崔 璐, 康文泉, 吳 鵬, 劉 陽, 李 臻, 竇益華
(西安石油大學(xué)機(jī)械工程學(xué)院, 西安 710065)
火力發(fā)電在可預(yù)知的未來繼續(xù)在能源結(jié)構(gòu)中,將越來越多地被賦予調(diào)峰的職責(zé),機(jī)組在頻繁的啟停操作中,加劇了高溫部件疲勞損傷,降低了機(jī)組的壽命[1]。作為超超臨界汽輪機(jī)轉(zhuǎn)子的關(guān)鍵零部件,汽輪機(jī)轉(zhuǎn)子在運(yùn)行工況下的載荷包括由重力、蒸汽壓力和離心力等組成的初級(jí)載荷以及由啟停過程中溫度變化和瞬時(shí)負(fù)荷波動(dòng)引起的次級(jí)載荷[2]。初級(jí)載荷以應(yīng)力控制形式,在高溫環(huán)境中會(huì)引起設(shè)備材料蠕變損傷。次級(jí)載荷周期性交替引起材料低周疲勞(low cycle fatigue, LCF)損傷[2-5],同時(shí)承受重力、慣性等引起的高周疲勞(high cycle fatigue, HCF)載荷[6]。幾種載荷交互作用引起轉(zhuǎn)子表面開裂,降低機(jī)組壽命[7]。在傳統(tǒng)的壽命設(shè)計(jì)中,通常將低周疲勞損傷和高周疲勞損傷分別考慮。雖然相對(duì)于溫差引起的大幅值低周疲勞損傷,高周載荷振幅較低且可控,然而二者交互作用時(shí),材料壽命大幅度降低。為了準(zhǔn)確描述和預(yù)測(cè)高溫部件復(fù)雜疲勞交互作用下的壽命,復(fù)合疲勞(combined cycle fatigue, CCF)載荷成為繼恒溫低周載荷、變溫低周載荷之后的下一個(gè)熱點(diǎn)研究方向。
目前,多數(shù)高低周復(fù)合疲勞載荷下壽命模型的研究主要基于累積損傷法則和裂紋擴(kuò)展模型。Norman等[8]假定了一個(gè)獨(dú)立的Paris定律,使得疊加于熱機(jī)疲勞的高周載荷促進(jìn)了裂紋擴(kuò)展;作為對(duì)比,Seifert等[6,9]基于裂紋擴(kuò)展提出了一種復(fù)合壽命模型,對(duì)常用于高溫設(shè)備的10%Cr鋼和用于內(nèi)燃機(jī)氣缸蓋的三種鑄鐵材料進(jìn)行了壽命預(yù)測(cè),并與實(shí)驗(yàn)結(jié)果進(jìn)行了對(duì)比,此模型考慮了疊加的高周疲勞會(huì)加速裂紋擴(kuò)展,降低構(gòu)件的疲勞壽命,且預(yù)測(cè)結(jié)果與實(shí)驗(yàn)結(jié)果吻合度較好,較為準(zhǔn)確地預(yù)測(cè)了材料的疲勞壽命。另外,Beck等[10]指出疊加的高周疲勞處于熱機(jī)疲勞平均拉應(yīng)力下比處于平均壓應(yīng)力下的破壞作用更大;同樣的問題,Norman等[8]認(rèn)為平均應(yīng)力作用下的疲勞微裂紋大多是閉合狀態(tài),壓縮階段的高周疲勞不會(huì)對(duì)壽命產(chǎn)生破壞作用。Fedelich等[11]認(rèn)為疲勞壽命降低很大程度上取決于高周疲勞應(yīng)變幅的門檻值,該門檻值存在與否取決于材料,低于該門檻值,疲勞壽命不受疊加的高周疲勞載荷影響;在此基礎(chǔ)上,根據(jù)斷裂力學(xué),提出了一種適用于疊加高周疲勞振動(dòng)引起疲勞壽命降低的模型,并將該模型應(yīng)用于兩種鑄鐵合金,分析了高周疲勞和熱機(jī)疲勞應(yīng)變振幅、溫度變化、高周振動(dòng)頻率以及平均應(yīng)力對(duì)疲勞壽命的影響,并指出:高周頻率對(duì)疲勞壽命的影響微弱;疲勞壽命主要取決于高周循環(huán)應(yīng)變振幅,且振幅越大,裂紋擴(kuò)展越快。