Vibration suppression Virtual control force

    ABSTRACT The dynamic modeling,finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied.Firstly,the dynamic model of the system is established by combining Lagrange method with assumed mode method.In order to ensure that the base attitude and the joints of space robot can reach the desired positions within a limited time,a non-singular fast terminal sliding mode(NFTSM)controller is designed,which realizes the finite-time convergence of the trajectory tracking errors.Subsequently,for the sake of suppressing the vibrations of flexible links,a hybrid trajectory based on the concept of the virtual control force is developed,which can reflect the flexible modes and the trajectory tracking errors simultaneously.By modifying the original control scheme,a NFTSM hybrid controller is proposed.The hybrid control scheme can not only realized attitude stabilization and trajectory tracking of joints in finite time,but also provide a new method of vibration suppression.The simulation results verify the effectiveness of the designed hybrid control strategy.

    1.Introduction

    The space robots can save space launch costs and improve astronauts’work efficiency[1,2],since it can assist astronauts to complete a series of high-intensity and high-risk space missions,such as satellite orbit determination,rendezvous and docking of spacecraft and space science experiment[3-5],etc.Different from the ground robot with fixed-base,the base of the space robot is free-floating,i.e.the system is not affected by the external force or moment.Since the system meets the law of conservation of linear momentum,the motions of joints will interfere with the attitude stabilization of the base.

    In order to realize the attitude stabilization and joint tracking control of the space robot,many control algorithms have been proposed.For the space robot with flexible joints,Yu[6]proposed a robust control method based on state observer.For the space tethered robot used to capture space debris,Zhang[7]designed an adaptive super-twisting sliding mode control algorithm.Kumar[8]presented an adaptive neural network controller for the space robot with uncertain inertia parameters.For the near-earth space robot considering microgravity effect,Qin[9]formulated an adaptive robust controller based on fuzzy logic system.However,these control schemes can only guarantee the asymptotic convergence of the trajectory tracking errors,i.e.the system states will converge to the desired states when the time tends to infinity.It is worth mentioning that some key space missions need to meet the real-time requirements strictly.For example,the spacecraft needs to adjust the deployment angle of solar array through attitude stabilization,so as to replenish electric energy in time.In order to obtain better dynamic response quality,it is of great engineering value and practical significance to investigate the finite-time control of the space robots.Du[10]studied the finite-time attitude stabilization of spacecraft,while the finite-time attitude synchronization stabilization of satellite formation flying are analyzed by Zhou[11].For a class of nonlinear systems,Feng[12]proposed a finite-time control method based on nonsingular terminal sliding mode.Polyakov[13]presented a fixed-time control strategy for the nonlinear systems by using the implicit Lyapunov function method.However,research on the finite-time control for the space robots is still rare.

    For the purpose of improving the working space and dexterity of the space robot system,the arm of system is usually designed as an elongated structure,which can easily induce flexible vibration at the end of the manipulator[14,15].Therefore,in order to improve the motion stability of the space robot,the flexible vibration of the arm must be suppressed actively.Although the modeling methods of flexible link are mature,most of them are applied to the ground robot with fixed-base.Pereira[16]studied the integral resonance control of a flexible link robot.Meng[17]established the discrete model of the flexible link robot by the use of the assumed mode method,and designed a fast vibration suppression controller through the system energy theory and fuzzy genetic algorithm.But the above researches are all aimed at the flexible single-link robot,and the similar research on the flexible two-link counterpart is rarely reported.It should be noted that the vibrations of flexible two-link space robot is stronger than that of flexible single-link space robot,since the vibrations of the adjacent flexible links are coupled with each other.In literature[18],a flexible-link space robot system is decomposed into a rigid part and a flexible part by using singular perturbation method,and then a trajectory tracking sub-controller and a vibration suppression sub-controller are designed for them respectively.And the same control scheme can also be applied to a redundant parallel flexible-link robot in Ref.[19].Because the sub-controller depends on the corresponding sub-model,the structure of the final composite controller is complex.

    With an effort to address the aforementioned several drawbacks,this work investigates the dynamic modeling,finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot through only one control input.In order to ensure that the output trajectories of space robot can follow the desired positions within a limited time,a NFTSM controller is proposed.For the sake of abating the vibrations of flexible links,the concept of virtual control force is introduced so as to generate a hybrid trajectory which can describe the flexible modes and the trajectory tracking errors simultaneously.By updating the original control scheme,a NFTSM hybrid controller is formulated.The hybrid control scheme can not only achieve trajectory tracking control of the base attitude and joints but also restrain the mode vibrations of the flexible links by utilizing the same control input.

    2.System dynamics modeling

    Considering the baseB0is free-floating,the system meets the law of conservation of linear momentum,and the rotations of the joints will disturb the attitude stabilization of the base.Besides,the vibration of flexible linkB1is coupled with that of flexible linkB2.Hence the flexible two-link space robot is a highly complex nonlinear system,in order to realize the control objectives of attitude stabilization,joint trajectory tracking and vibration suppression,the first step is to establish the system model.

