• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-Plane Impact Dynamics Analysis of Re-Entrant Honeycomb with Variable Cross-Section

    2021-04-27 10:29:20YuanxunOuShilinYanandPinWen

    Yuanxun Ou,Shilin Yan and Pin Wen,*

    1Department of Engineering Structure and Mechanics,Wuhan University of Technology,Wuhan,430070,China

    2Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics,Wuhan,430070,China

    ABSTRACT Due to the unique deformation characteristics of auxetic materials(Poisson’s ratio μ<0),they have better shock resistance and energy absorption properties than traditional materials.Inspired by the concept of variable crosssection design,a new auxetic re-entrant honeycomb structure is designed in this study.The detailed design method of re-entrant honeycomb with variable cross-section (VCRH) is provided,and five VCRH structures with the same relative density and different cross-section change rates are proposed.The in-plane impact resistance and energy absorption abilities of VCRH under constant velocity are investigated by ABAQUS/EXPLICIT.The results show that the introduction of variable cross-section design can effectively improve the impact resistance and energy absorption abilities of auxetic re-entrant honeycombs.The VCRH structure has better Young’s modulus,plateau stress,and specific energy absorption(SEA)than traditional re-entrant honeycomb(RH).The influence of microstructure parameters(such as cross-section change rate α)on the dynamic impact performance of VCRH is also studied.Results show that,with the increase in impact velocity and α,the plateau stress and SEA of VCRH increase.A positive correlation is also found between the energy absorption efficiency,impact load uniformity and α under both medium and high impact speeds.These results can provide a reference for designing improved auxetic re-entrant honeycomb structures.

    KEYWORDS Auxetic re-entrant honeycombs;variable cross-section design;in-plane impact;finite element simulation

    1 Introduction

    Different from traditional materials,auxetic materials (Poisson’s ratioμ<0) are wider perpendicular to the tensile direction,and narrower perpendicular to the compression direction.Due to their great advantages in shear resistance,indentation resistance,fracture resistance and energy absorption properties [1–4],auxetic materials have been applied in various fields,including sound insulation,shock absorber,sandwich panel composite core and artificial prosthesis [5–8].Various microstructure models have been developed to enhance the mechanical properties of auxetic materials [4].Especially in the impact process,the dynamic response characteristics of auxetic re-entrant honeycomb are heavily dependent on its non-uniform deformation.Moreover,the cellular structure has a great influence on the evolution of macro/micro dynamic stress [1].Therefore,researchers are continually focused on designing better cell structure to enhance the impact resistance and impact energy absorption abilities of auxetic material,and to ultimately achieve better dynamic performance in line with the engineering requirements.

    Significant efforts have been made by researchers to study the relationship between the geometric structure and mechanical properties of auxetic material.Xiao et al.[9] predicted the crashworthiness of re-entrant auxetic honeycomb under quasi-static loads and dynamic loads of different impact velocities by using finite element method.The results showed that different load conditions have great influence on the load-bearing,energy absorption and deformation modes of re-entrant auxetic honeycomb.Hu et al.[10] and Hou et al.[11] analyzed the cell structure parameters of re-entrant auxetic honeycomb,including cell wall angle,ratio of wall thickness to wall length,etc.Tan et al.[12] designed two levels of re-entrant auxetic honeycomb based on hexagon substructure and equilateral triangle substructure.It was found that the designed reentrant auxetic honeycomb has higher energy absorption capacity.Dong et al.[13] studied the influence of wall thickness on re-entrant auxetic honeycomb deformation mode and the effect of negative Poisson’s ratio on crushing stress through experimental and numerical methods.They found that there are great differences in deformation modes and energy absorption between re-entrant auxetic honeycomb with thin-wall and thick-wall.Sun et al.[14] proposed a multifunctional layered honeycomb structure,whose mechanical properties such as Young’s modulus were derived based on the Euler beam theory.Lu et al.[15] designed a new honeycomb structure with a narrow rib in the inner concave honeycomb structure.Fu et al.[16] derived the analytical solutions of equivalent Young’s modulus and Poisson’s ratio for a new chiral three-dimensional auxetic material by using beam theory.Li et al.[17] designed a two-dimensional multi-level concave honeycomb structure,and studied its energy absorption effect under different levels by finite element method.Hou et al.[18] improved the two-dimensional multi-level concave honeycomb structure.Then,they used the finite element method to analyze the dynamics of the improved honeycomb structure in order to further improve the energy absorption effect.Zhang et al.[19]proposed a bio-inspired re-entrant arc-shaped honeycomb,and studied the influence of cellular microstructure on its impact dynamic response characteristics.The above literature review shows the mechanical behavior of auxetic re-entrant honeycombs has been widely studied,but most of the previous studies assume that the cross-section of the structure remains unchanged.There are few studies on auxetic re-entrant honeycomb with variable cross-section.

