• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Redefined Extended Cubic B-Spline Functions for Numerical Solution of Time-Fractional Telegraph Equation

    2021-04-27 10:29:42MuhammadAminMuhammadAbbasDumitruBaleanuMuhammadKashifIqbalandMuhammadBilalRiaz

    Muhammad Amin,Muhammad Abbas,Dumitru Baleanu,Muhammad Kashif Iqbal and Muhammad Bilal Riaz

    1Department of Mathematics,National College of Business Administration&Economics,Lahore,54660,Pakistan

    2Department of Mathematics,University of Sargodha,Sargodha,40100,Pakistan

    3Department of Mathematics,Faculty of Arts and Sciences,Cankaya University,Ankara,06530,Turkey

    4Department of Medical Research,China Medical University Hospital,China Medical University,Taichung,40402,Taiwan

    5Institute of Space-Sciences,Bucharest,077125,Romania

    6Department of Mathematics,Government College University,Faisalabad,38000,Pakistan

    7Department of Mathematics,University of Management and Technology,Lahore,54700,Pakistan

    ABSTRACT This work is concerned with the application of a redefined set of extended uniform cubic B-spline (RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.

    KEYWORDS Extended cubic B-spline;redefined extended cubic B-spline;time fractional telegraph equation;caputo fractional derivative;finite difference method;convergence

    1 Introduction

    In recent years,fractional calculus has gained a remarkable importance.Fractional derivatives and integrals have manifold applications in science and engineering such as fluid mechanics,chemical physics,electricity,control theory,biomedical,epidemic diseases,hydrology,electrochemistry,probability theory,signal processing,heat conduction and diffusion problems [1–7].Many researchers developed fractional-order models to describe real-world problems and studied their analytical and numerical solutions [8–11].These models involve different types of fractional derivative operators [12–15].The fractional telegraph equation is one of the fundamental mathematical models arising in the study of electrical signals in transmission line and wave phenomena [16–18].Basically,it belongs to the family of hyperbolic partial differential equations.Several numerical and analytical techniques have been proposed for solving these type of equations.In [19],the authors employed Adomian decomposition method for solving time and space fractional telegraph equations.Dehghan et al.[20] proposed variational method to explore the series solution to multi space telegraph equation.The authors in [21],employed Homotopy analysis method to explore the analytical solution of telegraph equation involving fractional time derivative.Later on,Hayat et al.[22] used Homotopy perturbation technique to study time fractional telegraph equation.They handled TFTE for both brownian and standard motion.In [23],Wei et al.applied fully discrete local discontinuous Galerkin finite element method to solve fractional telegraph equation.Hosseini et al.[24] studied the numerical solution of fractional telegraph equation by means of radial basis functions.Srivastava et al.[25] employed reduced differential transformation method for second order hyperbolic time fractional telegraph equation in one dimensional space.Wang et al.[26] analyzed anH1-Galerkin mixed finite element method for the numerical solution of time fractional telegraph equation.Modanli et al.[27] solved fractional order telegraph equation by means of Theta method.Xu et al.[28] applied Legendre wavelets direct method for solving fractional order telegraph equation.In [29],Wang et al.utilized spectral Galerkin approximation to study the approximate solution of TFTE.Kamran et al.[30]studied the numerical solution of TFTE by means of a Localized kernal-based approach.Here,in this work,we consider the following fractional order telegraph equation.

    whereψj(s)andφj(t) (j=1,2)are given andrepresent the Caputo fractional derivatives of orderαandβ,respectively.It is worth mentioning that in (1),α∈(1,2] andβ∈(0,1].However,this work is restricted to the class of problems involvingα=β+1 andα=2β.

    In this paper,we have studied the application of a redefined form of extended cubic B-spline(ECBS) functions for the numerical treatment of time-fractional Telegraph equation (TFTE).These functions are generalized forms of cubic B-spline functions involving one free shape parameter which provides the flexibility to modify the shape of the solution curve [31].Although,the degree of the piecewise polynomials is enhanced by one and the continuity of RECBS remains of order three.A finite-difference formula is used for the discretization of the Caputo time-fractional derivative.Usually,in collocation techniques,the Dirichlet’s type end conditions are imposed where the basis of spline functions vanish,but the typical ECBS functions do not vanish at boundaries.We have employed RECBS functions for spatial discretization,as these basis functions die out on the boundaries where the Dirichlet’s types of conditions are specified.The present approach is novel for the approximate solution of fractional PDEs and as far as we are aware,it has never been employed for this purpose before.