    The plane structure of the flexible two-link space robot system is shown in Fig.1.The system consists of the baseB0,simplysupported beamB1and cantilever beamB2.OXYis the inertial coordinate system,whileoixiyi(i=0,1,2)is the local coordinate system ofBi.θ0is the attitude angle of the base,whileθi(i=1,2)is the rotation angle of joint linkBi.Oi(i=0,1,2)is the rotation center ofBi.l0is the distance between the rotation centersO0andO1,whileli(i=1,2)is the axial length of flexible linkBi.The mass and the moment of inertia of the base arem0andJ0respectively,while the linear density and the flexural rigidity of the flexible linkBi(i=1,2)areρiandEIirespectively.r0is the position vector ofO0inOXYframe,and rPi(i=1,2)is the position vector of arbitrary pointPi(i=1,2)of flexible linkBiinOXYframe.

    Since the axial deformation and shear deformation of the flexible linkBi(i=1,2)are ignored,and only its bending deformation is considered,it can be regarded as Bernoulli-Euler beam.According to the assumed mode method[20],the elastic deformation of flexible linkBican be expressed as

    Since the elastic deformation of the flexible beam is mainly composed of the low-order vibration modes,hence the first two modes can be selected for vibration analysis,i.e.

    The position vectors rP1and rP2are

    where,

    Taking the differentiation of Eqs.(2a)and(2b)with respected to time t lead to

    Ignoring the external gravitational force exerted by other planets,the space robot system satisfies the law of conservation of momentum.Without losing generality,it is reasonable to assume that the initial momentum of the system is zero,i.e.˙rC(0)=0;then,one has

    Substituting Eqs.(3a)and(3b)into Eq.(4)yields

    Solving˙r0from Eq.(5),one obtains

    where,

    Substituting Eq.(6)into Eqs.(3a)and(3b)lead to

    Ignoring the gravitational potential energy of the system,the bending strain energy of the flexible linksVis the total potential energy of the system,i.e.

    From Eqs.(8)and(9),the Lagrange function of the system can be obtained as

    Defining the generalized coordinate q=[qrqf]T,where qr=[θ0θ1θ2]Tis the rigid generalized coordinate and qf=[δ11δ12δ21δ22]Tis the flexible generalized coordinate.The Lagrange equation of the system can be established as

    where Q∈R7×1is the generalized force of the system.

    Reorganizing Eq.(12),the dynamic equation of flexible two-link space robot system can be deduced as follows

    3.NFTSM controller design and stability analysis

    3.1.NFTSM controller design

    In order to obtain the fully-actuated rigid subsystem,Eq.(13)can be rewritten as

    where Drr∈R3×3,Drf∈R3×4,Dfr∈R4×3and Dff∈R4×4are the submatrices of D;Hr∈R3×1and Hf∈R4×1are the sub-vectors of H.

    By eliminating¨qffrom Eq.(14),the dynamic equation of the rigid subsystem can be obtained as

    where,

    It should be stressed that Eq.(15)can directly describe the trajectory tracking motions of the base attitude and the joints.

    Defining the state variable x=[x1,x2]T=[qr,˙qr]T,Eq.(15)can be expressed as the following nonlinear system

    Assumption 1.The desired trajectories xd,˙xdand¨xdare continuously bounded.

    Defining the tacking error as e1=xd-x1,hence the error dynamic equation of the system can be obtained

    The traditional terminal sliding mode(TSM)and fast terminal sliding mode(FTSM)can be described by the following nonlinear differential equations respectively

    And the convergence time of TSM and FTSM are[21,22].

    For the TSM,when the tracking error e(i)=[e1(i),e2(i)]Tis far from the equilibrium points(i)=0,the convergence speed is slow;while when the tracking error is close to the equilibrium point,the convergence speed is fast.For the FTSM,when the tracking error is far from the equilibrium point,αe1(i)can ensure the fast convergence of the error;While when the tracking error is close to the equilibrium point,β|e1(i)|γsgn(e1(i))can ensure the fast convergence of the error.

    Taking the differentiation of stand sftwith respected to time t yields

    Since-1<γ-1<0,one can know that whene1(i)→0,Therefore,the control algorithm adopting TSM or FTSM will induce calculation singularity.

    Since the traditional terminal sliding mode is easy to cause calculation singularity or long convergence time,in order to avoid these shortcomings,a new nonsingular fast terminal sliding surface is defined as

    whereαandβare positive constants;γ>λ,1<λ<2.

    Considering NFTSM is continuously differentiable,its differentiation with respect to time can be expressed as

    Sinceγ-1>λ-1>0,then the control algorithm adopting NFTSM will not induce calculation singularity.Selecting the above gain parameters,the sliding surfaces(i)=0 obtained from Eq.(24)can avoid the instability of sliding surface caused by complex solution of system state whene1(i)<0 ore2(i)<0.

    3.2.Stability analysis

    Theorem 1.Consider the error dynamics system(17)and the nonsingular fast terminal sliding surface(24),if the control law is developed as

    whereηis a positive constant.

    Then the error vector e=[e1,e2]Twill converge to the equilibrium point in finite time.