    Recently,some researchers have introduced the idea of variable cross-section,which can improve the impact resistance and energy absorption abilities of structures.In order to improve the crashworthiness of the front longitudinal beam (S-shaped thin-walled beam),Xu et al.[20]designed a variable cross-section S-shaped thin-walled beam.Zhang et al.[21] proposed a kind of multi-cell thin-walled structure with variable cross-section,and studied the influence of wall thickness on its energy absorption abilities.Xiaofei et al.[22] proposed a new rhombic dodecahedron lattice structure with variable cross section,which has better mechanical properties and energy absorption than the original one.

    In this paper,based on the variable cross-section design concept and the traditional re-entrant honeycomb structure,a re-entrant honeycomb with variable cross-section (VCRH) was proposed.Different cell wall structures were designed to improve the impact resistance and energy absorption abilities.Then,the dynamic mechanical behavior of VCRH was compared to that of traditional re-entrant honeycomb (RH).Finally,the effects of impact velocity and cell microstructure on the impact deformation characteristics,plateau stress and specific energy absorption (SEA) of VCRH were studied by numerical simulation.This study provides a new way to improve the mechanical properties and impact resistance of cellular materials.

    2 Design of Structures

    The cell structures of RH and VCRH are shown in Fig.1.The geometric dimensions of inclined cell wall lengthl,horizontal cell wall lengthaand inclined cell wall angleθof the two cell structures are consistent.In this study,l=20 mm,a=10 mm,andθ=120?.All cell walls of RH cells have uniform cross-section with thickness oft,while horizontal cell walls of VCRH cells have variable cross-section.The maximum and minimum thicknesses are found at both ends and at the middle of the horizontal cell wall,which aret1andt2respectively.

    Figure 1:Unit cell structures:(a) RH,(b) VCRH

    Different from other materials,the most important characteristic of a cellular material is its relative density.The purpose of using the relative density is to eliminate the influence of the mass of porous structure on the mechanical properties.The relative density is defined as follows:

    whereρ0is the initial density andρsis the material density of the structures.For the RH structure,the formula for calculating the relative density is as follows:

    The VCRH cell is composed of two kinds of cell walls,including four inclined cell walls with uniform cross-section and two horizontal cell walls with variable cross-section.The relative density of honeycomb with variable cross-section can be given by the following formula:

    whereS1andS2represent the areas of inclined and horizontal cell walls:

    In order to quantify the change in horizontal cell wall cross-section,the cross-section change rateαis proposed:

    The cross-section change rateαranges from 0 to 1.The VCRH will degenerate into RH whenα=0.In the following research,the effective relative density Δρremains unchanged.Notably,the relative density is not exactly the same due to errors.Different combinations of thicknesst1andt2are selected to obtain the representativeα.Tab.1 lists all the cellular configurations considered.

    Table 1:Geometric parameters of VCRH

    3 Finite Element Simulation Analysis

    3.1 Finite Element Model

    In order to analyze the influence of cross-section change rateαon the impact resistance and energy absorption abilities of VCRH,ABAQUS/EXPLICIT software was used to simulate the conventional and new-type re-entrant honeycomb structures.The finite element model of VRCH is shown in Fig.2 (taking VCRH-1 for example).The matrix material in the numerical simulation is aluminum with densityρof 2700 kg/m3,Young’s modulusEof 69 GPa,and Poisson’s ratioνof 0.3 The ideal elastic-plastic model obeys Mises yield criterion,where yield stressσysis set to 76 MPa.In the simulation process,the supporting rigid plate is fixed by setting the reference point degree of freedom to 0,and the upper rigid plate is squeezed vertically by constant impact load.The mass of impacting rigid plate is 20 kg.The honeycomb is modeled by three node plane stress triangular element (cps3).The out of plane thickness of honeycomb structure is 10 mm,so the plane stress/strain thickness is set to 10.General contact is applied on the surfaces of the model.In addition,face-to-face contact is made between the VCRH structure and the two rigid plates,and the friction coefficient is set to 0.The free boundary is adopted for left and right edges of the sample.

    3.2 Key Performance Indicators

    The nominal stress–strain curve (solid line) of the VCRH is shown in Fig.3.As seen from the figure,the process of deformation can be divided into three stages:the initial elastic deformation of honeycomb,progressive plastic yield of honeycomb cell,and significant amount of cell yield which leads to densification.Plateau stress (σm) is an important index to evaluate the energy absorption abilities of cellular structures.The plateau stress value of cellular structure can be obtained by taking the average value of the platform stage stress in the stress–strain curve,which can be expressed as follows:

    Figure 2:Finite element model of VCRH-1

    Figure 3:Nominal stress–strain curve and energy absorption efficiency curve of VCRH

    Here,σ(?)represents the change in nominal stress with the strain;?yrepresents the nominal strain corresponding to the peak value of initial stress,which is set to be 0.02 here;and?dis the maximum strain before the material is compressed and compacted.Previous research shows that the densification strain?dis largely decided by the impact velocity and the topological structure of the cell [23].In order to eliminate the influence of subjective factors,the densification strain was obtained by energy absorption efficiency method:

    As shown in Fig.3,there are many local peaks in the energy efficiency curve.The nominal strain corresponding to the final peak value (i.e.,the point at which the energy efficiency curve begins to decline rapidly) is regarded as the densification strain.In order to study the impact resistance and energy absorption abilities of VCRH,the following key performance indicators based on densification strain are proposed.