    The manuscript is composed as:Section 2 describes the redefined extended cubic B-spline functions.In Section 3,the numerical method has been explained.In Section 4,the stability analysis of proposed method is presented.In Section 5,we have derived the results for theoretical convergence.The approximate results and discussion are reported in Section 6.Finally,the concluding remarks have been given in Section 7.

    2 Redefined Extended Cubic B-Spline Functions

    Suppose the spatial domain [a,b] be portioned intoMparts of equal lengthh=such thata=s0

    whereξm(t)are real constants andλm(s,κ)are ECBS functions [32]:

    where?8 ≤κ≤1 is responsible for fine tuning the shape of the curve.The approximate solution(V?)rm=V?(sm,tr)and its first two derivatives with respect to space variables,atmth knot andrth time step,in terms ofξmcan be expressed as

    whereThe ECBS functionsλ?1,λ0,...,λM+1do not vanish at the boundaries when Dirichlet type end conditions are imposed.Therefore,we redefine these functions in such a manner that the resulting basis vanish at the boundaries [33].We eliminateandfrom Eq.(4) as

    where the weight functionΦ(s,t)and redefined ECBS (RECBS) functions are given by

    3 Numerical Technique

    We divide the time domain [0,T] intoRsubintervals [tr,tr+1] s.t.tr=rΔt,r=0,1,2,...,RandΔt=.The Caputo’s time fractional derivative att=tr+1,forα∈(1,2],can be discretized as

    wherepj=(j+1)2?α?(j)2?α,υ=(tr+1?w)and(Eα)is the truncation error.

    Also

    whereρ1is constant and

    ?pj∈Z+,?j

    ? 1=p0>p1>p2>p3>···>pr,pr→0 asr→∞

    ?(2p0?p1)++(2pr?pr?1)?pr=1

    Similarly,

    whereqj=(j+1)1?β?(j)1?β,υ=(tr+1?w)and(Eβ)is the truncation error.

    Also

    whereρ2is constant and

    ?qj∈Z+,?j

    ? 1=q0>q1>q2>q3>···>qr,qr→0 asr→∞

    Substituting (10) and (12) in (1) att=tr+1,we get

    Using theta-weighted scheme forθ=1,Eq.(14) takes the following form

    where

    Forr=0,v?1appears in Eq.(15).We use the initial conditions and substitutev?1=v0?Δtψ2(s)to get the following equation

    Forr=1,2,...,R,Eq.(15) is reshaped as

    Now,we discretize the spatial domain [a,b] byM+1 equally spaced knotsa=s0,s1,s2,...,sM=bsuch thatsm=s0+mh,m=0,1,...,Mand assume that the RECBS approximationV(s,t)for the exact solutionv(s,t)is given by

    whereΦ(s,t)and(s,κ)are defined in (8) and (9),respectively.

    The initial solution is given in (2).However,the control pointsξiatt=t1are required to start the main scheme (17).For this purpose,(18) is substituted into (16) to get the following system of equations

    Using (18) in Eq.(17),we obtain

    Eq.(20) represents a set of(M+1)equations involving(M+1)unknowns.This system of equations is solved to forand their values are plugged into (18) to get the required solution at(r+1)th time level.

    4 Stability

    We apply Fourier method to study the stability of our numerical method.Letanddenote the Fourier growth factor and its approximate value.We introduce the error termas

    whereUsing (21) in (20),the error equation at(r+1)st time level is given by

    If=εreινmh,whereι=andν=,then (22) is reshaped as

    After simplifying (23),we get the following result

    where

    Forr=0,the expression (23) takes the following form

    Now,assuming |εr|≤(1+η1)|ε0|forr>1,we use (24) to proceed as

    Consequently,following [34],we have

    Hence,the scheme stable.

    5 Convergence

    whereand

    The boundary conditions can be rewritten as

    Moreover,following [34],we have

    Now,we introduceandForr=0,Eq.(25) transforms into following relation

    Involving the absolute values ofand,we obtain

    Hence,employing the end constraints,we get≤F1h2,where F1is independent of spatial grid spacing.

    Utilizing the boundary conditions,we obtain≤Fh2.

    Hence,the last result is true for allr.Using the result[34],we get

    Consequently,using (26) and (27),we get

    Hence,in the light of above discussion together with (11) and (13),we conclude that the scheme isO(h2)accurate in spatial direction.However,(11) and (12) imply that the truncation error in temporal direction isO(Δt2?α+Δt1?β).This work is restricted to the class of problems involvingα=β+1 andα=2β.Therefore,theoretically the scheme isO(Δt2?α)whenα=1+βandO(Δt1?α/2)whenα=2β.

