• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Barrier Lyapunov functions-based dynamic surface control with tracking error constraints for ammunition manipulator electrohydraulic system

    2021-05-06 12:01:52ShouChengNieLinFangQianLongMiaoChenLingFeiTianQuanZou
    Defence Technology 2021年3期

    Shou-Cheng Nie,Lin-Fang Qian,Long-Miao Chen,Ling-Fei Tian,Quan Zou

    School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,China

    Keywords:Ammunition manipulator Electro-hydraulic system Error constraints Tracking control

    ABSTRACT This paper focuses on the dynamic tracking control of ammunition manipulator system.A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS)with inherent nonlinearities and uncertainties considered was established.To simultaneously suppress the violation of tracking error constraints and the complexity of differential explosion,a barrier Lyapunov functionsbased dynamic surface control(BLF-DSC)method was proposed for the position tracking control of the ammunition manipulator.Theoretical analysis prove the stability of the closed-loop overall system and the tracking error converges to a prescribed neighborhood asymptotically.The effectiveness and dynamic tracking performance of the proposed control strategy is validated via simulation and experimental results.

    1.Introduction

    Ammunition loading is a strenuous job for soldiers to carry a projectile weighting up to 45 kg into the gun bore and accomplish the operation of bayonet-chamber by manpower,especially in poor environments.In order to automate the loading process and provide high rate of fire,the ammunition manipulator is widely used in autoloader system of large caliber howitzer[1,2].

    Motor device and hydraulic cylinder are the two main forms of driving mechanisms for ammunition coordinator.The high power motor drive system is unable to satisfy the requirement of the ammunition manipulator(e.g.the large load inertia and compact installation space[3])with a relatively large size in general[4].On the contrary,the electro-hydraulic servo system is suitable to the ammunition manipulator due to its small size-to-power ratio and large driving force[5].Besides,structural stability of ammunition manipulator is enhanced as a spatial triangle is formed by top carriage,coordinator body and hydraulic cylinder.Compared with motor driving system,the AMEHS has an additional driving arm which decreases the required driving forces with the help of the mounting of hydraulic cylinder.

    However,there are quantities of nonlinearities and uncertainties problems in the ammunition manipulator system.Nonlinearities mainly contain the changes of load,friction and the position relationship between coordinator and cylinder[6].Meanwhile uncertainties consist of leakage,external disturbances,and bulk modulus of the oil etc.[7].To address above-mentioned nonlinearities and uncertainties which occur in industrial robots and manipulators[8],hydraulic load simulator[9],automotive active suspensions[10],and all kinds of engineering machineries[11],several advanced control theories were presented by scholars who applied themselves to the hard work.

    Universally,backstepping is one of the most widely used methods dealing with nonlinear control of electro-hydraulic servo systems[12].Nevertheless,the phenomenon of“explosion of terms”associated with backstepping method is unavoidable because of the numerical differentiation.With parametric uncertainties considered,a nonsmooth dynamic surface was designed by Duraiswamy et al.[13]to overcome the repeatedly calculated derivative of virtual control by means of a stabilizing low-pass filter.With both parametric uncertainties and uncertain nonlinearities considered,Yao et al.[5,14,15]developed a critical adaptive robust control(ARC)theory which combined adaptive and robust control.The theory and experiments showed prescribed transient performance and desired final tracking accuracy were guaranteed by the ARC theory.In order to suppress unmatched uncertainties in electro-hydraulic servo systems,all kinds of observers such as disturbance observer[16],high-gain disturbance observer[17],extended disturbance observer[18]and extended state observer[19]were proposed to improve the control accuracy.

    Recently,the barrier Lyapunov function(BLF)was widely used to prevent the state and output constraint violation due to physical or performance limitations in nonlinear control systems.A BLF is a continuous and positive definite scalar function which has continuous first-order partial derivatives.And the boundedness of the BLF is derived by choosing an appropriate control input to make its time derivative negative semidefinite.Ngo et al.[20]firstly introduced a barrier-function to suppress the propagation of the errors at each stage of the backstepping procedure.Subsequently,Tee et al.[21,22]and Ren et al.[23]applied the BLF to output constraint and achieved asymptotic tracking without violation of the constraint.Aiming at nonlinear systems in strict feedback form,Li et al.[23]and Li et al.[24]were devoted to full state constrains with the help of the BLF.An innovative work which introduced the BLF into nonlinear stochastic control systems was carried out by Liu et al.[25],and all the states of the stochastic systems were not to transgress their constraints.In time-varying nonlinear systems,Liu et al.[26]and Wang et al.[27]utilized the BLF to ensure the boundedness of unknown states and achieved asymptotic convergence.Wu et al.[28]presented a Control Lyapunov-Barrier Function-based model predictive control method for the stabilization of nonlinear systems with input constraint considered.In order to eliminate the differentiation in backstepping iteration and guarantee the full state constraints,Wang et al.[29]and Zhang et al.[30]combined the dynamic surface control(DSC)and the BLF.Further,the BLF-based dynamic surface control method with full-state error constraints was adopted in electro-hydraulic system by Guo et al.[31].

