• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Problems via a Convergence Accelerated Decomposition Method of Adomian

    2021-04-27 10:28:46MustafaTurkyilmazoglu

    Mustafa Turkyilmazoglu

    1Department of Mathematics,Hacettepe University,Ankara,06532,Turkey

    2Department of Medical Research,China Medical University Hospital,China Medical University,Taichung,40447,Taiwan

    ABSTRACT The present paper is devoted to the convergence control and accelerating the traditional Decomposition Method of Adomian (ADM).By means of perturbing the initial or early terms of the Adomian iterates by adding a parameterized term,containing an embedded parameter,new modified ADM is constructed.The optimal value of this parameter is later determined via squared residual minimizing the error.The failure of the classical ADM is also prevented by a suitable value of the embedded parameter,particularly beneficial for the Duan–Rach modification of the ADM incorporating all the boundaries into the formulation.With the presented squared residual error analysis,there is noneed to check out the results against the numerical ones,as usually has to be done in the traditional ADM studies to convince the readers that the results are indeed converged to the realistic solutions.Physical examples selected from the recent application of ADM demonstrate the validity,accuracy and power of the presented novel approach in this paper.Hence,the highly nonlinear equations arising from engineering applications can be safely treated by the outlined method for which the classical ADM may fail or be slow to converge.

    KEYWORDS Nonlinear equations;Adomian decomposition method;modification;convergence acceleration

    1 Introduction

    Researchers prefer an easily accessible and user friendly method requiring less computational labor while accurately approximating highly nonlinear equations resulting from mathematical modeling of real-life phenomena.The Adomian decomposition method (ADM) is one such popular technique capable of dealing with the prevailing nonlinearities by means of Adomian polynomials [1,2].A modification of the classical ADM is proposed within the current study based on the recent publications [3,4] successfully generating fast convergent ADM series solutions with as small Adomian polynomials as possible in the solution series.

    A quick literature survey exhibits that ADM has been applied to many nonlinear equations [5].To classify some of the recent bibliography,algebraic equations were contained within the references [6,7].The ordinary differential equations were dealt within the citations [8–14].The articles [15–18] covered the efforts to partial differential equations.Mathematical analysis of the convergence of ADM to certain nonlinear equations was fulfilled in the publications [19–21].It can be successfully used to gain correct physical parameters domain [22].A traffic model was also very recently treated in [23] via the Adomian method.The publications by [24,25] present investigation of some nonlinear problems via different numerical approaches.

    It is now well-known that an inadequate arrangement of the classical ADM series may lead to non-convergent solutions or solutions with a poor convergence rate.To avoid these shortcomings,a parameter is generally inserted at the leading term of the Adomian series and later it is subtracted at the first order term not to break down the equation structure.This procedure was pursued by the recent publications [11,17,18].However,how a proper value of the inserted parameter will be determined was not mentioned in these references.Instead,a randomly chosen value was assigned to it.A variety of modifications were also offered in the articles [26–31].A successful formulation of the ADM was made in the recent work of [3] which was named as the optimal ADM.Further applications of the homotopy analytic approximate method may be found in the literature [32–35].

    The motivation of the current work is,benefiting from the idea in [11],to devise a method that greatly improves the mathematical property of classical ADM.Within this aim,a reorganization of the ADM series is proposed by altering the early terms so that they incorporate extra controllable terms.The reason of such a treatment is to get a rapidly converging ADM solutions with the least Adomian polynomials.In place of randomly selecting,an optimum value of the introduced parameter is later determined through error on the grounds of total residual.With this value at our disposal,there is no doubt that the ADM method is convergent to the true solution in a most rapid way,not demanding a verification of the ADM solutions by numerical ones.The failure of the classical ADM in the usual form or in the Duan–Rach formulation is also prevented by a suitable value of the embedded parameter.The present approach can also extend the region of convergence of the traditional method.Examples of physical value are provided to justify and validate the given procedure.