    6 Numerical Results

    To investigate the accuracy of presented technique,some numerical experiments are presented.For this purpose,following error norms have been used

    Also,the experimental order of convergence (EOC) is computed by following important formula [35]:

    Example 6.1.As the first experiment,we take the following multi term TFTE [29]

    whereα=β+1 and

    The exact solution of the problem isv(s,t)=t2sin(πs).

    The absolute error and temporal order of convergence for Example 6.1 along temporal direction usingM=24 and different values ofβare reported in Tab.1.It can easily be seen that our results are more accurate than the scheme based on generalized finite difference method(GFDM) [29].In Tab.2,we have computed the absolute errors by settingM=24,28 andΔt=0.1 corresponding to different grid points in spatial direction.Tab.3 gives spatial order of convergence(EOC) subject toβ=0.6 andΔt=0.1.The experimental rate of convergence of the current method is found to be in line with the theoretical appraisal.Fig.1 shows the physical behaviour of approximate solutions at different time levels whenβ=0.1,M=24 andΔt=0.1.The 3D visuals of exact and numerical solutions withβ=0.1,M=24 andΔt=0.1 are shown in Fig.2,whereas,Fig.3 depicts the absolute error between the exact and approximate solutions usingβ=0.1,M=36 andΔt=0.1.

    The piecewise defined approximate solution for Example 6.1 using proposed algorithm,whenβ=0.50,?1 ≤s≤1,M=20,Δt=0.01,is given by

    Example 6.2.Consider the TFTE [27]

    Table 1:Experimental order of convergence (EOC) for Example 6.1 when M=24 using different values of β

    Table 2:Absolute errors for Example 6.1 when Δt=0.1 using different values of β

    Table 3:Experimental order of convergence (EOC) for Example 6.1,when β=0.6 and Δt=0.1

    whereα=2,0<β≤1 and

    Figure 1:Exact and numerical solution for Example 6.1 at different time levels when Δt=0.1,β=0.1 and M=24

    Figure 2:Exact and approximate solution for Example 6.1 with M=24,Δt=0.1 and β=0.1.(a) 3D plot for exact solution.(b) 3D plot for approximate solution

    Figure 3:Absolute error for Example 6.1 when M=36,β=0.1 and Δt=0.1

    The analytical solution to this problem is sin(s)(t3+1).

    The approximate analytical solution for Example 6.2 using proposed method,whenβ=0.50,0 ≤s≤π,M=20 andΔt=0.01 is given by

    The absolute numerical errors in RECBS solution for Example 6.2 settingΔt=hat different values ofβare listed in Tab.4.It is clear that our results have better agreement with the exact solution in comparison to the theta-method (TM) [27].Fig.4 shows the physical behaviour of approximate solutions at different time levels whenβ=0.5,M=40 andΔt=0.025.The 3D visuals of exact and numerical solutions withβ=0.5,M=40 andΔt=0.025 are shown in Fig.5.Whereas,Fig.6 depicts the absolute error between the exact and approximate solutions usingβ=0.75,M=40 andΔt=0.025.

    Table 4:Absolute error norms for Example 6.2 using different values of M and β

    Figure 4:Exact and numerical solution for Example 6.2 at different time levels when Δt=0.025,β=0.5 and M=40

    Example 6.3Consider the multi term TFTE [30]

    whereβ=α?1

    Figure 5:Exact and approximate solution for Example 6.2 with Δt=0.025,β=0.50 and M=40.(a) 3D plot for exact solution.(b) 3D plot for approximate solution

    Figure 6:Absolute error for Example 6.2 when M=40,β=0.75 and Δt=0.025

    The exact solution is(s2?s)t.

    The numerical solution for Example 6.3,whenα=1.50,0 ≤s≤1,M=20,Δt=0.01 is given by

    The absolute numerical errors in RECBS solution to Example 6.3 usingΔt=0.1,α=1.95 corresponding to different grid points are listed in Tab.5.It is observed that our results are better than the localized kernel–based method (LKBM) [30].Fig.7 shows the physical behaviour of approximate solutions at different time levels whenα=1.5,M=100 andΔt=0.01.The 3D visuals of exact and numerical solutions withα=1.5,M=100 andΔt=0.01 are shown in Fig.8.Whereas,Fig.9 depicts the absolute error between the exact and approximate solutions usingα=1.5,M=100 andΔt=0.01.