    Researches did numerious efforts to improve control performance of electro-hydraulic servo systems with the same motion law for hydraulic actuator and load such as translational loads driven by hydro-cylinders[5-7]or rotating loads driven by hydraulic motors[9].Here,the ammunition manipulator driven by a translational cylinder rotates around the trunnion.During the rotating process,both the load and driving arm vary nonlinearly.Considering inherent nonlinearities and uncertainties of electrohydraulic servo systems,it is an ambitious project to ensure the AMEHS tracks the desired trajectory well.In this paper,the mathematical model of electro-hydraulic servo system for ammunition manipulator is constructed.The DSC is applied to replace the derivatives of virtual control variables with the help of stabilizing filter functions during backstepping iteration.The BLF is adopted to prevent the violation of tracking error constraints and guarantee the boundedness of all closed loop signals.Then,a BLF-DSC method is presented for the position tracking control of ammunition coordinator with tracking error constraints.The effectiveness and practicability of the proposed BLF-DSC strategy is verified by simulation and experimental results.

    We discuss the mathematical model and problem formulation and the design procedure and stability proof of the proposed BLFDSC controller in Section 2 and Section 3 respectively.The simulation results are demonstrated in Section 4 followed by the experimental results in Section 5.Finally,the sixth section draws the conclusions.

    2.Mathematical model and problem formulation

    The position map of ammunition manipulator is depicted in Fig.1.The trunnion is fixed at point O.Both ends of hydrauliccylinder are hinged spectacularly with top carriage at point M and coordinator body at point N.The mathematical model was established through theoretical formulation and derivation in this section.

    The load moment balance equation of ammunition manipulator can be presented as

    whereJis the equivalent rotational inertia of the load.αis the angular displacement of ammunition manipulator.The equivalent forceFof hydraulic cylinder is presented asF=P1A1-P2A2.P1andP2represent the pressure inside two chambers of the cylinder.A1andA2represent the piston areas inside two chambers of the cylinder.bis the combined coefficient of modeled damping and viscous friction forces on the cylinder rod.xpis the displacement of the cylinder rod.Gis the equivalent gravity of ammunition manipulator.Tdrepresents the lumped uncertainties due to load variation,unmodeled friction forces,external disturbances and other unmodeled terms.h(α)andhg(α)represent the arm ofFandGrespectively.hg(α)can be presented ashg(α)=rgsin(α+φ-β)whererg=|OA|.φis the angular between OA and ON.βis the angular between OM and the perpendicular OB.

    The distance between two hinge joints of hydraulic cylinder canbe presented as according to the cosine theorem wherer1=|OM|andr2=|ON|.l0represents the initial distance between two hinge joints of hydraulic cylinder.We can deductthrough a derivation of the above formula.In addition,the area formula for triangle is given asThen we haveTherefore,the relationship betweenxpandαcan be presented as

    According to the liquid flow continuity equation,the actuator of dynamic is given by Ref.[32].

    whereQ1andQ2are the supply flow rate of the forward chamber and the return flow of the return chamber,respectively.CipandCepare the coefficients of internal leakage and external leakage respectively.βeis the effective bulk modulus.

    The volumes of the two chambers of the cylinder can be presented as whereV01andV02are the initial volumes of the two chambers of the cylinder including the hose volume from the valve to the cylinder.

    The forward and return flow through the servo-proportional directional valve can be presented as

    wherekqvis the flow gain coefficient of the valve,uis the control voltage.R1andR2are given as

    wherePsis the supply pressure.Pris the return pressure.And

    Then,equation(3)can be abbreviated as

    Define the state variables x= [x1,x2,x3]T=[α,˙α,P1A1-P2A2]T.On the basis of equations(1)-(7),the entire state space can be written as

    Remark 1.The practical system parametersJ,b,βe,V01,V02,Cip,Cepare always treated as uncertain positive constants.

    The parameter uncertainties are summarized as ΔhJ(x1),Δhg(x1),ΔB,Δg(x)andΔf(x).The state space form can be rewritten as

    whered2(t)=ΔhJ(x1)x3-ΔBh2(x1)x2-GΔhg(x1)+d1(t),d3(t)=Δg(x)u-Δf(x).

    Assumption 1.The uncertaintiesd2(t)andd3(t)are bounded by|d2(t)|≤D2and|d3(t)|≤D3whereD2andD3are positive constants.

    In this paper,parameter uncertainties and unmodeled lumped uncertainties are integrated asd2(t)andd3(t).The hydraulic uncertain parameters and unmodeled lumped uncertainties in practical AMEHS are all bounded[31].Besides,actual system states such asx1,x2,P1andP2are also physically bounded[17].Consequently,uncertaintiesd2(t)andd3(t)are bounded,which means that Assumption 1 is physically reasonable.

    Assumption 2.The functiong(x)satisfies 0<gmin≤g(x)≤gmaxwheregminandgmaxare positive constants.

    3.Controller design

    The state errorsei(i=1,2,3)of the AMEHS are defined as

    wherex1drepresents desired trajectory,x2dandx3drepresent the virtual control variables to be designed later.