    A cellular material with good impact behavior should maintain impact load uniformity during impact.In other words,the maximum stress peak value should be less than the damage critical value,and the fluctuation of stress should be as small as possible.The impact load efficiency(ILE) represents the impact load uniformity of cellular material,which is expressed as:

    Here,σMaxandσmare two parameters corresponding to the nominal stress–strain curve,the maximum peak stress and the plateau stress.In order to obtain better energy absorption structure,the value ofσMaxshould be smaller and the value of ILE should be higher.For an ideal energy absorbing structure,ILE=1,which meansσMaxis equal toσm.The minimum cushioning coefficientCminis an evaluation index of honeycomb structure crashworthiness,which is defined as:

    Here,Cminrepresents the energy absorption efficiency of honeycomb structure under the impact load.The impact resistance of honeycomb structure is negatively correlated with the value ofCmin.

    In order to evaluate the energy absorption abilities of honeycomb structure,specific energy absorption (SEA) is defined as the ratio of total energy absorption to mass:

    wherem,Vandρ0are the mass,volume and density of the honeycomb model,respectively.

    3.3 Analysis of Mesh Sensitivity

    In this part,the accuracy and reliability of numerical simulation are verified.In order to verify the accuracy and reliability of the finite element model,the deformation mode of traditional reentrant honeycomb under impact load is simulated and compared with the literature results [24].Fig.4 shows the deformation comparison between the simulation results and the literature results under dynamic impact load (v=20 m/s).When the impact velocity,material properties and geometric parameters are the same,the local deformation and global deformation of the simulation results are in good agreement with the literature results [24].

    Before the simulation,the sensitivity of the numerical results to the mesh size was analyzed.Fig.5 shows the effect of element size on the plateau stress and the calculation time.The results show that when the element size decreases to 1 mm,the platform stress tends to be stable and converges gradually.However,with the decrease in element size,the calculation time increases rapidly.Considering the accuracy and efficiency of finite element simulation,the mesh size of honeycomb structure is set as 0.5 mm.A large number of convergence tests show that the existing finite element model is accurate and effective,and is suitable to analyze the dynamic characteristics and energy absorption performance of honeycomb structures under impact load.Therefore,the finite element model described above is reliable and can be used for subsequent research.

    Figure 4:Comparison of impact deformation for traditional re-entrant honeycomb at v=20 m/s(a) the simulation results and (b) the reference results

    Figure 5:Effect of element size on plateau stress and calculation time of VCRH

    4 Results and Discussion

    4.1 Deformation Mode

    In order to study the influence of the cross-section change rateαon the deformation mode of the re-entrant honeycomb structure,the in-plane impact numerical simulation with velocity of 20 m/s was carried out for all the designed samples.Fig.6 shows the deformation mode and stress distribution of conventional and VCRH structures under in-plane impact.At the initial stage of impact,when?=0.1,the deformation of honeycomb structure is concentrated on the cell unit near the impact end,and the “necking”phenomenon occurs at the two free surfaces of the impact end.When the strain increases gradually,the shock wave cannot propagate to the bottom of the model in a short time due to the high velocity,so it is mainly concentrated near the impact end.In other words,the cells closest to the impact end deform greatly,while the other cell units of the model are not deformed to a great extent.Therefore,the cell units of the model are crushed layer by layer.

    Figure 6:Deformation mode comparison of VCRH structures through simulation results

    It can be seen from Fig.6 that the VCRH can enter the deformation mode of layer-bylayer collapse more quickly,which means the cells nearest to the impact end are crushed more quickly.This is mainly because the two ends of horizontal cell wall of VCRH cell are thicker,and the strain value required for cell collapse is smaller.Fig.7 shows the comparison of the deformation modes of VCRH unit cells at crushing strain.Tab.2 shows the strain of re-entrant cellular structure under different cross-section change rates.The larger the cross-section change rateα,the earlier the complete collapse stage appears.

    Figure 7:Deformation mode comparison of VCRH unit cells at crushing strain

    Table 2:Crushing strain data of VCRH structures

    4.2 Mechanical Characteristics of VCRH

    4.2.1 Young’s Modulus

    In order to obtain the elastic modulus of the structure,the quasi-static compression simulation of the model was carried out.The total displacement of top surface of VRCH is assumed to be 1 mm under the loading rate of 0.6 mm/min.In this case,the elastic moduli of five models with different values of cross-section change rateαare given in Tab.3.As can be seen,there is a positive correlation between the elastic modulus andα.