    Table 5:Absolute error for Example 6.3 when Δt=0.1 for different values of s and α=1.95

    Figure 7:Exact and numerical solution for Example 6.3 at different time levels when Δt=0.01,M=100 and α=1.5

    Figure 8:Exact and approximate solution for Example 6.3 with M=100,Δt=0.01 and α=1.50.(a) 3D plot for exact solution.(b) 3D plot for approximate solution

    Example 6.4

    whereα=2β,

    Figure 9:Absolute error for Example 6.3 when M=100,α=1.50 and Δt=0.01

    The analytical solution ist2+βsin(2πs).The piecewise defined approximate solution for Example 6.4,whenβ=0.6,0 ≤s≤1,M=20,Δt=0.01 is given by

    The comparison ofL2?normfor Example 6.4 usingh=5,Δt=,(R=20,40,80)is reported in Tab.6.It is found that our proposed algorithm has better accuracy when compared to ECBSM [36].Tab.7 shows the comparison of the calculated values of the order of convergence with proposed method for different values of spatial grid pointsMusingβ=0.75 andΔt=0.01.Fig.10 shows the physical behaviour of numerical solutions at different time levels whenβ=0.5,M=40 andΔt=0.01.The 3D visuals of exact and numerical solutions withβ=0.5,M=40 andΔt=0.01 are shown in Fig.11,whereas,Fig.12 depicts the absolute error between the exact and approximate solutions usingβ=0.5,M=40 andΔt=0.01.Fig.13 represents the behaviour of solution curve for different values ofβ.

    Table 6:Absolute error norms for Example 6.4 using different values of M and β

    Table 7:Experimental order of convergence for Example 6.4 using different values of M and Δt=0.01

    Figure 10:Exact and numerical solution for Example 6.4 at different time levels when Δt=0.01,β=0.5 and M=40

    Figure 11:Exact and approximate solution for Example 6.4 with M=20,Δt=0.01 and β=0.5.(a) 3D plot for exact solution.(b) 3D plot for approximate solution

    Figure 12:Absolute error for Example 6.4 when M=20,β=0.5 and Δt=0.01

    Figure 13:Exact and numerical solutions for Example 6.4 with different values of β

    7 Conclusion

    This work is concluded with following remarks:

    1.An efficient algorithm based on a redefined set extended basis splines is proposed for numerical solution of multi-term time-fractional telegraph equation.

    2.The fractional time derivatives have been considered in the Caputo sense.

    3.The finite difference formulae have been used to discretize time-fractional derivatives while the discretization of spatial derivatives has been achieved by means of redefined extended B-spline functions.

    4.The spatial discretization used in this manuscript is superior to the other existing methods because the proposed method give continuous approximation with high accuracy to the solution curve of the unknown function and its derivatives at each and every point of the range of integration.

    5.The stability of presented algorithm has been proved along temporal grid.

    6.The theoretical results show that the accuracy of presented numerical approach in spatial direction is of orderO(h2)whereas in time direction it isO(Δt2?α)whenα=1+βandO(Δt1?α/2)whenα=2β.

    7.The numerical rate of convergence is in the line with theoretical results.

    8.The comparison of error norms reveals that in terms of accuracy and straightforward implementation,the proposed algorithm performs better than the methods in [27,29,30,36].