    The symmetric BLF is adopted to restrain the tracking errore1-which is given as

    wherekc1represents the allowable accuracy range of the tracking error andkc1>0.

    The derivative ofe1with respect to time is given by

    Design the virtual control variablex2d

    wherek1is a positive control gain.

    Then,e2can be presented as

    The transfer functionGe(s)[5]frome1toe2is given by

    From equation(11),we havek2c1-e21>0.Thus the transfer functionGe(s)is stable,which means that to makee1small or converging to zero is equivalent to makinge2small or converging to zero.

    Similar to equation(11),e2is restrained with the BLF by

    wherekc2represents the allowable range of the tracking speed error andkc2>0.

    Assumption 3.[29,31]:For?kc1>0,there exist positive constantsXl,Xh,X1,X2,δx1d,such that the reference signalx1dand its time derivatives˙x1d,¨x1dsatisfyXl≤x1d≤Xh,|˙x1d|≤X1,|¨x1d|≤X2,?t≥0,implying that these variables are continuous and available in a compact setΩx1d:=

    Lemma 1.[21]:For any positive constantskc1,kc2,letΩe:={e??:|ei|<kci}(i=1,2)be open sets.Consider the system

    whereη:=[ω,ei]T∈Ωeandh:?+×Ωe→?3is piecewise continuous intand locally Lipschitz inΩe,uniformly int,on?+×Ωe.Suppose that there exist continuous differentiable and positive definite functionsU:?3→?+andV(e):Ωe→?+in their respective domains,such that

    whereγ1andγ2are classK∞functions.Let V(η):=V(e)+U(ω)andei(0)belong to the setΩe.If the flowing inequality holds

    wherecandδare positive constants,thene(t)remain in the open setΩe,?t≥0.

    Lemma 2.[33]:For all|ei|<kci,kci>0(i=1,2),the following inequality holds

    Theorem 1.Considering the system(9),(10),(11)and(16),suppose the BLF-DSC controller for the AMEHS is given by

    then the tracking errore1enters its convergence domain in the finite timet>0 and stays within the bounded ballBr

    whereεandλare positive constants,V(0)is the initial value of the hypersphereH

    Proof.

    Step 1:Select the candidate BLF of the first subsystem[21].

    The derivative ofV1with respect to time is given by

    Substituting(12),(14),(20)into(24),˙V1yields

    According to Lemma 2,the Eq.(25)can be written as

    It is obvious that the differentiation of the virtual control variablex2dis essential in the backstepping iteration.Thus,researches usually adopted the DSC to prevent the differential computation ofx2din this step[29-31].In fact,the calculation of˙x2dis easy.In addition,a boundary layer error is introduced because of the filtering calculation.

    Step 2:The derivative ofe2with respect to time is given by

    To prevent the explosion of the complex differential calculation forin Eq.(20),a stable first-order filter is given as follows

    whereτ3is the positive time constant of the filter.

    Define the boundary layer error as

    Then,the derivative ofx3dcan be written as

    The derivative ofz3with respect to time is given by

    Select the candidate BLF of the second subsystem

    The derivative ofV2with respect to time is given by

    whereσ2>0.

    Applying Young’s inequality,the following inequalities are given as

    whereσi>0(i=1,2,3).

    By Eq.(34),Eq.(33)can be rewritten as

    According to Lemma 2

    Step 3:The derivative ofe3with respect to time is given by

    Fig.2.Co-simulation system of the AMEHS.

    Table 1Parameters of the system.

    The control input is designed as

    Select the candidate BLF of the system

    Fig.3.Schematic diagram of the BLF-DSC controller.

    Fig.4.Desired tracking position.

    Fig.5.Tracking errors of simulation without disturbances.

    The derivative ofVwith respect to time is given by

    wherek3>0.

    Fig.6.Tracking speed errors of simulation without disturbances.

    Fig.7.Control inputs of simulation without disturbances.

    According to Eq.(42),asymptotic output tracking error of the AMEHS is achieved after a finite timet0by the proposed BLF-DSC controller.Furthermore,all signals are bounded and the closedloop system is stable.

    4.Simulation results

    To verify the performance of the proposed BLF-DSC controller for the AMEHS,the co-simulation system based on MATLAB Simulink/AMESim platform is exhibited in Fig.2.Main physical parameters of the system are given in Table 1.

    Fig.8.Pressures of simulation without disturbances.

    The structure of the BLF-DSC controller shows in Fig.3.The following controller parameters were used:kc1=1°,kc2=60°/s,k1=35,k2=115,k3=850,D2=1000,D3=10,σ2=100,σ3=10,τ2=τ3=1×10-4.

    Furthermore,the simulation performance of the BLF-DSC controller was compared with the traditional PID and DSC controllers[13]which are given as follows.And the desired tracking position shows in Fig.4.

    1)PID controller

    Fig.9.Tracking errors of simulation with disturbances.

    Fig.10.Tracking speed errors of simulation with disturbances.

    Fig.11.Control inputs of simulation with disturbances.

    whereKP=2.75,KI=0.5,KD=0.1.

    2)DSC controller

    Fig.12.Pressures of simulation with disturbances.