以累積損傷法則為基礎(chǔ),Zhu等[12]研究了復(fù)合損傷累積對(duì)渦輪葉片預(yù)期CCF壽命的影響。通過對(duì)四個(gè)負(fù)載控制的參數(shù)進(jìn)行測(cè)試來研究渦輪葉片的CCF行為,這些參數(shù)包括高循環(huán)應(yīng)力幅值和頻率以及低循環(huán)應(yīng)力幅值和頻率。據(jù)此,提出了一種基于Miner法則的新?lián)p傷累積模型。趙振華等[3]對(duì)鈦合金TC11試件進(jìn)行了低周、高周和高低周復(fù)合疲勞實(shí)驗(yàn),提出了線性和非線性兩種疲勞損傷累積模型,通過將兩種模型的估算結(jié)果與實(shí)驗(yàn)結(jié)果對(duì)比發(fā)現(xiàn),考慮了高低周復(fù)合循環(huán)比和應(yīng)變幅比的非線性模型的估算精度較高,誤差分布均勻,與實(shí)驗(yàn)的吻合度較好。幸杰等[13]以累積損傷力學(xué)為基礎(chǔ),由高周、低周疲勞損傷的演化,通過公式推導(dǎo)得出了一種高低周復(fù)合疲勞損傷模型,并通過模擬計(jì)算驗(yàn)證了模型的準(zhǔn)確性。
從以上研究可以看出,高低周復(fù)合疲勞損傷影響因素較多,是疲勞損傷領(lǐng)域的研究重點(diǎn)。研究者從多個(gè)角度入手進(jìn)行探究,然而,大多數(shù)關(guān)注應(yīng)力與壽命的關(guān)系,對(duì)應(yīng)變比與壽命比之間的關(guān)系研究較少?,F(xiàn)以超超臨界汽輪機(jī)轉(zhuǎn)子常用材料10Cr-1Mo-1V為研究對(duì)象,進(jìn)行了高低周復(fù)合疲勞實(shí)驗(yàn),通過分析復(fù)合疲勞應(yīng)變-壽命特性,提出了一種高低周復(fù)合疲勞壽命模型,并對(duì)模型進(jìn)行了驗(yàn)證。
多數(shù)研究者以累積損傷法則[式(1)]為基礎(chǔ),從疲勞應(yīng)力角度進(jìn)行分析。將累積損傷法則擴(kuò)展應(yīng)用到CCF載荷下,可得到類似的損傷累積壽命分?jǐn)?shù)[式(2)][3,12]。
(1)
(2)
式中:ni為應(yīng)力水平σi下的載荷循環(huán)數(shù),周;Ni為應(yīng)力σi處失效循環(huán)數(shù),周;D為累積損傷;k為應(yīng)力水平數(shù)。根據(jù)Fedelich等[11]的研究,低周疲勞和復(fù)合疲勞產(chǎn)生的損傷分別為ΔDLCF和ΔDLCF/HCF,其關(guān)系為
(3)
圖1 高低周復(fù)合疲勞載荷譜Fig.1 Load spectrum for CCF
(4)
由于高、低周應(yīng)力幅比(α=ΔσH/ΔσL)及HCF失效循環(huán)數(shù)NHCF在對(duì)數(shù)坐標(biāo)中近似呈線性關(guān)系[α=algNHCF+b],a、b與材料有關(guān)[3,14]。從而得出耦合損傷Dc如式(5)[12]所示。當(dāng)材料失效時(shí),可根據(jù)式(6)計(jì)算復(fù)合循環(huán)塊數(shù)NB[12],失效循環(huán)數(shù)為[Nf=(1+n)NB][15]。