    ProofSelecting Lyapunov function as

    and substituting Eq.(26)into Eq.(17)lead to

    Taking the differentiation ofVwith respected to time t,and combining Eqs.(24)and(28)yield

    Whens(i)≠0 ande2(i)≠0 are satisfied,then˙V= -the system error vector e=[e1,e2]Tarrives the sliding surface s=0 in a finite time.

    When˙V=0,there are one of the following three situations:

    (1)when s=0,which implies system error vector e=[e1,e2]Thas reached the sliding surface and converge to the equilibrium point in finite time;

    (2)whens(i)>0 ande2(i)=0,according to Eqs.(24)and(29),one obtainse1(i)>0 and˙e2(i)<0 respectively;

    (3)whens(i)<0 ande2(i)=0,according to Eqs.(24)and(29),one obtainse1(i)<0 and˙e2(i)>0 respectively.

    The phase plane convergence trajectory of the tracking error is shown in Fig.2.It can be seen from Fig.2 that case(2)and case(3)mean that there is a infinitesimal scalarε>0 in the phase plane,so that whens(i)>0 ande2(i)∈[-ε,ε]hold,the system error vector e(i)=[e1(i),e2(i)]Twill move away frome1axis to the second quadrant of the phase plane;whens(i)<0 ande2(i)∈[-ε,ε]are satisfied,the system error vector e(i)=[e1(i),e2(i)]Twill move away frome1(i)axis to the fourth quadrant of the phase plane and reach the switching planes(i)=0 in a finite time.Therefore,the system error vector represented by any position in the phase plane will arrives(i)=0 in a finite time under the control law(26)and the arrival timeTr(i)satisfies[23].

    Fig.2.The phase plane convergence trajectory of the tracking error.

    When the sliding surfaces(i)=0 is reached,the error convergence timeTs(i)can be solved from Eq.(24)as

    Therefore,the system error vector e=[e1,e2]Twill converge to the equilibrium point in finite time.The Proof has been completed.

    4.The NFTSM hybrid control scheme based on the concept of virtual control force

    Since the above-mentioned NFTSM control scheme can only ensure the finite-time convergence of tracking errors of the base attitude and joints,but can not suppress the vibrations of flexible links;therefore,the original desired trajectory is modified by using the concept of virtual control force in this section,and a hybrid trajectory qhwhich can simultaneously reflect the tracking error of rigid trajectory e=[e1,e2]Tand flexible mode qδis generated.By using the modified NFTSM control scheme to track the new hybrid trajectory,the flexible mode can also be suppressed accordingly.

    Based on the concept of virtual control force,a hybrid trajectory qhcan be defined and its tracking error with respected to the desired trajectory qdis eh=qd-qh.Then,the dynamics equation of tracking error eh=qd-qhis obtained

    where a∈R3×3and b∈R3×3are positive-definite diagonal matrices;F is the virtual control force which is determined later.

    Defining hybrid tracking error er=qh-qr,then the NFTSM controller based on virtual control force can be written as

    where sr=er+α|er|γsgn(er)+β|˙er|λsgn(˙er)is the non-singular fast terminal sliding mode for the hybrid control scheme.

    Substituting Eq.(33)into Eq.(15)leads to the dynamics equation of hybrid tracking error er=qh-qras follows

    Substituting Eq.(34)into Eq.(32),the dynamics equation of tracking error e1=qd-qrcan be obtained

    where Hp=P+a˙er+ber

    From Eq.(35),one has

    According to Eq.(14),one can obtain the dynamic subsystem representing the flexible vibration as

    Substituting Eq.(36)into Eq.(37)yields

    Combining Eq.(35)with Eq.(38),the following state equation can be obtained

    where

    Obviously,the state Eq.(39)includes both the vibration modes of the flexible links qfand the actual rigid tracking error e1.

    Considering the nonlinear time-varying matrix E as disturbance,when E=0 holds,then Eq.(39)is a controllable linear system.Taking vibration modes qf,rigid tracking error e1and virtual control force F as optimization objectives,a performance indicator function based on optimal control theory can be constructed as

    where M∈R14×14and N∈R3×3are symmetric positive-definite matrices.

    According to linear quadratic optimal control theory,in order to minimize performance indicator function(40),virtual control force F can be designed as the state feedback optimal controller with the form as

    where G is the unique positive-definite solution of the Ricatti equation given by

    Substituting Eq.(41)into Eq.(39)leads to

    When E=0 holds,the state feedback optimal controller(41)can guarantee the close-loop system(39)to be asymptotically stable.Combining the optimal controller(41)into Eq.(32),a hybrid trajectory reflecting both flexible vibration modes and rigid tracking error can be generated.When E≠0 holds,selecting Lyapunov function asV(z)=zTGz,then one has[24].

    From Eq.(44),one can see that the closed-loop system(39)is still stable.

    According to the analysis above,one can conclude that by adapting the NFTSM controller(33)based on the hybrid control scheme,the finite-time convergence of rigid tracking error and the vibration suppression of flexible links can be realized simultaneously.

    From Eqs.(32)and(41),one can know that the hybrid trajectory qhcan reflect the flexible modes and the trajectory tracking errors simultaneously.Hence,Replacing e1 with er in controller(26),then the NFTSM hybrid controller(33),i.e.the single control input,is obtained.