    2 Traditional Decomposition Method of Adomian

    The usual steps of traditional ADM can be inferred from the aforementioned citations.The methodology in brief is such that under an invertible linear operatorLand a forcing functionf,it is desired to approximate the functionuhaving the nonlinearityN(u)and satisfying the general nonlinear equation

    with the initial and/or boundary restrictions

    Having inverted (1) under the restrictions (2) generally leads to

    wheregis due to the conditions in (2).Ifuis a single scalar parameter like (1) representing an algebraic equation,then there is no suchgin (3),whereas,in the case of a variableu,L?1denotes an integral operator giving rise togin (3).Then (3) is a mixed Volterra-Fredholm type equation so-called as the Duan–Rach formulation in the recent literature,see for instance [13,14].

    The subsequent series decompositions ofuandN(u)

    in whichAn’s are the classical Adomian polynomials,are later substituted into (3).The solutionuof (1) is finally generated from the recurrence relation

    As a result,by means of the relations from (5),an approximate series solution of orderMis obtained as

    which serves for practical purposes.

    In general,the procedure in (5) yields convergent ADM series solutions,see for instance [19–21].If not,to achieve convergent solutions or for computational conveniences some modifications in the termsuiin (5) are implemented as in the articles [11,12],without a proper mathematical evidence and support.

    3 A Modified Decomposition Method of Adomian

    To overcome the divergence of classical ADM or to speed up the convergence rate of the ADM series,the leading order termu0in (5) (which is in compliance with the previous implementations,in for instance [11]) or some of the early terms,callue,0 ≤e≤Me,in (5) will be modified so that the modification will account for the change in the ADM by incorporating parameterized terms(h)withhan embedded unknown parameter [3].To exemplify,consider the modified version of (5) in the manner

    The following conditions for parameterized terms in the new algorithm (7) should be added

    so that it can be reduced to the traditional ADM forh=0.

    It is remarked that there is no a unique way of selecting the(h)terms,but they must be as simple as possible in line with the simplicity inspiration of the ADM method itself.For instance,constants depending onhor simple power functions (or simple integrable functions)in combination withhcan be used,refer to the illustrations belove for more details.We should remark that in the absence of tilde terms (orh) (7) dully conforms with (5).Having inserted such tilde terms in the modified ADM (7),the question now arises,how to determine the correct or proper value ofh? So far,in ADM applications of this kind,only random or trial values are preassigned,see for instance [11] amongst others.On the other hand,we may either observe the least change in the plot of some physical quantities,the method is so-called as the constanth-level curves [36] giving rise to rough estimates forh,or we outline the following rigorous algorithm to determine the best or optimalh.

    Algorithm.Consider the squared residual error corresponding to (1) defined by

    where eitherL2(Ω)orL(Ω)norms are employed.Moreover,uin (8) is owing to the modified ADM from (7).The optimum value ofhis such that it minimizes the squared residual error (8)at the approximation levelM.

    As a consequence,the above Algorithm will generate the best value ofhwhich will ensure the convergence of ADM series solution (7) in a fastest rate of convergence.The minimization task of(8) may be fulfilled by means of contemporary softwares,such as MAPPLE or MATHEMATICA.

    4 Applications

    Potential applications of the introduced ADM in (7) are given here.To control the error,we use the norm

    with the exactueand ADM solutionu.

    4.1 An Algebraic Equation

    As stated by Adomian [1] the classical ADM method (5) fails to result in a convergent solution of

    for the solutionu=?0.73205080757.On the other hand,when the new ADM is built via

    Fig.1 displaysh-level curves at selected truncation ordersM.The intervalh∈(?0.35,?0.25)is observed to yield convergent ADM solutions,which excludes the traditional ADM withh=0 [1].

    Through the residual minimization at the approximation levelM=8,h=?0.2679492 is obtained as the optimum.The history and why this value is the best for the convergence control,as compared to the failure of classical ADM can be visualized in Tab.1.