    Table 3:Young’s modulus values of VCRH structures

    4.2.2 Plateau Stress

    According to Eq.(7),the effects of cross-section change rateαand impact velocity on the plateau stressσmof VCRH are studied.Fig.8 shows the change in plateau stress relative toαunder different impact loads.The results show that the plateau stress of VCRH structure is greater than that of RH structure.When the impact velocity is constant,the plateau stress increases withα.For the honeycomb structure with the sameα,the plateau stress increases with impact velocity.

    Figure 8:Effect of cross-section change rate α on plateau stress of VCRH under different impact velocities

    4.2.3 Impact Load Uniformity

    As a critical indicator for good impact resistant structure,the impact load uniformity of VCRH was also investigated.The dynamic response curves of VCRH structure with cross-section change rateα=0.8 and RH structure atv=20 m/s are shown in Fig.9.Due to the introduction of variable cross-section cell wall structure,the maximum peak stress of VCRH structure is less than that of RH structure under the same impact velocity.

    Figure 9:Dynamic response curves of VCRH-1 and VARH-5

    Figure 10:Effect of cross-section change rate α on ILE of VCRH under different impact velocities

    The impact load uniformity is quantified as ILE for better understanding the influence of cross-section change rateαon the energy absorbing ability of VRCH.Fig.10 shows the curve ofαvs ILE under different impact velocities.At low velocity impact (v=3 m/s),ILE decreases first and then increases withα.Especially whenα=0.8,the crush load uniformity of VCRH structure is the same as that of RH structure.However,under the conditions of medium velocity(v=20 m/s,v=50 m/s) and high-speed impact (v=100 m/s),the impact load uniformity of VCRH structure is better than that of RH structure,and the ILE of VCRH structure increases withα.

    4.3 Energy Absorption Characteristics

    In order to evaluate the energy absorption efficiency of honeycomb structure,the minimum dynamic cushioning coefficient (Cmin) is proposed.Cminis inversely proportional to the cushioning performance of honeycomb.Fig.11 shows the effect of cross-section change rateαonCminof VCRH structure at different impact velocities.At low velocity impact (v=3 m/s),Cmin,like the ILE,increases first and then decreases withα.Under the conditions of medium velocity (v=20 m/s,v=50 m/s) and high-speed impact (v=100 m/s),theCminof the new honeycomb structure decreases with the increase in value ofα.Under the condition of medium and high velocity impact,Cmindecreases with the increase in impact velocity for re-entrant honeycomb structure with the sameα.

    Figure 11:Effect of cross-section change rate α on Cmin of VCRH under different impact velocities

    Fig.12 shows the effect of cross-section change rateαon the specific energy absorption (SEA)of VCRH under different impact velocities.The results show that the SEA of VCRH structure is greater than that of RH structure,that is,the VCRH structure has better energy absorption characteristics.The SEA increases withαunder the same impact velocity.For the honeycomb structure with the sameα,the SEA increases with impact velocity.

    Figure 12:Effect of cross-section change rate α on SEA of VCRH under different impact velocities

    5 Conclusions

    In this study,a re-entrant honeycomb with variable cross-section (VCRH) is proposed based on the concept of variable cross-section design.Compared with the traditional re-entrant honeycomb (RH),the impact resistance and energy absorption of VCRH are significantly improved.The dynamic impact response and energy absorption characteristics of VCRH under different in-plane impact velocities are evaluated by studying the micro-structure parameters.The main conclusions of this paper are obtained by simulation analysis.

    The deformation mode of honeycomb structure is determined by impact velocity and cell microstructure.The introduction of variable cross-section into RH leads to the change in macro/micro deformation characteristics during impact.Compared with RH,VCRH can enter the complete collapse stage earlier.Moreover,the crushing strain of VCRH is negatively correlated with the cross-section change rateα.

    Compared with RH,the elastic modulus of the VCRH structure is significantly increased.In addition,at the same impact velocity,the VCRH has higher dynamic platform pressure and SEA than the RH.It is found that the RH has better impact load uniformity and energy absorption efficiency at low speed,while the VCRH structure has better impact load uniformity and energy absorption efficiency at medium and high speed.The results also show that the dynamic platform pressure and SEA are positively correlated with the cross-section change rate.At medium and high impact velocities,the impact load uniformity and energy absorption efficiency are positively correlated with the cross-section change rate.These results can provide a reference for designing improved auxetic re-entrant honeycomb structures.