    5.Simulation results

    The physical parameters of the flexible two-link space robot system are:l0=l1=1.5m,l2=1m,m0=40kg,EI1=EI2=50N/m2,ρ1=3.5kg/m,ρ2=1.1kg/m,J0=34.17kg·m2.The desired trajectory is qd=[0.1,0.4,0.8]T(rad),and the initial position and initial mode coordinates are qr(0)=[0.2,0.5,0.7]T(rad)and qf(0)=[0 0 0 0]T(m)respectively.

    In order to illustrate the finite-time convergence characteristics of the proposed NFTSM algorithm,the simulation results are compared with these of the CTC algorithm proposed in Ref.[25]and these of the SMO algorithm proposed in Ref.[26].

    The mathematical expression of the CTC algorithm is

    wherekpandkdare positive constants;

    while the SMO algorithm is

    Similarly to the NFTSM hybrid controller(33),the CTC hybrid algorithm based on the virtual control force is

    while the SMO hybrid algorithm based on the virtual control force is

    Table 1Controller parameters of different control schemes.

    The controllers(26),(45)and(46)are named conventional control schemes,while the controllers(33),(47)and(48)are called hybrid control schemes.The controller parameters are shown in Table 1.

    5.1.Dynamic response based on the conventional control schemes

    In this case,three kinds of conventional control schemes are respectively applied to the flexible two-link space robot system,and the simulation results are shown in Figs.3-6.Figs.3 and 4 are the trajectory tracking curves of the base attitude and joints under different control schemes respectively,while Figs.5 and 6 are the first two mode coordinates of the flexible link 1 and flexible link 2 respectively.

    From Figs.3 and 4 and Table 2,one can observe that the proposed NFTSM algorithm has the fastest convergence speed,and the attitude stabilization of the base and the tracking control of joints can both be achieved within 1.5s.However,since the conventional control schemes don’t have the mechanism of vibration suppression,none of the three control algorithms can attenuate the mode coordinates of the flexible links to a lower level,as depicted in Figs.5 and 6.

    5.2.Dynamic response based on the hybrid control schemes

    While in this situation,three kinds of hybrid control schemes are respectively exerted to the flexible two-link space robot system.The gain matrices are selected as a=b=diag([4,4,4]),M=diag([1,1,…,1])and N=diag([1,1,1]);the initial position of the hybrid trajectory is qh(0)=[0.05,0.35,0.85]T(rad).The simulation results are presented in Figs.7-10.Figs.7 and 8 are the trajectory tracking curves of the base attitude and joints under different control schemes respectively,while Figs.9 and 10 are the first two mode coordinates of the flexible link 1 and flexible link 2 respectively.

    Fig.3.Trajectory tracking curve of the base attitude under the conventional control schemes.

    Fig.4.Trajectory tracking curves of joints under the conventional control schemes.

    Fig.5.The first two mode coordinates of the flexible link 1 under the conventional control schemes.

    Fig.6.The first two mode coordinates of the flexible link 2 under the conventional control schemes.

    Table 2Comparison of convergence time of different control schemes.

    From Figs.7 and 8 and Table 3,it can be seen that the convergence time of the proposed NFTSM hybrid control algorithm is 2.5s,which is significantly shorter than the other two hybrid control algorithms.Due to the introduction of the virtual control force,a hybrid trajectory reflecting simultaneously the flexible vibration modes and the rigid tracking error is constructed,and the proposed three hybrid control schemes can all limit the vibration amplitude of the first-order modal coordinate of the flexible links within 1×10-5m,which illustrates the effectiveness of the control schemes in vibration suppression.

    6.Conclusion

    The dynamic modeling,finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot have been studied.In order to ensure that the base attitude and the joints of the space robot can reach the desired positions within a limited time,a NFTSM controller is designed.Subsequently,for the purpose of attenuating the vibrations of flexible links,a hybrid trajectory based on the concept of virtual control force is constructed,which can both reflect the flexible vibration modes and the rigid tracking error.By modifying the original control scheme,a NFTSM hybrid controller based on the hybrid trajectory is developed.

    Fig.7.Trajectory tracking curve of the base attitude under the hybrid control schemes.

    Fig.8.Trajectory tracking curves of joints under the hybrid control schemes.

    Fig.9.The first two mode coordinates of the flexible link 1 under the hybrid control schemes.

    Fig.10.The first two mode coordinates of the flexible link 2 under the hybrid control schemes.

    Table 3Comparison of convergence time of different control schemes.

    Simulation results illustrated that the NFTSM algorithm has faster convergence speed than the other two algorithms,but it can not restrain the vibration of the flexible links,while the NFTSM hybrid algorithm can realize finite-time tracking control of rigid subsystem and vibration suppression of the flexible links simultaneously through only one control input.The simulation results are consistent with the theoretic analysis,hence the effectiveness of the proposed hybrid control strategy is authenticated.Considering the proposed NFTSM hybrid controller has the characteristics of finite-time convergence and vibration suppression.The future work is to extend the control method of this research to the capture operation of the flexible two-link space robot.

    Declaration of competing interest

    None declared.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China(No.11372073).The authors want to thank the reviewers and the editors for their constructive comments on this paper.