(5)
(6)
基于裂紋擴(kuò)展模型,從應(yīng)變角度分析,將高、低周應(yīng)變幅進(jìn)行分離[11],總應(yīng)變可表示為(Δεtotal=ΔεLCF+ΔεHCF)。根據(jù)裂紋擴(kuò)展模型,每個(gè)高低周復(fù)合疲勞載荷塊中總裂紋擴(kuò)展速率可描述為式(7),此時(shí)頻率的相關(guān)性降低。
(7)
假定裂紋擴(kuò)展速率與高周疲勞、低周疲勞引起的裂紋尖端擴(kuò)展位移成正比,根據(jù)相關(guān)研究[6,9],當(dāng)裂紋尖端擴(kuò)展位移ΔDCTO,LCF達(dá)到臨界值ΔDCTO,th時(shí),高周載荷的作用才會(huì)變得明顯,相應(yīng)的裂紋尺寸為ath。則式(7)可表示為[11]
(8)
式(8)中:ALCF為與載荷及材料相關(guān)的常數(shù);fHCF為高周頻率,Hz;B為常數(shù),取決于高周載荷大小。將式(8)進(jìn)行積分,得到低周疲勞壽命和復(fù)合疲勞壽命,即
(9)
式(9)中:a0為初始裂紋尺寸,m;af為失效裂紋尺寸,m。臨界裂紋尺寸可表示為門檻值的函數(shù)[11],即
(10)
式(10)中:δHCF為ΔDCTO,LCF的上限值。根據(jù)式(7)~式(10),可以得出壽命比為
(11)
高周疲勞應(yīng)變與壽命比NLCF/HCF/NLCF呈負(fù)相關(guān),且隨著應(yīng)變的增大,壽命比急劇減小[11,13,16]。通常隨著材料的疲勞失效,應(yīng)變值變化較大。因此,為了探究應(yīng)變與壽命間的關(guān)系,本文進(jìn)行了實(shí)驗(yàn)研究。
高低周復(fù)合疲勞實(shí)驗(yàn)材料選用9%~12%Cr現(xiàn)代鐵素體-馬氏體耐熱鋼的典型代表10Cr-1Mo-1V鋼,由歐盟COST項(xiàng)目研發(fā),主要應(yīng)用于服役工況高達(dá)600 ℃/30 MPa的先進(jìn)汽輪機(jī)轉(zhuǎn)子。其化學(xué)成分和力學(xué)性能見文獻(xiàn)[7],熱處理工藝為奧氏體化1 050 ℃/7 h/油冷+570 ℃/10.25 h/空冷+690 ℃/10 h/爐冷。高低周復(fù)合疲勞實(shí)驗(yàn)溫度分別為600、550、400 ℃和室溫。采用螺紋連接型圓棒形試樣,實(shí)驗(yàn)的過程依據(jù)ISO12106[17]標(biāo)準(zhǔn)完成。
通常,高周疲勞振幅較小且可控[18],然而,高頻振動(dòng)與熱機(jī)疲勞、低周疲勞等載荷的復(fù)合交互作用不容忽視,且機(jī)組的疲勞壽命會(huì)因此大幅下降[19]??紤]到疊加的高周疲勞載荷會(huì)降低材料的疲勞壽命,即高低周復(fù)合疲勞壽命小于純低周載荷下的壽命,則這兩種工況下的壽命比0≤NHCF/LCF/NLCF≤1。通過應(yīng)變幅比(ΔεHCF/ΔεLCF)-壽命比(NHCF/LCF/NLCF)曲線[6]進(jìn)行表征,NHCF/LCF為復(fù)合疲勞壽命,包含耦合損傷。如圖2所示,從實(shí)驗(yàn)結(jié)果注意到,在雙對(duì)數(shù)坐標(biāo)下,兩者呈冪函數(shù)關(guān)系[y=a(1-x-b),a=-1.039 58,b=-0.119 75],擬合相似度R2=0.977 7。除600 ℃外,500 ℃、400 ℃和室溫下的實(shí)驗(yàn)所得結(jié)果均集中在600 ℃數(shù)據(jù)擬合曲線附近。這與Fedelich等[11]和Moalla等[16]的研究趨勢(shì)吻合,HCF應(yīng)變與失效壽命呈負(fù)相關(guān)。根據(jù)應(yīng)變幅比與壽命比有