    Funding Statement:This research is supported by the National Natural Science Foundation of China (No.11902232).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国内精品一区二区在线观看| tocl精华| 久久久精品欧美日韩精品| 成年女人看的毛片在线观看| 丝袜美腿在线中文| 免费电影在线观看免费观看| 亚洲中文字幕日韩| 精品无人区乱码1区二区| 在线天堂最新版资源| 精品久久久久久成人av| 欧美性猛交黑人性爽| 免费观看精品视频网站| 最近最新中文字幕大全免费视频| 色哟哟哟哟哟哟| www国产在线视频色| 一级a爱片免费观看的视频| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影| 窝窝影院91人妻| 在线观看午夜福利视频| 精品人妻偷拍中文字幕| 欧美另类亚洲清纯唯美| or卡值多少钱| 成人国产一区最新在线观看| 精品久久久久久久毛片微露脸| 夜夜看夜夜爽夜夜摸| 性色av乱码一区二区三区2| 手机成人av网站| 老鸭窝网址在线观看| 欧美性感艳星| 内射极品少妇av片p| 国产淫片久久久久久久久 | 18+在线观看网站| 亚洲av中文字字幕乱码综合| 操出白浆在线播放| 五月玫瑰六月丁香| 免费看十八禁软件| 性色av乱码一区二区三区2| 欧美黑人巨大hd| 男女视频在线观看网站免费| 99精品久久久久人妻精品| 午夜激情福利司机影院| 91麻豆av在线| 免费观看精品视频网站| 中文字幕精品亚洲无线码一区| 色综合欧美亚洲国产小说| 日本 av在线| 黄片小视频在线播放| 麻豆国产97在线/欧美| 亚洲精品粉嫩美女一区| 国产欧美日韩精品亚洲av| 搡老妇女老女人老熟妇| bbb黄色大片| 欧美极品一区二区三区四区| 成人精品一区二区免费| 亚洲va日本ⅴa欧美va伊人久久| 在线观看免费视频日本深夜| 91av网一区二区| 波多野结衣高清作品| 91在线精品国自产拍蜜月 | 黄色成人免费大全| 人人妻人人澡欧美一区二区| 波多野结衣高清作品| 一进一出好大好爽视频| 天美传媒精品一区二区| 99热6这里只有精品| 国产精品永久免费网站| 国产精品一区二区三区四区免费观看 | 男女那种视频在线观看| 黄色成人免费大全| 少妇丰满av| 少妇丰满av| 亚洲av日韩精品久久久久久密| 舔av片在线| 国产精品精品国产色婷婷| 1000部很黄的大片| 九九热线精品视视频播放| 在线播放国产精品三级| 最近视频中文字幕2019在线8| 小说图片视频综合网站| 在线免费观看不下载黄p国产 | 久久久久国产精品人妻aⅴ院| 91麻豆av在线| 国产精品嫩草影院av在线观看 | 日韩成人在线观看一区二区三区| 91久久精品电影网| 亚洲 欧美 日韩 在线 免费| 美女大奶头视频| 男女做爰动态图高潮gif福利片| av在线天堂中文字幕| 国产亚洲av嫩草精品影院| 日本a在线网址| 亚洲精品粉嫩美女一区| 亚洲国产中文字幕在线视频| 午夜激情福利司机影院| 久久精品91无色码中文字幕| 90打野战视频偷拍视频| 99久久精品热视频| 日韩 欧美 亚洲 中文字幕| 无遮挡黄片免费观看| 亚洲欧美日韩无卡精品| avwww免费| 国产精品久久久久久精品电影| 国产欧美日韩一区二区三| 久久人人精品亚洲av| 久久久久久久精品吃奶| 国产成年人精品一区二区| 国产高清激情床上av| 欧美日韩黄片免| 精品国产亚洲在线| 国产精品国产高清国产av| 熟妇人妻久久中文字幕3abv| 国产视频内射| 精品一区二区三区视频在线 | 亚洲成人久久爱视频| 国内久久婷婷六月综合欲色啪| 免费在线观看日本一区| 999久久久精品免费观看国产| 黄色女人牲交| 国产精品 国内视频| 美女高潮的动态| 午夜视频国产福利| av天堂在线播放| 少妇的逼好多水| 嫁个100分男人电影在线观看| 久久久国产成人精品二区| 午夜免费男女啪啪视频观看 | 国产真人三级小视频在线观看| 亚洲无线在线观看| e午夜精品久久久久久久| 99精品在免费线老司机午夜| av在线蜜桃| 久久婷婷人人爽人人干人人爱| 超碰av人人做人人爽久久 | 中文资源天堂在线| 亚洲真实伦在线观看| 国产av不卡久久| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 中文亚洲av片在线观看爽| 最新中文字幕久久久久| 69av精品久久久久久| 老司机午夜福利在线观看视频| 一区二区三区国产精品乱码| 成人国产一区最新在线观看| 