    欧美97在线视频| 91成年电影在线观看| 91麻豆精品激情在线观看国产 | 色播在线永久视频| 亚洲综合色网址| 国产精品秋霞免费鲁丝片| 亚洲国产av新网站| 亚洲成国产人片在线观看| 99热网站在线观看| av网站在线播放免费| 我的亚洲天堂| 一级黄色大片毛片| 日韩电影二区| 免费女性裸体啪啪无遮挡网站| 国产黄频视频在线观看| 99久久精品国产亚洲精品| 高潮久久久久久久久久久不卡| 老司机亚洲免费影院| 亚洲一区中文字幕在线| 午夜影院在线不卡| 黑丝袜美女国产一区| 最黄视频免费看| 制服人妻中文乱码| 国产精品熟女久久久久浪| 午夜免费成人在线视频| 国产在线免费精品| 69精品国产乱码久久久| 精品第一国产精品| 热99国产精品久久久久久7| 飞空精品影院首页| 欧美黑人欧美精品刺激| 国产精品九九99| 欧美精品一区二区免费开放| 中文字幕最新亚洲高清| 水蜜桃什么品种好| 久久狼人影院| 免费女性裸体啪啪无遮挡网站| 性少妇av在线| 在线观看免费高清a一片| 美女视频免费永久观看网站| 国产欧美日韩一区二区三 | 少妇猛男粗大的猛烈进出视频| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人爽人人添夜夜欢视频| 久久天躁狠狠躁夜夜2o2o| 自拍欧美九色日韩亚洲蝌蚪91| 人妻人人澡人人爽人人| 国产精品影院久久| 久久久国产精品麻豆| 最新的欧美精品一区二区| 十八禁人妻一区二区| av网站在线播放免费| 国产片内射在线| 免费在线观看视频国产中文字幕亚洲 | 午夜福利视频精品| 国产无遮挡羞羞视频在线观看| 久久久欧美国产精品| av超薄肉色丝袜交足视频| 午夜激情久久久久久久| 欧美国产精品va在线观看不卡| 建设人人有责人人尽责人人享有的| 80岁老熟妇乱子伦牲交| 麻豆av在线久日| 国产激情久久老熟女| 老司机深夜福利视频在线观看 | 国产精品免费大片| 国产老妇伦熟女老妇高清| 亚洲国产毛片av蜜桃av| 少妇裸体淫交视频免费看高清 | 免费在线观看视频国产中文字幕亚洲 | 汤姆久久久久久久影院中文字幕| 亚洲国产中文字幕在线视频| 欧美国产精品va在线观看不卡| 99久久人妻综合| 久久av网站| 超色免费av| 男女高潮啪啪啪动态图| 国产亚洲av高清不卡| 一本—道久久a久久精品蜜桃钙片| 啦啦啦在线免费观看视频4| av免费在线观看网站| 精品国产一区二区三区四区第35| 在线精品无人区一区二区三| 国产精品偷伦视频观看了| 青春草亚洲视频在线观看| 亚洲欧美日韩另类电影网站| 成年动漫av网址| 亚洲精品中文字幕一二三四区 | 一区二区三区乱码不卡18| 国产在线一区二区三区精| 亚洲精品美女久久av网站| 亚洲人成77777在线视频| 永久免费av网站大全| 国产成人免费观看mmmm| 精品久久久精品久久久| 巨乳人妻的诱惑在线观看| 亚洲国产精品一区二区三区在线| 久久久国产一区二区| 亚洲国产精品成人久久小说| 丁香六月天网| 成年美女黄网站色视频大全免费| 国产极品粉嫩免费观看在线| 亚洲欧美日韩高清在线视频 | 男女床上黄色一级片免费看| 亚洲熟女精品中文字幕| 精品少妇久久久久久888优播| 中文字幕制服av| 岛国毛片在线播放| 视频区图区小说| 热re99久久国产66热| 乱人伦中国视频| 99国产综合亚洲精品| 可以免费在线观看a视频的电影网站| 岛国在线观看网站| 一区福利在线观看| 男女边摸边吃奶| av天堂久久9| 欧美成人午夜精品| 另类亚洲欧美激情| 老司机影院毛片| 日本一区二区免费在线视频| 日日爽夜夜爽网站| 久久精品国产a三级三级三级| 国产男女超爽视频在线观看| 十分钟在线观看高清视频www| 黄色毛片三级朝国网站| 男人舔女人的私密视频| 国产一区二区三区在线臀色熟女 | 国产xxxxx性猛交| 精品久久久久久久毛片微露脸 | 曰老女人黄片| 久久久欧美国产精品| 久久九九热精品免费| 精品国产乱子伦一区二区三区 | 麻豆国产av国片精品| 久久国产精品人妻蜜桃| 不卡一级毛片| 啦啦啦 在线观看视频| 久久精品亚洲av国产电影网| 人人妻人人添人人爽欧美一区卜| 久久久久久久大尺度免费视频| www.av在线官网国产| 少妇人妻久久综合中文| av电影中文网址| 亚洲精品国产区一区二| www.av在线官网国产| 操美女的视频在线观看| 热99国产精品久久久久久7| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 天堂8中文在线网| 亚洲国产成人一精品久久久| 丝袜美腿诱惑在线| 三级毛片av免费| 国产成+人综合+亚洲专区| 青春草视频在线免费观看| 1024视频免费在线观看| 中文字幕最新亚洲高清| 