    Acknowledgement:We thank Dr.Nauman Khalid,Govt Post Graduate College,Faisalabad,Pakistan for his assistance in proofreading the manuscript.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久精品国产99精品国产亚洲性色| 女生性感内裤真人,穿戴方法视频| or卡值多少钱| 午夜老司机福利剧场| 三级毛片av免费| 国产aⅴ精品一区二区三区波| 熟妇人妻久久中文字幕3abv| 精华霜和精华液先用哪个| 狂野欧美激情性xxxx在线观看| 午夜精品在线福利| 国产在线精品亚洲第一网站| 九九在线视频观看精品| 精品一区二区免费观看| 欧美zozozo另类| 熟女人妻精品中文字幕| 老师上课跳d突然被开到最大视频| 中国美白少妇内射xxxbb| ponron亚洲| 精品一区二区免费观看| 在线观看美女被高潮喷水网站| 亚洲国产色片| 久久久精品大字幕| 99久久久亚洲精品蜜臀av| 国产精品免费一区二区三区在线| www.www免费av| 内地一区二区视频在线| 国产高清不卡午夜福利| 久久久久久久久久黄片| 一区二区三区免费毛片| 欧洲精品卡2卡3卡4卡5卡区| 日本成人三级电影网站| 亚洲自偷自拍三级| 99精品久久久久人妻精品| 亚洲在线观看片| 国产亚洲精品久久久久久毛片| 国产一区二区在线观看日韩| 色播亚洲综合网| 成熟少妇高潮喷水视频| .国产精品久久| 婷婷六月久久综合丁香| 国产精品久久久久久av不卡| 最近最新中文字幕大全电影3| 精品福利观看| 免费电影在线观看免费观看| 麻豆成人午夜福利视频| 在线国产一区二区在线| 亚洲 国产 在线| 99在线人妻在线中文字幕| 免费观看的影片在线观看| 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 深夜精品福利| 国产美女午夜福利| 91狼人影院| 午夜免费成人在线视频| 午夜亚洲福利在线播放| 国产久久久一区二区三区| 国产乱人伦免费视频| 久久精品夜夜夜夜夜久久蜜豆| 一夜夜www| 久久久国产成人精品二区| 国产伦在线观看视频一区| 国产精品福利在线免费观看| 久久久久久久精品吃奶| 欧美另类亚洲清纯唯美| 全区人妻精品视频| 亚洲内射少妇av| 久久久国产成人免费| 成人美女网站在线观看视频| 日韩一本色道免费dvd| 精品久久久久久久久av| 午夜爱爱视频在线播放| 久久久久免费精品人妻一区二区| 日韩精品有码人妻一区| 精品国产三级普通话版| 亚洲黑人精品在线| 亚洲av成人精品一区久久| 成年女人看的毛片在线观看| 久久久久久大精品| 精品日产1卡2卡| 亚洲最大成人中文| 久久亚洲精品不卡| 男人和女人高潮做爰伦理| 亚洲在线观看片| 日韩欧美 国产精品| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 在线观看舔阴道视频| 精品人妻视频免费看| а√天堂www在线а√下载| 婷婷丁香在线五月| 白带黄色成豆腐渣| 美女高潮喷水抽搐中文字幕| 人妻少妇偷人精品九色| 老司机深夜福利视频在线观看| 五月伊人婷婷丁香| 夜夜爽天天搞| 人妻丰满熟妇av一区二区三区| 精品一区二区三区人妻视频| 俄罗斯特黄特色一大片| 精品午夜福利视频在线观看一区| 成人特级黄色片久久久久久久| 国产精品国产三级国产av玫瑰| 国内精品宾馆在线| netflix在线观看网站| 亚洲乱码一区二区免费版| 国内毛片毛片毛片毛片毛片| 精品人妻一区二区三区麻豆 | 国产综合懂色| 亚洲精品亚洲一区二区| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 亚洲成人免费电影在线观看| 欧美性猛交黑人性爽| 成年免费大片在线观看| av福利片在线观看| 在线免费观看的www视频| 亚洲av免费高清在线观看| 精品国内亚洲2022精品成人| 日本色播在线视频| 99久久精品国产国产毛片| 精品国内亚洲2022精品成人| 美女免费视频网站| 亚洲四区av| 欧美潮喷喷水| 亚洲成人中文字幕在线播放| 精品欧美国产一区二区三| 麻豆一二三区av精品| av在线观看视频网站免费| 国产黄色小视频在线观看| 成熟少妇高潮喷水视频| 91久久精品电影网| 色播亚洲综合网| 一本精品99久久精品77| 精品人妻1区二区| 国产高清有码在线观看视频| 久久久久精品国产欧美久久久| 国产一区二区三区视频了| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久久久电影| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 