    Fig.13.Trajectory of disturbances.

    Fig.14.Experimental setup.

    Fig.15.Tracking errors of experiment.

    Fig.16.Control inputs of experiment.

    wherek1=25k2=15k3=120D2=1000D3=10τ2=τ3=1×10-4,sgn(*)is a sign function given as sgn(*)={-1if*<0[-1,+1]if*=0+1if*>0.

    4.1.Simulation results without disturbances

    The comparative simulation results of three methods are shown in Figs.5-8.Fig.5 shows the tracking errors of three controllers.The tracking error of the proposed BLF-DSC controller was kept within±0.2°,which is better than the DSC controller with an error of±0.6°and the PID controller with an error of±1.6°.Figs.5 and 6 indicate the simulation results of the BLF-DSC controller satisfied the constraints|e1|<kc1=1°,|e2|<kc2=60°/s.

    Fig.17.Pressures of experiment.

    Fig.7 shows the control inputs of three controllers.There is a remarkable control input delay of the PID controller comparing with the other two methods.The control input of the DSC controller remains a comparatively smaller delay than the BLF-DSC in Fig.7.The curves in Figs.5 and 7 reveal that the tracking errors of the DSC and the BLF-DSC are nearly equal when the control inputs of the two controllers are equal.Where the control input of the DSC delays more markedly than the BLF-DSC,the tracking error of the DSC is larger.The pressuresP1andP2of the BLF-DSC method are shown in Fig.8,which indicates there was pressure fluctuation in the initial stage and the pressures varied steadily in the rest stage.

    4.2.Simulation results with disturbances

    The uncertainties of the AMEHS mainly consist ofd2(t)andd3(t).However,d3(t)plays a very small role when ammunition manipulator moves rapidly.To avoid repeatedly complicated description,there only exhibits the simulation results with disturbanced2(t).The comparative simulation results of three methods with disturbanced2(t)in Fig.13 are shown in Figs.9-12.

    Fig.9 shows the tracking errors of three controllers with external disturbances.The tracking errors of the BLF-DSC and PID method were still kept within±0.2°and±1.6°respectively,while the tracking errors of the DSC method increased to±0.9°.As shown in Fig.10,the tracking speed errors of the DSC controller trembled evidently during the tracking process because of external disturbances.Comparing Figs.10 and 6,there exist inherent trembles in the DSC controller when the motion direction of the cylinder changes because of the sign function sgn(*),and it’s obvious that the initial motion is a special case of movement direction changing.To eliminate above chatters,the sign function is taken place by the damping termsin the BLF-DSC method.Fig.11 shows the control inputs of three controllers under disturbances.Pressure change of the BLF-DSC controller was shown in Fig.12.

    5.Experimental results

    The photograph of the experimental setup is shown in Fig.14.The AMEHS was controlled by a high frequency response servoproportional directional valve(Atos:DLHZO)whose response time to±100%step signal is 10 ms with spool position transducer.The positionx1was measured by the 16 bit angle encoder(BMPD39016S)and the statex2was calculated by differentiating the position.The pressures were directly measured by pressure transducers(ISPH-250/I-M-CE)with the measuring range of 0-25 MPa.The control algorithm in the real-time operation was carried out by a high-performance PLC(B&R:X20CP1585)whose main frequency reaches 1 GHz.A/D conversion was handled by X20AI4622 module and D/A conversion was handled by X20AO4632 module.The communication between host computer and PLC was achieved by the Ethernet POWERLINK interface.And PLC communicated with angle encoder by CANopen interface.The sampling rate of the system was 1 kHz.

    The experimental position tracking errors of three controllers were shown in Fig.15.The tracking error of the BLF-DSC method was kept within±0.3°,while the tracking errors of the DSC and PID method were kept within±0.7°and±1.6°respectively.In addition,the tracking error of the DSC controller trembled as the cylinder changed the motion direction.Fig.16 shows the control input of the BLF-DSC controller in experiments.The experimental pressures dynamics were shown in Fig.17.There exists pressure oscillation when the motion direction of the cylinder changes.

    Comparative analysis of the simulation and experimental results indicate that:Firstly,the BLF-DSC controller holds a smaller tracking error range than the other two controllers.Secondly,the DSC controller is of inherent trembles as the motion direction of the cylinder changes.Last but not the least,the pressures dynamic of two chambers in the cylinder are up to the system states such as uncertain external disturbances,current location of ammunition manipulator,initial values of the system states,leakages and some other umodeled uncertainties.

    6.Conclusion

    The BLF-DSC strategy was designed to improve the position tracking performance of the AMEHS with its tracking error constraints.Based on nonlinear state space model of the AMEHS established in this paper,the BLF and the DSC were combined to prevent the constraints violation of tracking errors and the explosion of differentiation calculation in backstepping iteration in the meantime.The stability and convergence of the closed-loop overall system were theoretically proved.It was shown that desired position tracking performance was achieved and the proposed method guaranteed control accuracy with tracking error constraints via simulations and experiments.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors acknowledge the National Natural Science Foundation of China,China;Grant ID:11472137.