好男人电影高清在线观看| 成年美女黄网站色视频大全免费| 丰满人妻熟妇乱又伦精品不卡| 日韩中文字幕欧美一区二区| 19禁男女啪啪无遮挡网站| 成人国语在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 欧美一级毛片孕妇| 国产精品一区二区精品视频观看| 久久精品国产亚洲av香蕉五月 | 亚洲国产精品一区二区三区在线| 亚洲av电影在线观看一区二区三区| 国产一级毛片在线| 日韩视频一区二区在线观看| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看 | 免费人妻精品一区二区三区视频| 久久国产精品人妻蜜桃| 国产在线一区二区三区精| 永久免费av网站大全| 国产成人av激情在线播放| 涩涩av久久男人的天堂| 日韩人妻精品一区2区三区| 淫妇啪啪啪对白视频 | 精品一品国产午夜福利视频| 久久狼人影院| 久久久精品国产亚洲av高清涩受| 黑人欧美特级aaaaaa片| 亚洲av电影在线观看一区二区三区| 欧美一级毛片孕妇| 真人做人爱边吃奶动态| 超碰成人久久| 日本欧美视频一区| videosex国产| 中文字幕色久视频| 大片免费播放器 马上看| 国产成人欧美| 国产在线免费精品| 精品久久久久久电影网| 精品少妇内射三级| 国产深夜福利视频在线观看| 国产精品久久久av美女十八| 免费观看av网站的网址| 国产片内射在线| 亚洲第一欧美日韩一区二区三区 | 一二三四社区在线视频社区8| 91国产中文字幕| 成人影院久久| 亚洲三区欧美一区| 99精品欧美一区二区三区四区| 丰满饥渴人妻一区二区三| 久久久久久免费高清国产稀缺| 涩涩av久久男人的天堂| 女性生殖器流出的白浆| 国产成人影院久久av| 国产成人av教育| 久久99热这里只频精品6学生| 亚洲国产欧美日韩在线播放| 欧美日韩黄片免| 人妻一区二区av| av超薄肉色丝袜交足视频| 亚洲黑人精品在线| 91麻豆av在线| 国产老妇伦熟女老妇高清| 无遮挡黄片免费观看| 久久毛片免费看一区二区三区| 久久九九热精品免费| 国精品久久久久久国模美| 日本91视频免费播放| av超薄肉色丝袜交足视频| 中文精品一卡2卡3卡4更新| av不卡在线播放| 精品人妻1区二区| 亚洲中文av在线| 桃红色精品国产亚洲av| 啦啦啦在线免费观看视频4| 中文字幕制服av| 岛国毛片在线播放| 精品久久久久久电影网| 老司机影院成人| 十八禁高潮呻吟视频| 一个人免费在线观看的高清视频 | 日本av手机在线免费观看| av免费在线观看网站| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久人妻精品电影 | 大香蕉久久成人网| √禁漫天堂资源中文www| 亚洲一区中文字幕在线| 宅男免费午夜| 这个男人来自地球电影免费观看| av在线播放精品| 亚洲专区中文字幕在线| 十八禁网站免费在线| 久久免费观看电影| 国产欧美日韩综合在线一区二区| 一级毛片电影观看| 少妇 在线观看| 美女高潮喷水抽搐中文字幕| 亚洲七黄色美女视频| 欧美人与性动交α欧美精品济南到| 丝袜美足系列| 黄色 视频免费看| 亚洲精品中文字幕在线视频| 亚洲精品美女久久久久99蜜臀| 久9热在线精品视频| 汤姆久久久久久久影院中文字幕| av国产精品久久久久影院| 在线观看www视频免费| 高清视频免费观看一区二区| 国产黄色免费在线视频| 女人精品久久久久毛片| 脱女人内裤的视频| 欧美在线黄色| 国产成人精品无人区| 国产成人av教育| 女性被躁到高潮视频| 精品人妻熟女毛片av久久网站| 午夜福利在线免费观看网站| 99久久国产精品久久久| 亚洲 欧美一区二区三区| 亚洲国产精品成人久久小说| 欧美精品高潮呻吟av久久| 天天操日日干夜夜撸| 熟女少妇亚洲综合色aaa.| 人妻人人澡人人爽人人| 精品视频人人做人人爽| 黄片大片在线免费观看| 免费在线观看日本一区| 伊人久久大香线蕉亚洲五| 99精国产麻豆久久婷婷| 亚洲伊人久久精品综合| 50天的宝宝边吃奶边哭怎么回事| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美精品自产自拍| www.