欧美性猛交╳xxx乱大交人| 可以在线观看的亚洲视频| 精品一区二区三区av网在线观看| 午夜福利在线观看免费完整高清在 | 蜜桃亚洲精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 免费看a级黄色片| 国产精品爽爽va在线观看网站| 日韩亚洲欧美综合| 美女被艹到高潮喷水动态| 日本熟妇午夜| 一a级毛片在线观看| 午夜亚洲福利在线播放| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 宅男免费午夜| 麻豆国产av国片精品| 国产综合懂色| 免费在线观看影片大全网站| 久久香蕉国产精品| 国产美女午夜福利| 亚洲无线观看免费| 国产一区在线观看成人免费| 国产高清有码在线观看视频| 欧美极品一区二区三区四区| 国产精品亚洲一级av第二区| 亚洲,欧美精品.| av在线天堂中文字幕| 日本撒尿小便嘘嘘汇集6| 在线播放无遮挡| 久久欧美精品欧美久久欧美| 欧美一区二区亚洲| 国产69精品久久久久777片| 欧美+日韩+精品| 最好的美女福利视频网| 欧美成人性av电影在线观看| 久久久久精品国产欧美久久久| 欧美日韩国产亚洲二区| 一区福利在线观看| 中亚洲国语对白在线视频| 法律面前人人平等表现在哪些方面| 日韩精品中文字幕看吧| 午夜免费观看网址| tocl精华| 天堂av国产一区二区熟女人妻| 国内少妇人妻偷人精品xxx网站| 国产成人福利小说| 在线免费观看不下载黄p国产 | 制服丝袜大香蕉在线| 国产单亲对白刺激| 99视频精品全部免费 在线| 国产欧美日韩一区二区三| 午夜福利视频1000在线观看| 一区二区三区国产精品乱码| 久久欧美精品欧美久久欧美| 久久6这里有精品| 亚洲国产中文字幕在线视频| 色哟哟哟哟哟哟| 长腿黑丝高跟| 国产中年淑女户外野战色| 午夜视频国产福利| 色噜噜av男人的天堂激情| 母亲3免费完整高清在线观看| 蜜桃久久精品国产亚洲av| 国产精品99久久99久久久不卡| 国产蜜桃级精品一区二区三区| 青草久久国产| 中文字幕高清在线视频| 中文字幕人成人乱码亚洲影| 久久久久久久精品吃奶| 欧美一级a爱片免费观看看| 国产精品综合久久久久久久免费| 叶爱在线成人免费视频播放| 国产av一区在线观看免费| 久久国产精品影院| 香蕉av资源在线| 99在线视频只有这里精品首页| 日日夜夜操网爽| 欧美一区二区精品小视频在线| 中文字幕熟女人妻在线| 少妇人妻精品综合一区二区 | 麻豆国产av国片精品| 中文字幕久久专区| 亚洲乱码一区二区免费版| 91在线精品国自产拍蜜月 | 一本一本综合久久| 99久久99久久久精品蜜桃| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 国产高清三级在线| 午夜影院日韩av| 女人十人毛片免费观看3o分钟| 亚洲久久久久久中文字幕| 国产亚洲精品久久久久久毛片| 亚洲,欧美精品.| 亚洲人成电影免费在线| 亚洲欧美日韩东京热| 久久久久久久久大av| 毛片女人毛片| 亚洲成av人片在线播放无| 日韩欧美精品v在线| 欧美激情在线99| 国产aⅴ精品一区二区三区波| 麻豆久久精品国产亚洲av| 久久久久久久午夜电影| 亚洲男人的天堂狠狠| 精品国产亚洲在线| 国产黄色小视频在线观看| 欧美国产日韩亚洲一区| 麻豆久久精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 欧美中文综合在线视频| 12—13女人毛片做爰片一| 极品教师在线免费播放| 99热这里只有精品一区| 亚洲精品在线美女| 最近视频中文字幕2019在线8| 亚洲欧美精品综合久久99| 国产精品99久久99久久久不卡| 久久久久久久久久黄片| 国内久久婷婷六月综合欲色啪| 午夜影院日韩av| 午夜精品久久久久久毛片777| 国产黄片美女视频| 国产高清有码在线观看视频| 中文字幕av在线有码专区| 国产精品免费一区二区三区在线| 国产精品久久电影中文字幕| 国产一区在线观看成人免费| 女人被狂操c到高潮| 国产高潮美女av| 精品久久久久久久末码| 国产精品乱码一区二三区的特点| 日韩欧美免费精品| 中文字幕av在线有码专区| 精品人妻1区二区| 69av精品久久久久久| 国产成人av激情在线播放| 人人妻,人人澡人人爽秒播| 波多野结衣高清作品| 国产精品亚洲av一区麻豆| 精品不卡国产一区二区三区| 国产精品女同一区二区软件 | 国产av不卡久久| aaaaa片日本免费| 久久久久久久久中文| 岛国在线观看网站| 真人一进一出gif抽搐免费| 51国产日韩欧美| 天堂网av新在线| 日本黄色视频三级网站网址| 