圖2 高低周復(fù)合疲勞實(shí)驗(yàn)下的應(yīng)變幅比-壽命比曲線Fig.2 Strain amplitude ratio-life ratio under CCF experiment
(12)
式(12)中:NHCF/LCF為高低周復(fù)合疲勞壽命,周;NLCF為低周疲勞壽命,周,可由高低周復(fù)合疲勞實(shí)驗(yàn)對(duì)應(yīng)的低周疲勞實(shí)驗(yàn)求得,NHCF/LCF/NLCF為無量綱量,下同;ΔεLCF和ΔεHCF分別為高低周復(fù)合疲勞載荷譜上的低周、高周疲勞應(yīng)變幅,%;a、b與材料和工況有關(guān)。將式(12)進(jìn)行變換即可求出NHCF/LCF。
根據(jù)圖2中的數(shù)據(jù),在相同的低周疲勞載荷振幅下,疊加的高周疲勞載荷振幅越大,材料的壽命越小。同樣,高周疲勞載荷振幅相同時(shí),低周疲勞振幅越小,疲勞壽命越小。即高周振幅占的相對(duì)比例越大,疲勞壽命減小的幅度越大。因此,應(yīng)變幅比與壽命比是高低周復(fù)合疲勞壽命預(yù)測(cè)的重要參數(shù)。當(dāng)高周振幅達(dá)到或超過門檻值時(shí),隨高周振幅的增大,疲勞壽命降低[7,11]。根據(jù)式(11)和式(12),有
(13)
為驗(yàn)證上述模型的準(zhǔn)確性,引入四種材料實(shí)驗(yàn)數(shù)據(jù)在不同應(yīng)變比、不同CCF實(shí)驗(yàn)條件下進(jìn)行模型的分析與驗(yàn)證,并得到與模型相關(guān)的參數(shù)。
鑄造鋁合金一般用于汽車發(fā)動(dòng)機(jī)的氣缸蓋、機(jī)體和活塞等部件,而這些部件往往承受著復(fù)雜的熱疲勞和機(jī)械疲勞,在兩者共同作用下,發(fā)動(dòng)機(jī)的使用年限減少[10,20-22]。如圖3所示,四種不同鑄造鋁合金材料的實(shí)驗(yàn)條件各不相同,但雙對(duì)數(shù)坐標(biāo)下的應(yīng)變比-壽命比曲線趨勢(shì)與10Cr-1Mo-1V鋼的變化趨勢(shì)相同。燃?xì)鉁u輪機(jī)或航空發(fā)動(dòng)機(jī)的燃燒室一般使用鈷基合金材料制造,而燃燒室在工作時(shí)不僅有溫度變化引起的熱機(jī)疲勞載荷,還有機(jī)械振動(dòng)及燃燒壓力引起的高周疲勞載荷。高周疲勞的疊加改變了材料的循環(huán)變形,降低了材料疲勞壽命,影響設(shè)備的使用[16]。如圖4所示,實(shí)驗(yàn)溫度由750 ℃到1 200 ℃變化,但曲線趨勢(shì)仍然和10Cr-1Mo-1V鋼的趨勢(shì)相同。球墨鑄鐵材料常用于制造內(nèi)燃機(jī)的氣缸蓋等高溫部件;這些設(shè)備在工作時(shí)除了承受頻繁啟停機(jī)引起的低周疲勞載荷,還承受著點(diǎn)火壓力、機(jī)械振動(dòng)等引起的高周疲勞載荷。