    韩国av一区二区三区四区| 亚洲性夜色夜夜综合| 母亲3免费完整高清在线观看| 精品一区二区三区四区五区乱码| 国产激情偷乱视频一区二区| 夜夜看夜夜爽夜夜摸| 亚洲自拍偷在线| www.999成人在线观看| 岛国在线免费视频观看| 成人av在线播放网站| 国产精品永久免费网站| 在线观看66精品国产| 在线视频色国产色| а√天堂www在线а√下载| 国内精品久久久久久久电影| 久久精品国产综合久久久| 午夜两性在线视频| 久久婷婷人人爽人人干人人爱| 18禁美女被吸乳视频| 在线看三级毛片| 免费一级毛片在线播放高清视频| 亚洲av成人不卡在线观看播放网| 嫩草影院精品99| 免费在线观看黄色视频的| 50天的宝宝边吃奶边哭怎么回事| 少妇粗大呻吟视频| 色综合站精品国产| aaaaa片日本免费| 国产av麻豆久久久久久久| 欧美日韩黄片免| 久久天堂一区二区三区四区| 18禁裸乳无遮挡免费网站照片| svipshipincom国产片| 欧美精品啪啪一区二区三区| 亚洲国产精品sss在线观看| 久久久精品欧美日韩精品| 非洲黑人性xxxx精品又粗又长| 人妻丰满熟妇av一区二区三区| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区三| 99久久无色码亚洲精品果冻| 一本精品99久久精品77| 国产一区二区三区视频了| 免费在线观看完整版高清| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av| 在线观看一区二区三区| 久久久久国内视频| 精品久久久久久久久久免费视频| 少妇粗大呻吟视频| 我要搜黄色片| 又爽又黄无遮挡网站| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网| 日本a在线网址| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 亚洲成人精品中文字幕电影| 亚洲国产欧美一区二区综合| 精品久久蜜臀av无| 欧美日韩瑟瑟在线播放| 国产精品久久久久久精品电影| 男女视频在线观看网站免费 | 国产精品98久久久久久宅男小说| 精品乱码久久久久久99久播| 女警被强在线播放| 老司机深夜福利视频在线观看| 午夜福利18| 香蕉丝袜av| 亚洲一区高清亚洲精品| 亚洲色图av天堂| avwww免费| a级毛片在线看网站| 国产久久久一区二区三区| 亚洲最大成人中文| 免费av毛片视频| 中国美女看黄片| 亚洲第一电影网av| 亚洲中文字幕一区二区三区有码在线看 | 好男人电影高清在线观看| 久久久久久久午夜电影| 中出人妻视频一区二区| 小说图片视频综合网站| www.999成人在线观看| 成人av在线播放网站| 一级毛片高清免费大全| 亚洲真实伦在线观看| 叶爱在线成人免费视频播放| 欧洲精品卡2卡3卡4卡5卡区| 黄色 视频免费看| 免费高清视频大片| 国产亚洲欧美98| 久久精品国产综合久久久| 2021天堂中文幕一二区在线观| or卡值多少钱| 91麻豆av在线| 夜夜看夜夜爽夜夜摸| 亚洲国产欧洲综合997久久,| xxxwww97欧美| 婷婷精品国产亚洲av| 丰满人妻一区二区三区视频av | 国产91精品成人一区二区三区| 91国产中文字幕| 50天的宝宝边吃奶边哭怎么回事| 此物有八面人人有两片| 国产高清视频在线观看网站| 好男人在线观看高清免费视频| 久久久久国产一级毛片高清牌| 国产激情偷乱视频一区二区| 欧美av亚洲av综合av国产av| 国产精华一区二区三区| netflix在线观看网站| 欧美av亚洲av综合av国产av| 禁无遮挡网站| 亚洲av片天天在线观看| 国内揄拍国产精品人妻在线| 成年人黄色毛片网站| 淫妇啪啪啪对白视频| 亚洲va日本ⅴa欧美va伊人久久| 国产日本99.免费观看| 国产精品美女特级片免费视频播放器 | 国产精品香港三级国产av潘金莲| 床上黄色一级片| 亚洲狠狠婷婷综合久久图片| 十八禁人妻一区二区| 精品国产乱码久久久久久男人| 久久亚洲真实| 非洲黑人性xxxx精品又粗又长| 中文字幕久久专区| 在线观看舔阴道视频| 免费无遮挡裸体视频| 亚洲成人久久性| 国产精品久久久久久精品电影| 国产伦人伦偷精品视频| 国产成人aa在线观看| 91大片在线观看| 久久精品亚洲精品国产色婷小说| 久久国产精品影院| 村上凉子中文字幕在线| or卡值多少钱| 成熟少妇高潮喷水视频| 老司机靠b影院| 听说在线观看完整版免费高清| 国产单亲对白刺激| 久久国产精品影院| 国产精品日韩av在线免费观看| xxxwww97欧美| 精品一区二区三区视频在线观看免费| 久久久久久久午夜电影| 久久久久精品国产欧美久久久| 