    Figure 1:Convergence control parameter h regarding (11)

    Table 1:Convergence of modified ADM (12) for Eq.(11) with different h.Paranthesis is for the absolute error (10)

    The convergent solution of (11) with the new modified ADM (12) at the approximation levelM=8 is found to be

    Steve went home from school, thoughtful, that afternoon. Walking into the house, he took one look around. Both parents were passed out, in various stages of undress, and the stench was overpowering! He, quickly, gathered up his camping gear, a jar of peanut butter, a loaf of bread, a bottle of water, and this time...his schoolbooks. Grim faced and determined7, he headed for the woods.

    for which the optimumhis tabulated in Tab.1.

    4.2 Equation Involving Integral

    Consider the equation given in [30]

    The modified ADM method (7) for the current integral problem is adopted as

    We findh∈(?1500,1500)for the convergence interval in Fig.2,refer also to [3].A comparison and convergence accelerating feature of the present ADM can be visualized from the Tab.2.It is noticed from Tab.2 that even the 4th-order modified ADM (16) is able to produce the solution accurate of order 10?10,which is adequate in practical purposes.

    Figure 2:Convergence control parameter h regarding (15)

    Table 2:Errors in (15) regarding (14).Parenthesis denotes the optimum values of h

    4.3 A Fin with Porosity Feature

    As taken from [14],a porous fin can be modelled via

    In (17),temperature along the fin isu,andsandβare physical parameters.

    The modified ADM algorithm (7) here is

    At the selected valuess=5 andβ=1,the history of convergence is tabulated in Tab.3.It is seen how useful the modified ADM over the classical one by more than doubling the convergence rate at the same number of iterations.The CPU times evaluated by MATHEMATICA through the residual are shown in Tab.3.The list proves the improved efficiency of the current method over the classical ADM.

    Table 3:Residual errors of classical ADM and modified ADM (18) for Eq.(17) with s=5 and β=1.Parenthesis denote the optimum values of h

    Table 4:Numerical and modified ADM results regarding (17) [3]

    Instead of the modification of ADM in (18),we may use the Duan–Rach formulation involving no unknown parameters within it except the embedded parameterh

    Choosings=β=1,Fig.3 showsh?level curves,indicating that the prescription ofhmust be made within the range(0.39,0.49)to ensure the convergence of the modified ADM 19.The exact values ofu(0)andu′(1)are respectively,0.522738093570 and 1.13937891581.

    Figure 3:Convergence control parameter h regarding (17)

    To demonstrate the power of the modified ADM (19),Tab.5 shows the squared residual error(9) from both the novel and classical ADM.It is unfortunate to observe that the Duan–Rach formulation (19) withh=0 fails to converge,however,the optimum embedded parameterhinsures that the modified ADM is convergent for the present physical problem,even if the convergence is not as fast as the modified formulation in (18).

    Table 5:Values offor (17) from the classical and modified ADM methods

    Table 5:Values offor (17) from the classical and modified ADM methods

    M √Res(0) √Res(h) h 4 0.91×101 9.379592752×10?3 0.5717083134 8 5.90×102 8.485113566×10?5 0.4466738418 12 1.90×105 1.712138085×10?5 0.4205569783 16 9.50×107 8.888688579×10?6 0.4108495377 20 5.68×1010 3.872408211×10?6 0.4061899784

    4.4 Gelfand Equation

    The Gelfand equation [5] involves exponential nonlinearity [8]

    withu′(0)=?0.4636325917 [3].

    In line with the publications [5,8] whenh=0,the modified ADM is

    u0(η)=0,

    whereAn(h,η)are the polynomials of Adomian foreu(η),encompassing all boundary conditions in (20) within the Duan–Rach approach,and we have

    Fig.4 shows the predicted convergence control parameters.WithM=12,an optimum value for the embedding parameterhis found to be?0.01274 from the Algorithm in (9).We find that the residual error is 1.6835117258×10?15withu′(0)=?0.4636325917 from the present approach.On the other hand,and error of 4.813740934×10?9withu′(0)=?0.4636325899 is calculated from the traditional ADM.Our value is given by

    The success of the present modified ADM (21) is thus obvious.