搡女人真爽免费视频火全软件 | 国产亚洲av嫩草精品影院| 在线免费观看不下载黄p国产 | 亚洲欧美日韩高清在线视频| 麻豆成人av在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲内射少妇av| 久久精品91无色码中文字幕| 级片在线观看| 亚洲中文日韩欧美视频| 少妇高潮的动态图| 精华霜和精华液先用哪个| 岛国视频午夜一区免费看| 亚洲七黄色美女视频| 一边摸一边抽搐一进一小说| 欧美极品一区二区三区四区| 国产伦精品一区二区三区四那| av在线蜜桃| 丰满的人妻完整版| 成人性生交大片免费视频hd| 啦啦啦韩国在线观看视频| 内射极品少妇av片p| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线| 午夜免费激情av| 欧美极品一区二区三区四区| 日本熟妇午夜| 午夜影院日韩av| 有码 亚洲区| 免费看十八禁软件| 国产精品 欧美亚洲| 精品福利观看| 国产亚洲精品久久久久久毛片| 精品不卡国产一区二区三区| 国产野战对白在线观看| 国产91精品成人一区二区三区| 国产亚洲欧美在线一区二区| 岛国在线免费视频观看| 亚洲成a人片在线一区二区| 亚洲国产欧美网| 大型黄色视频在线免费观看| 国产av不卡久久| 亚洲国产色片| 看片在线看免费视频| 中文亚洲av片在线观看爽| 久久中文看片网| 国产精品 国内视频| 热99re8久久精品国产| 亚洲国产中文字幕在线视频| 成年版毛片免费区| 国内揄拍国产精品人妻在线| 深爱激情五月婷婷| 久久草成人影院| 国产伦在线观看视频一区| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频| 亚洲国产精品成人综合色| 成年女人毛片免费观看观看9| 无限看片的www在线观看| 亚洲美女黄片视频| 亚洲性夜色夜夜综合| 两人在一起打扑克的视频| 欧洲精品卡2卡3卡4卡5卡区| 在线观看免费视频日本深夜| 乱人视频在线观看| 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品久久久久久毛片| 日本免费a在线| 国产成人av激情在线播放| 麻豆成人av在线观看| 精品不卡国产一区二区三区| 狂野欧美激情性xxxx| 免费一级毛片在线播放高清视频| 午夜两性在线视频| 色噜噜av男人的天堂激情| 国产欧美日韩精品亚洲av| 操出白浆在线播放| 最近最新中文字幕大全电影3| 亚洲无线观看免费| 成人国产一区最新在线观看| 国产欧美日韩精品亚洲av| 午夜老司机福利剧场| 成人无遮挡网站| 中文在线观看免费www的网站| 亚洲欧美日韩无卡精品| 性色avwww在线观看| 麻豆一二三区av精品| 波多野结衣高清作品| 成年女人毛片免费观看观看9| 好男人电影高清在线观看| 亚洲精品影视一区二区三区av| 美女被艹到高潮喷水动态| 亚洲美女视频黄频| 久久久久性生活片| 一区二区三区激情视频| 国产伦人伦偷精品视频| 亚洲欧美日韩高清在线视频| 一a级毛片在线观看| 午夜激情欧美在线| 亚洲人成网站在线播放欧美日韩| 香蕉丝袜av| 日日摸夜夜添夜夜添小说| 亚洲片人在线观看| 国产真实乱freesex| 欧美日韩综合久久久久久 | 国产视频内射| 成人av一区二区三区在线看| 午夜福利在线观看吧| 国内精品一区二区在线观看| 国产一区二区亚洲精品在线观看| 波多野结衣巨乳人妻| 波多野结衣高清作品| 日日摸夜夜添夜夜添小说| a级毛片a级免费在线| 香蕉久久夜色| 欧美激情在线99| 老司机在亚洲福利影院| 久久性视频一级片| 91字幕亚洲| 中文字幕精品亚洲无线码一区| 国产野战对白在线观看| 内地一区二区视频在线| 亚洲av免费在线观看| 免费观看精品视频网站| 90打野战视频偷拍视频| 在线十欧美十亚洲十日本专区| 亚洲国产精品成人综合色| 日本成人三级电影网站| 一级作爱视频免费观看| 国产av在哪里看| 99久久综合精品五月天人人| 国产欧美日韩一区二区三| 亚洲av成人精品一区久久| 国产一区二区激情短视频| 韩国av一区二区三区四区| 69人妻影院| 黄色日韩在线| 男人和女人高潮做爰伦理| 91字幕亚洲| 女人被狂操c到高潮| 一a级毛片在线观看| 欧美大码av| 变态另类丝袜制服| 国产熟女xx| а√天堂www在线а√下载| 成年版毛片免费区| 男人和女人高潮做爰伦理| 国产三级中文精品| 99久久综合精品五月天人人| 18禁国产床啪视频网站| 波多野结衣巨乳人妻| 少妇裸体淫交视频免费看高清| 国产精品国产高清国产av| 99riav亚洲国产免费| 一区二区三区高清视频在线| 