久久婷婷成人综合色麻豆| 九九热线精品视视频播放| 狂野欧美激情性xxxx| 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区| 精品欧美一区二区三区在线| 动漫黄色视频在线观看| 一个人免费在线观看电影 | 亚洲一区二区三区不卡视频| 国产91精品成人一区二区三区| 免费在线观看黄色视频的| 又黄又粗又硬又大视频| 十八禁网站免费在线| aaaaa片日本免费| 欧美日韩精品网址| АⅤ资源中文在线天堂| 校园春色视频在线观看| 亚洲专区中文字幕在线| 亚洲国产欧美一区二区综合| netflix在线观看网站| 国产主播在线观看一区二区| 热99re8久久精品国产| 搞女人的毛片| 国产午夜精品久久久久久| 国产精品亚洲av一区麻豆| 国产精品免费视频内射| 久久中文字幕人妻熟女| 黄色a级毛片大全视频| 日本五十路高清| 日本 欧美在线| 丁香六月欧美| 国产av一区二区精品久久| 99精品久久久久人妻精品| 日韩国内少妇激情av| 精品国产美女av久久久久小说| 亚洲一卡2卡3卡4卡5卡精品中文| 曰老女人黄片| 亚洲狠狠婷婷综合久久图片| 久久久精品大字幕| 在线观看一区二区三区| 很黄的视频免费| 国产精品一区二区精品视频观看| 丝袜美腿诱惑在线| 国产精品电影一区二区三区| 国产一区二区在线观看日韩 | 亚洲18禁久久av| 99久久精品国产亚洲精品| 久热爱精品视频在线9| 国产黄a三级三级三级人| 精品日产1卡2卡| 国产午夜福利久久久久久| 免费看美女性在线毛片视频| 中文字幕久久专区| 精品国产美女av久久久久小说| 中文字幕精品亚洲无线码一区| 国产精品国产高清国产av| 亚洲国产欧洲综合997久久,| 国产久久久一区二区三区| 好男人电影高清在线观看| 一级片免费观看大全| 99国产精品99久久久久| 国产精品免费一区二区三区在线| 国产v大片淫在线免费观看| 精品一区二区三区视频在线观看免费| 欧美zozozo另类| 脱女人内裤的视频| 久久天堂一区二区三区四区| 婷婷丁香在线五月| 日韩欧美国产一区二区入口| 亚洲成av人片免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美人成| 日本一本二区三区精品| 欧美在线黄色| 操出白浆在线播放| 国产午夜福利久久久久久| 国产精品av久久久久免费| 欧美大码av| 精品电影一区二区在线| 亚洲成av人片免费观看| 亚洲欧美精品综合一区二区三区| 午夜福利免费观看在线| 国内精品久久久久精免费| 国产一区二区在线观看日韩 | 免费高清视频大片| www.熟女人妻精品国产| 亚洲乱码一区二区免费版| 在线观看免费日韩欧美大片| www日本在线高清视频| 长腿黑丝高跟| 日韩欧美国产在线观看| 久久国产乱子伦精品免费另类| 青草久久国产| 欧美精品亚洲一区二区| 日本免费a在线| 欧美一级a爱片免费观看看 | 窝窝影院91人妻| 亚洲国产看品久久| 国产亚洲欧美98| 三级国产精品欧美在线观看 | 日韩欧美在线二视频| 伊人久久大香线蕉亚洲五| 久久天躁狠狠躁夜夜2o2o| 欧美高清成人免费视频www| 免费电影在线观看免费观看| 成人三级做爰电影| 少妇粗大呻吟视频| 嫁个100分男人电影在线观看| 欧美乱码精品一区二区三区| 久久香蕉国产精品| 91大片在线观看| 久久国产乱子伦精品免费另类| 成人手机av| 日韩国内少妇激情av| 亚洲熟妇熟女久久| 欧美大码av| 亚洲国产精品999在线| 免费在线观看黄色视频的| 欧美成人午夜精品| 亚洲av熟女| 亚洲 欧美一区二区三区| 亚洲精品久久成人aⅴ小说| 美女 人体艺术 gogo| 欧美成人午夜精品| 中国美女看黄片| 热99re8久久精品国产| 在线观看66精品国产| 舔av片在线| 最近最新中文字幕大全电影3| 亚洲乱码一区二区免费版| 久久香蕉激情| 久久精品91蜜桃| 欧美日韩乱码在线| 中文字幕av在线有码专区| 国产精品免费一区二区三区在线| 精品久久久久久成人av| 欧美一区二区精品小视频在线| 亚洲五月天丁香| 在线观看舔阴道视频| 亚洲18禁久久av| 亚洲国产中文字幕在线视频| 美女大奶头视频| 可以在线观看的亚洲视频| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 黄色视频,在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 精品国产美女av久久久久小说| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品第一综合不卡| 午夜激情福利司机影院| 男人舔女人的私密视频| 