熟女人妻精品国产| 12—13女人毛片做爰片一| av有码第一页| 老司机午夜福利在线观看视频 | 正在播放国产对白刺激| 国产精品国产三级国产专区5o| 热99久久久久精品小说推荐| 亚洲精品久久久久久婷婷小说| 日日夜夜操网爽| 亚洲国产毛片av蜜桃av| 18在线观看网站| 国产免费视频播放在线视频| 中文字幕精品免费在线观看视频| 国产在线一区二区三区精| 国产av精品麻豆| 老司机福利观看| 亚洲五月色婷婷综合| 久久中文看片网| 如日韩欧美国产精品一区二区三区| 美女福利国产在线| 男人添女人高潮全过程视频| 国产有黄有色有爽视频| 欧美一级毛片孕妇| 777久久人妻少妇嫩草av网站| 国产欧美亚洲国产| 操美女的视频在线观看| 超碰成人久久| 他把我摸到了高潮在线观看 | 黄频高清免费视频| 国产男女内射视频| 动漫黄色视频在线观看| 90打野战视频偷拍视频| 中文字幕色久视频| 色老头精品视频在线观看| www.999成人在线观看| 久久香蕉激情| 97人妻天天添夜夜摸| 一本一本久久a久久精品综合妖精| 女人精品久久久久毛片| 黄色视频在线播放观看不卡| 十八禁网站免费在线| 亚洲欧美精品自产自拍| 操美女的视频在线观看| 我要看黄色一级片免费的| 国产不卡av网站在线观看| 99热国产这里只有精品6| 夜夜骑夜夜射夜夜干| 一区福利在线观看| 国产成人影院久久av| 久久精品国产综合久久久| 亚洲国产毛片av蜜桃av| 色94色欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 秋霞在线观看毛片| 在线天堂中文资源库| 一进一出抽搐动态| 午夜日韩欧美国产| 久久精品国产亚洲av香蕉五月 | 9色porny在线观看| 热re99久久精品国产66热6| 亚洲av日韩精品久久久久久密| 如日韩欧美国产精品一区二区三区| 国产成人精品久久二区二区免费| a 毛片基地| 亚洲精品第二区| 国产伦理片在线播放av一区| 男人操女人黄网站| 欧美 亚洲 国产 日韩一| 国产不卡av网站在线观看| 亚洲av男天堂| 老汉色∧v一级毛片| 日韩欧美免费精品| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| 桃红色精品国产亚洲av| 黑人操中国人逼视频| 午夜福利一区二区在线看| 成人手机av| 男女高潮啪啪啪动态图| 咕卡用的链子| 亚洲国产欧美日韩在线播放| 性高湖久久久久久久久免费观看| 日本一区二区免费在线视频| 日韩免费高清中文字幕av| 悠悠久久av| 在线观看人妻少妇| 免费高清在线观看日韩| 极品人妻少妇av视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩国产mv在线观看视频| 日韩一区二区三区影片| 免费观看av网站的网址| 高潮久久久久久久久久久不卡| 一个人免费看片子| 久久久久国内视频| 日日夜夜操网爽| www.自偷自拍.com| 视频区欧美日本亚洲| 18禁裸乳无遮挡动漫免费视频| 超碰成人久久| 国产又爽黄色视频| 交换朋友夫妻互换小说| svipshipincom国产片| 久久久精品区二区三区| 亚洲欧美精品自产自拍| 亚洲精品久久午夜乱码| 亚洲全国av大片| 国产精品自产拍在线观看55亚洲 | 爱豆传媒免费全集在线观看| 亚洲av男天堂| 亚洲 欧美一区二区三区| 国产在线观看jvid| a在线观看视频网站| 看免费av毛片| 纯流量卡能插随身wifi吗| 国产成人精品无人区| 精品国产乱子伦一区二区三区 | 99香蕉大伊视频| 91精品国产国语对白视频| www.自偷自拍.com| 99国产综合亚洲精品| 国产高清国产精品国产三级| av在线app专区| 人妻一区二区av| 男女之事视频高清在线观看| 成人手机av| 精品卡一卡二卡四卡免费| 成年人午夜在线观看视频| 亚洲av日韩精品久久久久久密| 在线观看免费午夜福利视频| 精品卡一卡二卡四卡免费| 热99久久久久精品小说推荐| 免费观看a级毛片全部| 欧美人与性动交α欧美软件| 女人被躁到高潮嗷嗷叫费观| 俄罗斯特黄特色一大片| 两个人看的免费小视频| 成人av一区二区三区在线看 | 欧美中文综合在线视频| 亚洲精品国产av蜜桃| 久久精品国产亚洲av高清一级| 啦啦啦中文免费视频观看日本| 国产福利在线免费观看视频| 在线观看免费午夜福利视频| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 亚洲美女黄色视频免费看| 国产精品99久久99久久久不卡| 久久亚洲精品不卡| 久久精品成人免费网站| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人色综图| 久久精品亚洲av国产电影网| 窝窝影院91人妻| 欧美变态另类bdsm刘玥| 老司机午夜十八禁免费视频| 狂野欧美激情性bbbbbb| 一二三四社区在线视频社区8| 久久九九热精品免费| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av| 50天的宝宝边吃奶边哭怎么回事| 日本91视频免费播放| 欧美日韩一级在线毛片| 