對(duì)三種不同的球墨鑄鐵材料(EN-GJS-700、EN-GJV-450、EN-GJL-250)[9]的高低周復(fù)合疲勞實(shí)驗(yàn)數(shù)據(jù)分析[圖5(a)];同時(shí)還分析了兩種鐵素體鑄鐵[11]的高低周復(fù)合疲勞實(shí)驗(yàn)數(shù)據(jù)[圖5(b)]。兩種鑄鐵材料的應(yīng)變比-壽命比曲線趨勢(shì)與10Cr-1Mo-1V鋼的趨勢(shì)一致。不同工況下的實(shí)驗(yàn)值得出的規(guī)律相同,從而初步驗(yàn)證了模型的準(zhǔn)確性。本文所提出的模型為非線性模型,通常非線性模型的預(yù)測(cè)結(jié)果更好。
td為施加載荷在最高溫度Tmax的停留時(shí)間
圖4 鈷基合金應(yīng)變比-壽命比曲線Fig.4 Strain ratio-life ratio curves of cobalt-based alloy
圖5 鑄鐵材料在不同實(shí)驗(yàn)條件下的應(yīng)變比-壽命比曲線Fig.5 Strain ratio-life ratio curves of cast irons under different experimental conditions
表1是采用壽命模型進(jìn)行擬合所得結(jié)果,可以看出模型適用于大部分材料,且擬合相似度較高,很好的驗(yàn)證了模型的適用性。由于材料和工況不同,計(jì)算式中系數(shù)a、b呈現(xiàn)差異。擬合相似度越高,a、b越小,精度越高;可以看出,b的取值較小。當(dāng)?shù)椭芷趹?yīng)變幅恒定時(shí),對(duì)應(yīng)的純低周疲勞壽命NLCF為固定值;此時(shí),隨高周疲勞應(yīng)變幅的增大,高低周復(fù)合疲勞壽命NHCF/LCF減小。當(dāng)?shù)椭苷穹愣?,高周振幅發(fā)生變化,擬合相似度較高;同時(shí),高周振幅恒定,低周振幅發(fā)生變化,擬合相似度較高;即高周疲勞、低周疲勞振幅交替發(fā)生變化時(shí),擬合精度較高,而自變量以此形式發(fā)生變化正好符合實(shí)際工況。因此,該模型對(duì)高低周復(fù)合疲勞工況下材料的壽命預(yù)測(cè)較為有效。
表1 圖3~圖5中各種材料在不同工況下的擬合計(jì)算式Table 1 Fitting equations of different materials under different working conditions for fig.3~fig.5
(1)在相同的低周疲勞載荷振幅下,10Cr-1Mo-1V鋼疊加的高周疲勞載荷振幅越大,材料的復(fù)合疲勞壽命越小;高周疲勞載荷振幅相同時(shí),低周疲勞振幅越小,復(fù)合疲勞壽命越小;復(fù)合應(yīng)變幅比與壽命比是高低周復(fù)合疲勞濤命預(yù)測(cè)的重要參數(shù)。
(2)從應(yīng)變角度分析,在雙對(duì)數(shù)坐標(biāo)中,高低周復(fù)合疲勞工況下,10Cr-1Mo-1V鋼應(yīng)變幅比與壽命比呈非線性關(guān)系[y=a(1-x-b)],該模型已將高、低周疲勞耦合損傷包含在內(nèi)。通過不同工況下的不同材料初步驗(yàn)證了模型的準(zhǔn)確性,高周疲勞、低周疲勞振幅交替發(fā)生變化時(shí),模型精度更高,適用性較強(qiáng),可對(duì)高低周復(fù)合疲勞壽命進(jìn)行預(yù)測(cè)。