最新在线观看一区二区三区| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 男女那种视频在线观看| 91午夜精品亚洲一区二区三区 | 小说图片视频综合网站| 国产黄a三级三级三级人| 久久精品国产亚洲网站| 亚洲人成网站在线播放欧美日韩| 听说在线观看完整版免费高清| 一级av片app| 在线a可以看的网站| 国产精品一区二区三区四区久久| 91精品国产九色| 国产精品98久久久久久宅男小说| 亚洲av日韩精品久久久久久密| 欧美中文日本在线观看视频| 国内精品美女久久久久久| 最近视频中文字幕2019在线8| 人妻久久中文字幕网| 九九在线视频观看精品| 嫩草影院精品99| 亚洲人成网站在线播| 日韩中文字幕欧美一区二区| 亚洲av一区综合| 内地一区二区视频在线| 人人妻,人人澡人人爽秒播| 两个人视频免费观看高清| 国产aⅴ精品一区二区三区波| 精品人妻偷拍中文字幕| 欧美成人一区二区免费高清观看| 午夜日韩欧美国产| 成人国产麻豆网| 亚洲四区av| 欧美日本视频| 国产成年人精品一区二区| 在线免费观看不下载黄p国产 | 69av精品久久久久久| 国产色爽女视频免费观看| 午夜福利在线在线| 给我免费播放毛片高清在线观看| 欧美激情国产日韩精品一区| 少妇的逼好多水| 又爽又黄无遮挡网站| 久久香蕉精品热| 综合色av麻豆| 精品99又大又爽又粗少妇毛片 | 国产亚洲欧美98| 亚洲经典国产精华液单| 我要看日韩黄色一级片| 男女那种视频在线观看| 久久精品国产自在天天线| 国产精华一区二区三区| 伦理电影大哥的女人| АⅤ资源中文在线天堂| 国产精品久久电影中文字幕| 神马国产精品三级电影在线观看| 日韩高清综合在线| 欧美日韩瑟瑟在线播放| 成年女人永久免费观看视频| 亚洲久久久久久中文字幕| 日韩欧美 国产精品| 一区二区三区四区激情视频 | 日韩欧美在线二视频| 久久热精品热| 欧美成人一区二区免费高清观看| 欧美+日韩+精品| 亚洲av.av天堂| 在线免费观看不下载黄p国产 | 简卡轻食公司| 熟女电影av网| 69人妻影院| 国产色婷婷99| 日韩欧美一区二区三区在线观看| 欧美中文日本在线观看视频| 嫩草影视91久久| 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 国产蜜桃级精品一区二区三区| 成人国产麻豆网| 99精品久久久久人妻精品| 欧美日韩瑟瑟在线播放| 极品教师在线免费播放| 联通29元200g的流量卡| 日日撸夜夜添| 精品日产1卡2卡| 国产爱豆传媒在线观看| 亚洲精华国产精华精| 成人精品一区二区免费| 欧美精品国产亚洲| 国产v大片淫在线免费观看| 两个人的视频大全免费| 俺也久久电影网| 内射极品少妇av片p| 国产成年人精品一区二区| 国产精品久久久久久久久免| 此物有八面人人有两片| 国产欧美日韩一区二区精品| .国产精品久久| 亚洲性夜色夜夜综合| 又爽又黄a免费视频| av天堂在线播放| 久久久久九九精品影院| 精品福利观看| 在线观看美女被高潮喷水网站| 亚洲欧美日韩高清在线视频| 香蕉av资源在线| 欧美中文日本在线观看视频| 久久欧美精品欧美久久欧美| 日韩欧美精品免费久久| 国产乱人伦免费视频| 亚洲狠狠婷婷综合久久图片| 国产精品野战在线观看| 天堂动漫精品| 亚洲天堂国产精品一区在线| www日本黄色视频网| 国产人妻一区二区三区在| 免费无遮挡裸体视频| 噜噜噜噜噜久久久久久91| 国产色爽女视频免费观看| eeuss影院久久| 乱系列少妇在线播放| 波野结衣二区三区在线| 日本a在线网址| 看片在线看免费视频| 免费av毛片视频| 韩国av在线不卡| 久久精品91蜜桃| 亚洲av熟女| 国产精品野战在线观看| 国产亚洲91精品色在线| 九色国产91popny在线| 亚洲精品日韩av片在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 免费人成视频x8x8入口观看| 特级一级黄色大片| 综合色av麻豆| 麻豆一二三区av精品| 亚洲一级一片aⅴ在线观看| 成年女人毛片免费观看观看9| 99久久久亚洲精品蜜臀av| 97热精品久久久久久| 看免费成人av毛片| 亚洲av第一区精品v没综合| 亚洲av中文字字幕乱码综合| 国产一区二区在线av高清观看| 久久久久久久久久久丰满 | 欧美xxxx性猛交bbbb| 女同久久另类99精品国产91| 一区二区三区免费毛片| 欧美最新免费一区二区三区| 欧美激情在线99| 亚洲午夜理论影院| 久久久久久国产a免费观看| 最近最新中文字幕大全电影3| 午夜a级毛片| 