    Figure 4:Convergence control parameter h regarding (20)

    4.5 Electrostatic Cantilever Micro-Electromechanical System

    The beam-type electrostatic actuators for the nonlinear cantilever micro-electro mechanical systems are modelled by the fourth-order boundary value problem from [11]

    To comply with the Duan–Rach Adomian decomposition method in [11],the present modified ADM is

    where the Adomian polynomialsAn(h,η)are due to the negative-power nonlinearities in (23),see[11] for more details.

    For the fixed parametersK=3,αK=0.2,β=0.5 andγ=0.25,Fig.5 produced from (24)helps us guess the proper values of embedded parameterh.Small values ofhare seen to be adequate to get convergent ADM solutions.

    Figure 5:Convergence control parameter h regarding (23)

    Fig.6 demonstrates different approximation levelsM,and it signifies toh=0.1045421730 as the optimumhwhenM=10.With this optimum value of the embedding parameter,the squared residual error for the current problem is=3.2727623195×10?9,whereas the classical residual error withh=0 is=8.7520447833×10?5.This implies that much more Adomian series terms are required for the classical ADM to reach the accuracy of the modified ADM here.Moreover,from [11] the physical values areu′′(0)=?0.56764 andu′′′(0)=1.07585 evaluated with 12 Adomian polynomials.The present values areu′′(0)=?0.5676684138 andu′′′(0)=1.0758898885 evaluated with only 10 Adomian polynomials,correct to 9 decimal places.Hence,the advantage of the present modification is clear for the present highly nonlinear physical problem.We should remark that with the present Algorithm,the validation of the ADM results against the numerical ones is no longer a prerequisite.Also,there is no need to evaluate error remainder functions,nor to consult to Pade-approximates to increase the accuracy,both of which as implemented in [11].

    Figure 6:Error regarding (23) for various M

    The convergence accelerating feature of the present modified ADM (24) as compared to the classical ADM is better visualized from the Tab.6.Table also shows the comparable CPU times.

    Table 6:Convergence history of modified ADM vs.classical ADM for Eq.(23)

    4.6 Electrostatic Cantilever Nano-Electromechanical System

    Nonlinear model for the electrostatic double cantilever nano-electromechanical system in the case of Casimir force (K=4) is given by [11]

    We adopt the subsequent modified ADM,that conforms to the classical ADM (h=0) given in [15]

    where the Adomian polynomialsAn(h,η)are due to the negative-power nonlinearities in (25),see[11] for more details.

    For the specific parametersαK=1,β=1.5 andγ=0.5,Fig.7 displays the constanth-level curves drawn at the approximation levelM=8.Similar to the previous example,very small values ofhare seen to be adequate to get convergent ADM.

    In order to evaluate the performance of modified ADM over the classical one,Tab.7 shows the unknown physical quantitiesu′′(0)=u′′(1)andu′′′(1)at several truncation ordersM.The faster convergence rate of the present ADM is apparent.

    To illustrate,the analytical formula computed via the present algorithm (26) atM=4 for the value ofu′′(0)is given by

    which is of almost nine degree of accuracy as seen from Tab.7.

    Table 7:Values of u′′(0) and u′′′(1) for (25) from the classical and modified ADM methods

    4.7 Lane–Emden Equation

    We consider the Lane–Emden type boundary value problem from [9]

    that models the oxygen diffusion in a spherical cell with Michaelis–Menten uptake kinetics.We take into account the subsequent constants to comply with the literature [9]

    k=4,r=0.76129,s=0.03119.

    The modified ADM that is offered for the present problem is then

    which conforms with the classical ADM of [9] in the limith→0 and the Adomian polynomialsAn(h,η)are to account for the nonlinearity.The interest is to determine the physical value ofu(0)=a.

    We present Tab.8 to demonstrate the performance of the modified ADM (29) versus the classical ADM.The expected practical accuracy is met at lower Adomian series approximations via the modified method.