一进一出抽搐动态| 久久香蕉精品热| 亚洲欧美一区二区三区黑人| 欧美乱色亚洲激情| 久久久水蜜桃国产精品网| 法律面前人人平等表现在哪些方面| 国产男靠女视频免费网站| 欧美人与性动交α欧美精品济南到| 精品少妇一区二区三区视频日本电影| 99国产精品一区二区蜜桃av| 欧美性长视频在线观看| 一夜夜www| 日韩欧美在线乱码| 国产亚洲欧美在线一区二区| 日韩大尺度精品在线看网址| 国产成年人精品一区二区| 国内久久婷婷六月综合欲色啪| 久久久国产欧美日韩av| 97超级碰碰碰精品色视频在线观看| 一进一出抽搐gif免费好疼| 久久久久九九精品影院| av福利片在线观看| 久久久久久久精品吃奶| 一本综合久久免费| 国产精品av久久久久免费| 人人妻人人看人人澡| 国产欧美日韩精品亚洲av| 亚洲第一电影网av| 男女做爰动态图高潮gif福利片| 亚洲欧美精品综合久久99| 亚洲乱码一区二区免费版| 18禁黄网站禁片午夜丰满| 夜夜看夜夜爽夜夜摸| 精品久久久久久久末码| 亚洲av五月六月丁香网| 欧美zozozo另类| 香蕉久久夜色| 国产伦人伦偷精品视频| 国产伦在线观看视频一区| 久久精品综合一区二区三区| 一级毛片女人18水好多| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 精品日产1卡2卡| 国产精品久久久av美女十八| 中出人妻视频一区二区| 国产成人系列免费观看| 欧美黄色淫秽网站| 丁香欧美五月| 成人三级做爰电影| 日本 av在线| 熟女少妇亚洲综合色aaa.| 国产一区二区在线观看日韩 | 欧美日韩乱码在线| 亚洲最大成人中文| 国产高清有码在线观看视频 | 麻豆国产97在线/欧美 | 欧美黄色片欧美黄色片| 久久久精品大字幕| 长腿黑丝高跟| 99国产精品99久久久久| 国产精品精品国产色婷婷| 看片在线看免费视频| 亚洲av成人av| 国产精品野战在线观看| 亚洲精品粉嫩美女一区| 免费在线观看日本一区| 亚洲精品粉嫩美女一区| 国产1区2区3区精品| 亚洲18禁久久av| 日本一本二区三区精品| 国产av不卡久久| 精品国内亚洲2022精品成人| 99精品欧美一区二区三区四区| 精品第一国产精品| 十八禁网站免费在线| 欧美最黄视频在线播放免费| 波多野结衣高清作品| 九色国产91popny在线| 亚洲av美国av| 国产成人av激情在线播放| 国产精品,欧美在线| 国产aⅴ精品一区二区三区波| 久久精品国产清高在天天线| 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| 欧美在线黄色| 国产人伦9x9x在线观看| 国产免费av片在线观看野外av| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三| 一本精品99久久精品77| 99热只有精品国产| 窝窝影院91人妻| 90打野战视频偷拍视频| 亚洲av成人一区二区三| 俄罗斯特黄特色一大片| 亚洲国产精品合色在线| 99久久无色码亚洲精品果冻| 久久国产精品影院| 国产av又大| 每晚都被弄得嗷嗷叫到高潮| 18禁黄网站禁片午夜丰满| 999久久久国产精品视频| 亚洲人成伊人成综合网2020| 久久国产乱子伦精品免费另类| 欧美丝袜亚洲另类 | 亚洲人成77777在线视频| 天堂av国产一区二区熟女人妻 | 黑人欧美特级aaaaaa片| 亚洲精品国产精品久久久不卡| 国产1区2区3区精品| 视频区欧美日本亚洲| 成人精品一区二区免费| 性色av乱码一区二区三区2| 久久精品亚洲精品国产色婷小说| 国产高清有码在线观看视频 | 欧美性猛交╳xxx乱大交人| 欧美日韩国产亚洲二区| 两个人视频免费观看高清| 亚洲国产精品合色在线| 又大又爽又粗| 欧美一区二区精品小视频在线| 亚洲人成电影免费在线| 国产精品久久久久久亚洲av鲁大| 可以免费在线观看a视频的电影网站| 国产一区二区在线观看日韩 | 亚洲av熟女| 亚洲午夜精品一区,二区,三区| 国产真人三级小视频在线观看| 欧美丝袜亚洲另类 | av在线天堂中文字幕| 熟妇人妻久久中文字幕3abv| 欧美黑人巨大hd| 日本成人三级电影网站| 久久九九热精品免费| 悠悠久久av| 亚洲欧美激情综合另类| 亚洲成人中文字幕在线播放| 国产人伦9x9x在线观看| 亚洲国产欧美人成| 免费在线观看视频国产中文字幕亚洲| 99久久无色码亚洲精品果冻| 999久久久精品免费观看国产| 51午夜福利影视在线观看| 无限看片的www在线观看| 欧美在线一区亚洲| 国产亚洲精品久久久久久毛片| 成人手机av| 91字幕亚洲| 久久久久久亚洲精品国产蜜桃av| 久久精品夜夜夜夜夜久久蜜豆 | 