欧美3d第一页| av在线观看视频网站免费| 别揉我奶头~嗯~啊~动态视频| 精品不卡国产一区二区三区| 嫩草影院入口| 白带黄色成豆腐渣| 亚洲黑人精品在线| 国产白丝娇喘喷水9色精品| 免费大片18禁| 亚洲av第一区精品v没综合| 少妇的逼水好多| 国产欧美日韩精品亚洲av| 尤物成人国产欧美一区二区三区| 99久久精品热视频| 高清在线国产一区| 国产蜜桃级精品一区二区三区| 如何舔出高潮| 欧美日韩精品成人综合77777| 国产视频内射| 99国产极品粉嫩在线观看| 成人性生交大片免费视频hd| 免费在线观看影片大全网站| 午夜精品久久久久久毛片777| 日本黄色视频三级网站网址| 最后的刺客免费高清国语| 成人国产综合亚洲| 岛国在线免费视频观看| 国产免费男女视频| 观看美女的网站| 波多野结衣巨乳人妻| 久久久久久久久大av| 极品教师在线视频| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 久久久久久九九精品二区国产| 男人的好看免费观看在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美性猛交黑人性爽| 日韩大尺度精品在线看网址| 亚洲熟妇中文字幕五十中出| 又黄又爽又刺激的免费视频.| 一a级毛片在线观看| 国内精品久久久久久久电影| 亚洲 国产 在线| 给我免费播放毛片高清在线观看| 九九在线视频观看精品| 国产成人影院久久av| 少妇熟女aⅴ在线视频| 国产精品精品国产色婷婷| 联通29元200g的流量卡| 国产高清视频在线观看网站| 又黄又爽又刺激的免费视频.| 久久亚洲精品不卡| 亚洲av电影不卡..在线观看| 18禁黄网站禁片免费观看直播| 精品无人区乱码1区二区| 身体一侧抽搐| 欧美成人a在线观看| 搞女人的毛片| 18禁在线播放成人免费| 亚洲中文日韩欧美视频| 精品久久国产蜜桃| 国内精品久久久久精免费| 免费av毛片视频| 欧美极品一区二区三区四区| www日本黄色视频网| 桃色一区二区三区在线观看| 97碰自拍视频| 午夜爱爱视频在线播放| 999久久久精品免费观看国产| 亚洲精品影视一区二区三区av| 老司机深夜福利视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲在线观看片| 久久久久久久久大av| 中文字幕免费在线视频6| 午夜福利18| 三级毛片av免费| 国内精品美女久久久久久| 日韩欧美精品免费久久| 不卡一级毛片| 欧美xxxx性猛交bbbb| 亚洲 国产 在线| 午夜激情欧美在线| 自拍偷自拍亚洲精品老妇| 两人在一起打扑克的视频| 日本与韩国留学比较| 国内精品久久久久久久电影| 国产 一区精品| 老司机午夜福利在线观看视频| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 国产免费av片在线观看野外av| 内地一区二区视频在线| 日韩欧美一区二区三区在线观看| av在线老鸭窝| 女生性感内裤真人,穿戴方法视频| 午夜视频国产福利| 免费大片18禁| 欧美精品啪啪一区二区三区| 国产精品久久视频播放| 又紧又爽又黄一区二区| 在现免费观看毛片| 麻豆久久精品国产亚洲av| 1024手机看黄色片| 亚洲av中文av极速乱| 国产乱来视频区| 久久久久视频综合| 联通29元200g的流量卡| 国产精品一区二区在线不卡| 久久精品国产亚洲av涩爱| 午夜免费鲁丝| 成人亚洲精品一区在线观看 | 91狼人影院| 日本av手机在线免费观看| 国产欧美亚洲国产| 精品久久久精品久久久| 中文天堂在线官网| 啦啦啦啦在线视频资源| 黄片wwwwww| 99热这里只有精品一区| 美女国产视频在线观看| 国产淫语在线视频| 亚洲国产精品一区三区| 看免费成人av毛片| 亚洲综合精品二区| 欧美日韩综合久久久久久| 国产在视频线精品| 欧美精品人与动牲交sv欧美| 国产亚洲一区二区精品| 成人国产麻豆网| 精品亚洲成国产av| 精品久久国产蜜桃| 色5月婷婷丁香| av国产精品久久久久影院| 久久女婷五月综合色啪小说| 99久久精品国产国产毛片| 国产av码专区亚洲av| 久久久久网色| 汤姆久久久久久久影院中文字幕| 纯流量卡能插随身wifi吗| 美女国产视频在线观看| 日韩一区二区视频免费看| 国产高清国产精品国产三级 | 一本久久精品| 国产永久视频网站| 美女视频免费永久观看网站| 久久久久久久久大av| 成人综合一区亚洲| 搡老乐熟女国产| 国产探花极品一区二区| 最后的刺客免费高清国语| 午夜福利网站1000一区二区三区| 三级国产精品片| 美女主播在线视频| 免费黄频网站在线观看国产| 国产成人午夜福利电影在线观看| 国产av码专区亚洲av| 