国产69精品久久久久777片| av欧美777| 午夜久久久久精精品| 老汉色av国产亚洲站长工具| 亚洲 国产 在线| 免费看十八禁软件| 99久久九九国产精品国产免费| 超碰av人人做人人爽久久 | 日韩精品青青久久久久久| 午夜精品在线福利| 亚洲专区国产一区二区| 两个人视频免费观看高清| 国产伦在线观看视频一区| 狠狠狠狠99中文字幕| 亚洲专区国产一区二区| 亚洲人成电影免费在线| 一级a爱片免费观看的视频| 尤物成人国产欧美一区二区三区| 久久香蕉国产精品| www日本在线高清视频| 日韩高清综合在线| 亚洲av成人不卡在线观看播放网| 精品99又大又爽又粗少妇毛片 | 精品国产三级普通话版| 精品久久久久久久久久免费视频| 亚洲性夜色夜夜综合| 免费无遮挡裸体视频| 男插女下体视频免费在线播放| 伊人久久大香线蕉亚洲五| 国产v大片淫在线免费观看| 日韩欧美一区二区三区在线观看| 国产精品野战在线观看| 日日干狠狠操夜夜爽| 女同久久另类99精品国产91| 欧美日韩福利视频一区二区| 搡老岳熟女国产| 久久国产精品人妻蜜桃| 综合色av麻豆| 波野结衣二区三区在线 | 日韩精品中文字幕看吧| 日韩亚洲欧美综合| 少妇人妻一区二区三区视频| 黑人欧美特级aaaaaa片| 黄色视频,在线免费观看| 亚洲av二区三区四区| 1024手机看黄色片| 丁香欧美五月| 最近最新中文字幕大全电影3| 90打野战视频偷拍视频| 国产精品98久久久久久宅男小说| 成人性生交大片免费视频hd| 中文字幕人成人乱码亚洲影| 免费在线观看日本一区| 91在线精品国自产拍蜜月 | 亚洲成a人片在线一区二区| avwww免费| 国产 一区 欧美 日韩| 久久久久久大精品| 白带黄色成豆腐渣| 99在线视频只有这里精品首页| 在线视频色国产色| 亚洲人成网站高清观看| 欧美日韩乱码在线| 国产99白浆流出| 欧美色欧美亚洲另类二区| 国产野战对白在线观看| 国产高清videossex| 淫秽高清视频在线观看| 久久伊人香网站| 午夜福利欧美成人| 日本三级黄在线观看| 不卡一级毛片| 国产精品三级大全| 亚洲久久久久久中文字幕| 一进一出好大好爽视频| 中文字幕人妻熟人妻熟丝袜美 | aaaaa片日本免费| 亚洲美女黄片视频| 欧美一级毛片孕妇| 欧美bdsm另类| 久久久久精品国产欧美久久久| 日本精品一区二区三区蜜桃| 嫩草影院入口| 两个人的视频大全免费| aaaaa片日本免费| 国产不卡一卡二| 天堂影院成人在线观看| 日本精品一区二区三区蜜桃| 精品久久久久久久人妻蜜臀av| 成年女人永久免费观看视频| 特大巨黑吊av在线直播| 搡女人真爽免费视频火全软件 | 免费人成在线观看视频色| 国产三级黄色录像| 欧美日本视频| 午夜亚洲福利在线播放| 成年版毛片免费区| 高清毛片免费观看视频网站| 不卡一级毛片| 黄色片一级片一级黄色片| 午夜福利在线在线| 亚洲精品456在线播放app | 搡老熟女国产l中国老女人| 99国产综合亚洲精品| 亚洲最大成人中文| 一区二区三区免费毛片| 国内精品美女久久久久久| 国产麻豆成人av免费视频| 亚洲精品一区av在线观看| 亚洲一区高清亚洲精品| www日本黄色视频网| svipshipincom国产片| 精品乱码久久久久久99久播| 国产又黄又爽又无遮挡在线| АⅤ资源中文在线天堂| 一级毛片高清免费大全| 麻豆国产97在线/欧美| 国产伦精品一区二区三区四那| 国内毛片毛片毛片毛片毛片| 一个人看视频在线观看www免费 | 韩国av一区二区三区四区| а√天堂www在线а√下载| 亚洲国产日韩欧美精品在线观看 | 欧美日韩瑟瑟在线播放| 免费人成视频x8x8入口观看| 国产精品久久久久久久电影 | 老汉色∧v一级毛片| 免费在线观看亚洲国产| 国产一区二区在线观看日韩 | 老熟妇仑乱视频hdxx| 国产中年淑女户外野战色| 美女免费视频网站| 亚洲男人的天堂狠狠| 亚洲精品色激情综合| 色综合婷婷激情| 岛国在线免费视频观看| 中文亚洲av片在线观看爽| 可以在线观看的亚洲视频| 久久国产乱子伦精品免费另类| 日本三级黄在线观看| 免费高清视频大片| 91在线观看av| 免费人成视频x8x8入口观看| 精品国产超薄肉色丝袜足j| 国产中年淑女户外野战色| 一a级毛片在线观看| 天堂网av新在线| 欧美一区二区亚洲| 亚洲av二区三区四区| 国产淫片久久久久久久久 | 三级国产精品欧美在线观看| 精品无人区乱码1区二区| 男女下面进入的视频免费午夜| 亚洲人成网站高清观看| or卡值多少钱| 国产黄片美女视频| 成人av在线播放网站| 91av网一区二区| 久久人妻av系列| 亚洲狠狠婷婷综合久久图片| 国产毛片a区久久久久| 亚洲av免费高清在线观看|