    Table 8:Values of u(0)=a and for (28) from the classical and modified ADM methods

    Table 8:Values of u(0)=a and for (28) from the classical and modified ADM methods

    M √Res(0) √Res(h) a (h=0) a h 2 5.05920434×10?5 1.82258949×10?5 0.896870943665 0.896877048532?0.0289267765 4 2.24898539×10?7 2.18219055×10?8 0.896877026028 0.896877046709?0.0321993310 6 1.12229262×10?9 2.83931728×10?11 0.896877046624 0.896877046709?0.0335012655

    4.8 The Fluid Flow of Jeffery–Hamel

    The Jeffery–Hamel fluid flow problem is modelled via [22]

    withα,ReandHaare the physical parameters [13].

    Following the successful Duan–Rach ADM formulation of the problem (30) in [17],we propose the following modified version

    whereAn(h,η)=?(4?Ha)α2u′n(η)?are the Adomian polynomials.

    For the diverging channel,considering the specific parametersα=50,Re=50 andHa=1000 to be in line with [13],the constanth-level curves are depicted in Fig.8 at the approximation orderM=8.Accordingly,we expect the convergency of the modified ADM (31) in the vicinity of zero.

    The performance of modified ADM (31) is next measured by computing the centerline velocityu(0.5)(numerical value is 0.764064240111) at different approximation levelsMas shown in Tab.9.It is observed that 10 digits of accuracy is quickly reached by the present ADM,whereas the classical ADM falls behind.Hence,even though it was not clearly mentioned in [13] (see Tab.1 therein),the accuracy of order 10?8as obtained via the classical ADM demands at least 15–20 Adomian polynomials,whereas only 6 Adomian polynomials are sufficient to gain the same accuracy with the present modification.

    Figure 8:Convergence control parameter h regarding (30)

    Table 9:Values of u(0.5) and for (30) from the classical and modified ADM methods

    Table 9:Values of u(0.5) and for (30) from the classical and modified ADM methods

    M √Res(0) √Res(h) u(0.5) (h=0) u(0.5) h 2 6.92050730×10?2 1.13520536×10?2 0.763699786377 0.764097626541?0.0180187189 4 1.94819917×10?3 1.87302552×10?5 0.764051346961 0.764064279681?0.0179816107 6 7.53651632×10?5 3.95453415×10?8 0.764063696627 0.764064239975?0.0178807933 8 3.34939742×10?6 9.72265613×10?11 0.764064214850 0.764064240111?0.0178880579

    4.9 Squeezing Two Parallel Plates

    The flow squeezed between two parallel plates are modelled by the nonlinear equations [22]

    see [14] for the flow parameters.

    In accordance with the Duan–Rach ADM formulation of the physical problem (32) in [14],we set the modified ADM in the form

    where

    are the Adomian polynomials.

    To make a comparison with the classical ADM in [14],we set the parametersS=1,φ=0.02 and concentrate on Cu-Water nanofluid withρs=8933 andρf=997.1.The corresponding constanth-level curves are plotted in Fig.9.It appears that the convergence of the modified ADM(32) is guaranteed ifhis selected in the overlapping interval(?1,1).

    Figure 9:Convergence control parameter h regarding (32)

    The effects of iterative numberMon the skin frictionu′′(1)are next demonstrated in Tab.10.The advantage of the modified ADM (33) with optimum values of embedding parameterhis clearly observed against the classical ADM withh=0.It appears that the accuracy of classical ADM of O(10?8)as displayed in Tab.2 of [18] clearly requires more Adomian series terms (seeM=8 in Tab.10) as compared to the less terms needed in the modified ADM here.

    Table 10:Values of u′′(1) and for (32) from the classical and modified ADM methods

    Table 10:Values of u′′(1) and for (32) from the classical and modified ADM methods

    M √Res(0) √Res(h) u′′(1) (h=0) u′′(1) h 2 2.67740258×10?1 6.68835495×10?2?3.6764267174?3.6917310584?0.0991340307 4 1.61057990×10?2 7.92481375×10?4?3.6952425904?3.6965216730?0.1097576248 6 1.09939458×10?3 6.61056361×10?6?3.6964553942?3.6965506329?0.1111585030 8 8.10446170×10?5 7.71479681×10?8?3.6965431988?3.6965505168?0.1112323962 10 6.28790630×10?6 1.09803715×10?9?3.6965499276?3.6965505117?0.1112270087

    The following fourth-order modified ADM series solution for the skin friction may serve good to the purpose of engineering applications if not high accuracy is required

    4.10 Nonlinear Oscillator Problem

    Let us consider the nonlinear oscillator Duffing problem (see [36] (Chapter 5) and [4])

    which involves a cubic nonlinearity.