一二三四中文在线观看免费高清| 最近中文字幕2019免费版| 精品一区二区三区视频在线| 国产精品成人在线| 高清在线视频一区二区三区| 免费在线观看成人毛片| 国产精品无大码| 亚洲精品乱码久久久v下载方式| 99久久中文字幕三级久久日本| 精品一品国产午夜福利视频| 偷拍熟女少妇极品色| 色5月婷婷丁香| 丰满乱子伦码专区| 日韩成人伦理影院| 91久久精品国产一区二区成人| 欧美人与善性xxx| 欧美另类一区| 91狼人影院| 欧美成人a在线观看| 免费观看av网站的网址| 麻豆精品久久久久久蜜桃| 久久国产乱子免费精品| av黄色大香蕉| 国产亚洲午夜精品一区二区久久| 国产探花极品一区二区| 免费观看的影片在线观看| 亚洲精品视频女| 晚上一个人看的免费电影| 亚洲一级一片aⅴ在线观看| 另类亚洲欧美激情| 久久6这里有精品| 在线天堂最新版资源| 97精品久久久久久久久久精品| 亚洲天堂av无毛| 尤物成人国产欧美一区二区三区| 黑人猛操日本美女一级片| 日韩,欧美,国产一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产乱人视频| 特大巨黑吊av在线直播| 精品午夜福利在线看| 人妻一区二区av| 久久午夜福利片| 国产高潮美女av| 久久精品久久久久久久性| 亚洲国产av新网站| 亚洲av中文字字幕乱码综合| 91精品国产国语对白视频| 我的老师免费观看完整版| 99热这里只有是精品在线观看| 九九久久精品国产亚洲av麻豆| 男人添女人高潮全过程视频| 最近中文字幕高清免费大全6| 肉色欧美久久久久久久蜜桃| 成年免费大片在线观看| 最近最新中文字幕免费大全7| 国产在线男女| 日日摸夜夜添夜夜爱| 男女免费视频国产| 国产精品久久久久久久久免| 五月玫瑰六月丁香| 一个人看视频在线观看www免费| 美女cb高潮喷水在线观看| 久久99精品国语久久久| 欧美高清性xxxxhd video| 精品久久久精品久久久| 男女啪啪激烈高潮av片| 成年av动漫网址| 2018国产大陆天天弄谢| www.av在线官网国产| 国产老妇伦熟女老妇高清| 亚洲成人中文字幕在线播放| 成人综合一区亚洲| 久久97久久精品| 亚洲精品aⅴ在线观看| 如何舔出高潮| 日韩av免费高清视频| 国产在线视频一区二区| 国产淫片久久久久久久久| 欧美日韩精品成人综合77777| 黄色欧美视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲av日韩在线播放| 极品教师在线视频| 免费久久久久久久精品成人欧美视频 | 国产深夜福利视频在线观看| 激情五月婷婷亚洲| 成人亚洲欧美一区二区av| 韩国av在线不卡| av免费在线看不卡| 欧美+日韩+精品| 亚洲av免费高清在线观看| 少妇人妻一区二区三区视频| 精品久久久噜噜| 国产黄片视频在线免费观看| av在线蜜桃| 中文字幕亚洲精品专区| 日韩av免费高清视频| 国产白丝娇喘喷水9色精品| 国产 精品1| 日本wwww免费看| 日韩在线高清观看一区二区三区| 午夜福利影视在线免费观看| 深夜a级毛片| 精品一区二区三卡| 国产免费视频播放在线视频| 亚洲激情五月婷婷啪啪| 国产日韩欧美亚洲二区| 成人18禁高潮啪啪吃奶动态图 | 国产高清三级在线| 综合色丁香网| 亚洲精品aⅴ在线观看| 亚洲美女搞黄在线观看| 男女国产视频网站| 国产有黄有色有爽视频| 美女高潮的动态| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲美女视频黄频| 18+在线观看网站| 亚洲国产最新在线播放| 只有这里有精品99| tube8黄色片| 日本av手机在线免费观看| 永久免费av网站大全| 国产久久久一区二区三区| 青春草亚洲视频在线观看| 永久网站在线| 国产精品蜜桃在线观看| 黑人猛操日本美女一级片| 精品国产一区二区三区久久久樱花 | 亚洲丝袜综合中文字幕| 国产免费视频播放在线视频| 汤姆久久久久久久影院中文字幕| 亚洲av成人精品一区久久| 日日摸夜夜添夜夜爱| 亚洲av国产av综合av卡| 精品亚洲成a人片在线观看 | 一级毛片黄色毛片免费观看视频| 亚洲精品中文字幕在线视频 | 久久99热这里只频精品6学生| 国内少妇人妻偷人精品xxx网站| 直男gayav资源| 中国国产av一级| 老女人水多毛片| av在线播放精品| 久久精品人妻少妇| 新久久久久国产一级毛片| 一级毛片久久久久久久久女| 午夜福利在线观看免费完整高清在| 香蕉精品网在线| 久久久精品94久久精品| 少妇高潮的动态图| 一级黄片播放器| 国产男人的电影天堂91| 亚洲经典国产精华液单| 妹子高潮喷水视频| 男女边吃奶边做爰视频| 高清午夜精品一区二区三区|