热re99久久精品国产66热6| 久久天躁狠狠躁夜夜2o2o| netflix在线观看网站| 丝袜喷水一区| 桃红色精品国产亚洲av| 侵犯人妻中文字幕一二三四区| 啦啦啦 在线观看视频| 高潮久久久久久久久久久不卡| 91麻豆精品激情在线观看国产 | 啪啪无遮挡十八禁网站| 国产又爽黄色视频| 亚洲人成电影免费在线| 亚洲欧美激情在线| 这个男人来自地球电影免费观看| 一边摸一边做爽爽视频免费| 亚洲一区二区三区欧美精品| 国产精品国产三级国产专区5o| a级毛片在线看网站| 国产免费一区二区三区四区乱码| 国产一区二区激情短视频 | 亚洲成人免费av在线播放| 69精品国产乱码久久久| 久久久久久人人人人人| 欧美人与性动交α欧美精品济南到| 每晚都被弄得嗷嗷叫到高潮| 国产av又大| 丝袜在线中文字幕| tocl精华| 亚洲国产精品成人久久小说| 亚洲精品中文字幕一二三四区 | 在线 av 中文字幕| 在线看a的网站| 亚洲av成人一区二区三| 日韩,欧美,国产一区二区三区| 久久久久精品国产欧美久久久 | 欧美精品一区二区大全| 午夜日韩欧美国产| 人人妻人人澡人人爽人人夜夜| 两个人看的免费小视频| 国产精品国产av在线观看| 大片电影免费在线观看免费| 国产野战对白在线观看| 日韩有码中文字幕| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区精品| 婷婷成人精品国产| 久久精品亚洲av国产电影网| 热re99久久精品国产66热6| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 视频区图区小说| 日韩精品免费视频一区二区三区| 看免费av毛片| 狠狠狠狠99中文字幕| 亚洲中文字幕日韩| 国产区一区二久久| 亚洲第一青青草原| av电影中文网址| 18在线观看网站| 国产精品影院久久| 多毛熟女@视频| 国产亚洲欧美在线一区二区| 精品少妇内射三级| 亚洲激情五月婷婷啪啪| 久久精品国产a三级三级三级| 91麻豆av在线| 欧美日本中文国产一区发布| 亚洲成人手机| 亚洲一区二区三区欧美精品| 日韩制服丝袜自拍偷拍| 国产男女内射视频| 美女高潮到喷水免费观看| 热99国产精品久久久久久7| 大香蕉久久成人网| 精品亚洲成国产av| 国产高清videossex| 在线天堂中文资源库| 欧美 亚洲 国产 日韩一| 中文欧美无线码| 天天躁狠狠躁夜夜躁狠狠躁| 搡老乐熟女国产| 国产精品一区二区在线观看99| 777久久人妻少妇嫩草av网站| 久久精品久久久久久噜噜老黄| 精品视频人人做人人爽| 日日爽夜夜爽网站| 电影成人av| 中文字幕制服av| 国产成人啪精品午夜网站| 国产一区二区激情短视频 | 亚洲精品日韩在线中文字幕| 中文字幕制服av| 国产男女内射视频| 国产亚洲欧美在线一区二区| 一级a爱视频在线免费观看| 18禁黄网站禁片午夜丰满| 久久狼人影院| 国产成人免费无遮挡视频| 天天操日日干夜夜撸| 伊人久久大香线蕉亚洲五| www.熟女人妻精品国产| 黑丝袜美女国产一区| 黄网站色视频无遮挡免费观看| 成人国语在线视频| 亚洲精品一二三| 夜夜骑夜夜射夜夜干| 成人黄色视频免费在线看| 日韩 欧美 亚洲 中文字幕| 久久青草综合色| 高清黄色对白视频在线免费看| 在线亚洲精品国产二区图片欧美| 国产成人啪精品午夜网站| 成人亚洲精品一区在线观看| 国产日韩欧美视频二区| 少妇的丰满在线观看| 十八禁网站网址无遮挡| 欧美日韩精品网址| 午夜老司机福利片| 免费少妇av软件| 免费一级毛片在线播放高清视频 | 国产国语露脸激情在线看| 啦啦啦免费观看视频1| 亚洲精品av麻豆狂野| 欧美精品一区二区大全| 99久久人妻综合| 欧美久久黑人一区二区| 男女免费视频国产| 成年av动漫网址| 搡老乐熟女国产| 狠狠婷婷综合久久久久久88av| 免费在线观看影片大全网站| 熟女少妇亚洲综合色aaa.| 视频区欧美日本亚洲| 黄网站色视频无遮挡免费观看| 亚洲第一欧美日韩一区二区三区 | 黄色视频,在线免费观看| 欧美精品亚洲一区二区| 99热网站在线观看| 91精品三级在线观看| 下体分泌物呈黄色| 午夜老司机福利片| 深夜精品福利| 亚洲中文日韩欧美视频| 亚洲欧美一区二区三区黑人| 欧美成人午夜精品| 亚洲人成电影免费在线| 久久久国产欧美日韩av| 久久久久视频综合| 精品人妻在线不人妻| 精品少妇久久久久久888优播| av有码第一页| 99国产精品一区二区三区| 18在线观看网站| 国产高清视频在线播放一区 | 午夜视频精品福利| 热99re8久久精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 中文精品一卡2卡3卡4更新|