    The improved ADM can be given via

    with the Adomian termsAn(t)in (35).

    The classical Adomian method withh=0 in (36) is not convergent,whereas withh=0.68981924,the residual error becomes=0.02589439,and the convergency is satisfied as revealed in Fig.10 for the domain of definition.

    Figure 10:Convergence control parameter h regarding (35)

    4.11 Diffusion Equation

    Let us consider the nonlinear diffusion equation,see [18] and [3]

    for which [18] presents an exact solution.

    The form of modified ADM for the partial differential equation (37) is

    where

    An(h,x,t)

    are the Adomian polynomials corresponding to the function?u?u3+(u2ux)x.

    Fig.11 shows the constanth-level curves at the approximation levelM=10,indicating a very large range of embedding parameterh.

    Figure 11:Convergence control parameter h regarding (37)

    Actually at this truncation of the modified ADM series,it is obtained

    Defining the squared residual error for (37) as

    Tab.11 tabulates how the modified ADM has smaller residual errors.

    Table 11:The residual errors for (37) from the classical and modified ADM methods

    Table 11:The residual errors for (37) from the classical and modified ADM methods

    M √Res(0) √Res(h) h 2 3.067520559×10?1 1.126425884×10?2 0.78155339805 4 1.905329025×10?2 2.920732957×10?4 0.84725848564 6 5.284431922×10?4 4.431860700×10?6 0.88282078470 8 8.251967252×10?6 4.360598101×10?8 0.90500266099 10 8.249541273×10?8 2.997208214×10?10 0.92013994524

    4.12 Burger’s Equation

    The final example is known as Burger’s equation [3]

    with an exact solutionu(x,t)=.

    Figure 12:Convergence control parameter h regarding (41)

    The form of modified ADM for the partial differential equation (40) is

    where

    An(h,x,t)are the Adomian polynomials corresponding to the functionuxx?uux.

    The traditional ADM withh=0 in the domain 0 ≤x≤1,0 ≤t≤1 is noticed to fail to produce a convergent series as also clear in Fig.12,becauseh=0 is not lying in the overlapping region.

    With the definition

    Tab.12 justifies the success of the present modified ADM over the classical divergent one,both in terms of accuracy and computational cost.

    Table 12:The residual errorsfor (41) from the classical and modified ADM methods

    Table 12:The residual errorsfor (41) from the classical and modified ADM methods

    M √Res(0) CPU √Res(h) (hopt) CPU 5 1.75×102 0.012 4.674547981×10?2 (2.2068296567) 0.039 10 1.67×105 0.053 4.082713247×10?3 (2.3147042279) 0.078 15 1.39×108 0.101 6.755704561×10?4 (2.3159080855) 0.145 20 1.24×1011 0.242 2.741368603×10?5 (2.3820449852) 0.289

    5 Concluding Remarks

    The aim of the present work is to present superiority over the well-known Adomian decomposition method (ADM) often employed in the recent literature to analytically approximate solutions to highly nonlinear algebraic and differential equations of some real physical motions.Within this aim,a reformulation of the ADM is targeted to prevent first the failure and then convergence acceleration of the classical Adomian polynomials.

    To accomplish the objective,the classical ADM is modified by inserting some simple parameterized terms into the early iterates involving an embedded parameter to control and pacing the convergence of the generated ADM series.In order to determine the best suitable value or the optimum value of this parameter,squared residual minimizing of the governing equation is proposed.This enables us to overcome the divergence of the classical ADM,and more importantly,there is no need to check out the results against the numerical ones,as usually has to be done in traditional ADM studies,since the optimum embedded parameter obtained is an insurance for ADM series convergence in a most rapid manner.