国产野战对白在线观看| 日韩欧美在线二视频| 深夜精品福利| xxx96com| 亚洲av成人av| 欧美乱码精品一区二区三区| 亚洲国产精品成人综合色| 日韩中文字幕欧美一区二区| 黄色片一级片一级黄色片| 无遮挡黄片免费观看| 成熟少妇高潮喷水视频| 亚洲男人天堂网一区| 黄色毛片三级朝国网站| 听说在线观看完整版免费高清| 又黄又爽又免费观看的视频| 久久午夜亚洲精品久久| 欧美一区二区精品小视频在线| 非洲黑人性xxxx精品又粗又长| 一级a爱片免费观看的视频| 天堂影院成人在线观看| 亚洲精品美女久久久久99蜜臀| 99久久99久久久精品蜜桃| av视频在线观看入口| 在线观看免费视频日本深夜| 午夜免费激情av| 伊人久久大香线蕉亚洲五| 特大巨黑吊av在线直播| 少妇被粗大的猛进出69影院| 免费在线观看日本一区| 我要搜黄色片| 变态另类成人亚洲欧美熟女| 欧美日韩一级在线毛片| 美女午夜性视频免费| 亚洲人成网站高清观看| 丝袜美腿诱惑在线| 亚洲熟女毛片儿| 国产成人av教育| av国产免费在线观看| 成人18禁高潮啪啪吃奶动态图| 久久久国产精品麻豆| 激情在线观看视频在线高清| 国产精华一区二区三区| 久久人人精品亚洲av| 法律面前人人平等表现在哪些方面| 欧美黄色片欧美黄色片| 搡老熟女国产l中国老女人| 人成视频在线观看免费观看| 妹子高潮喷水视频| 少妇的丰满在线观看| 国产91精品成人一区二区三区| 国产精品电影一区二区三区| 国产成人精品久久二区二区91| 精品国产亚洲在线| 久久久久久亚洲精品国产蜜桃av| 国产私拍福利视频在线观看| 天堂av国产一区二区熟女人妻 | 91在线观看av| 中亚洲国语对白在线视频| 亚洲精品在线美女| 女人被狂操c到高潮| 在线免费观看的www视频| 中文字幕高清在线视频| 免费人成视频x8x8入口观看| ponron亚洲| 国产成人欧美在线观看| 丰满人妻一区二区三区视频av | 国内精品久久久久久久电影| 婷婷六月久久综合丁香| 一级毛片高清免费大全| 中亚洲国语对白在线视频| 一区二区三区高清视频在线| 精品日产1卡2卡| 亚洲精品美女久久av网站| 久久久久免费精品人妻一区二区| 久久精品成人免费网站| 男女午夜视频在线观看| 日本在线视频免费播放| 91成年电影在线观看| 国产精品一区二区精品视频观看| 国产真实乱freesex| 欧美在线黄色| 日日爽夜夜爽网站| 51午夜福利影视在线观看| 久久久久久免费高清国产稀缺| 国产亚洲欧美98| 他把我摸到了高潮在线观看| 亚洲欧洲精品一区二区精品久久久| 日韩 欧美 亚洲 中文字幕| 人妻久久中文字幕网| 99re在线观看精品视频| 精品欧美一区二区三区在线| 美女免费视频网站| 夜夜夜夜夜久久久久| 国产一区在线观看成人免费| 特大巨黑吊av在线直播| 久久人人精品亚洲av| 久久久久国产一级毛片高清牌| 精品久久久久久,| 色av中文字幕| 午夜福利欧美成人| 久久久国产成人精品二区| 亚洲成人中文字幕在线播放| 精品日产1卡2卡| 国产一区二区在线观看日韩 | 999精品在线视频| 久久香蕉激情| 日本免费一区二区三区高清不卡| 日本一区二区免费在线视频| 色在线成人网| www国产在线视频色| 国产一区在线观看成人免费| 国产成人啪精品午夜网站| 99久久精品热视频| 高清在线国产一区| 黄片小视频在线播放| 午夜精品一区二区三区免费看| 九色成人免费人妻av| 亚洲av成人一区二区三| 俄罗斯特黄特色一大片| 两性午夜刺激爽爽歪歪视频在线观看 | 精品无人区乱码1区二区| 男女午夜视频在线观看| 成年女人毛片免费观看观看9| 国产真人三级小视频在线观看| 欧美国产日韩亚洲一区| 亚洲精品美女久久久久99蜜臀| 中文字幕久久专区| a级毛片a级免费在线| 国产精品亚洲美女久久久| 51午夜福利影视在线观看| 成人高潮视频无遮挡免费网站| 人成视频在线观看免费观看| 午夜两性在线视频| 一本一本综合久久| 成人国产一区最新在线观看| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| √禁漫天堂资源中文www| 久久99热这里只有精品18| xxx96com| 天堂√8在线中文| 波多野结衣巨乳人妻| 一个人免费在线观看电影 | 欧美激情久久久久久爽电影| 男女视频在线观看网站免费 | 久久午夜亚洲精品久久| 午夜福利高清视频| 国产视频内射| 97人妻精品一区二区三区麻豆| 亚洲av电影不卡..在线观看| 免费av毛片视频| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 欧美乱色亚洲激情| 母亲3免费完整高清在线观看| 精品国产亚洲在线| 一进一出抽搐动态|