    Physical examples selected from the recent application of ADM demonstrate the validity,accuracy and power of the present approach in terms of generating the convergent solution within the least number of iterations.In particular,the Duan-Rach modification of the ADM incorporating all the boundaries mostly used in the recent ADM applications takes great benefit of the present proposal,otherwise there is always the inevitable danger that it may lead to non physical solutions.The present approach successfully extends the convergence interval of the studied problem.In conclusion,the present formulation of ADM offers a promising tool to treat more strongly nonlinear equations/systems of real life phenomena.

    Funding Statement:The author received no specific funding for this study.

    Conflicts of Interest:The author declares that he has no conflicts of interest to report regarding the present study.

    国产精品久久久av美女十八| 精品久久蜜臀av无| 一区二区三区国产精品乱码| 999久久久精品免费观看国产| 午夜a级毛片| 亚洲性夜色夜夜综合| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 欧美 亚洲 国产 日韩一| 日韩精品青青久久久久久| 天堂√8在线中文| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 欧美日韩黄片免| 亚洲精品一二三| 中亚洲国语对白在线视频| 国产亚洲欧美98| svipshipincom国产片| 精品久久蜜臀av无| 久久伊人香网站| 黄色丝袜av网址大全| 怎么达到女性高潮| 免费在线观看日本一区| 欧美成人午夜精品| 亚洲久久久国产精品| 亚洲黑人精品在线| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品合色在线| 国产主播在线观看一区二区| 中国美女看黄片| 国产精品 欧美亚洲| 欧美人与性动交α欧美软件| 久久久国产精品麻豆| 制服诱惑二区| 午夜成年电影在线免费观看| 女人精品久久久久毛片| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美精品综合一区二区三区| 91精品国产国语对白视频| 真人做人爱边吃奶动态| 精品国产国语对白av| 黄色毛片三级朝国网站| 夜夜躁狠狠躁天天躁| 一区二区三区国产精品乱码| 日日摸夜夜添夜夜添小说| 超碰成人久久| 国产亚洲精品一区二区www| 热99国产精品久久久久久7| 岛国在线观看网站| 欧美成人午夜精品| 亚洲成人免费电影在线观看| 岛国在线观看网站| 老司机亚洲免费影院| 国产精品98久久久久久宅男小说| 不卡av一区二区三区| 精品久久久精品久久久| 精品少妇一区二区三区视频日本电影| 久久香蕉精品热| 亚洲伊人色综图| 黄色女人牲交| 琪琪午夜伦伦电影理论片6080| 亚洲七黄色美女视频| 男女之事视频高清在线观看| 午夜精品久久久久久毛片777| 少妇的丰满在线观看| 亚洲 欧美一区二区三区| 国产免费男女视频| 成人特级黄色片久久久久久久| 男人舔女人的私密视频| 国产精品香港三级国产av潘金莲| 国产又色又爽无遮挡免费看| 啦啦啦 在线观看视频| 大陆偷拍与自拍| 一边摸一边抽搐一进一小说| 亚洲人成电影免费在线| 亚洲免费av在线视频| 国产成人av教育| 日本wwww免费看| 18禁裸乳无遮挡免费网站照片 | 一区二区三区国产精品乱码| 97碰自拍视频| 免费人成视频x8x8入口观看| 国产高清国产精品国产三级| 久久精品91蜜桃| 美女高潮喷水抽搐中文字幕| 69精品国产乱码久久久| 亚洲av片天天在线观看| 欧美av亚洲av综合av国产av| 国产有黄有色有爽视频| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲| 国产高清激情床上av| 日韩人妻精品一区2区三区| 成人亚洲精品av一区二区 | 久久欧美精品欧美久久欧美| 亚洲精品中文字幕在线视频| 美女午夜性视频免费| 黄色视频,在线免费观看| 99热国产这里只有精品6| 91老司机精品| 麻豆成人av在线观看| 波多野结衣av一区二区av| 精品久久久久久久毛片微露脸| 成人黄色视频免费在线看| 国产在线精品亚洲第一网站| 色哟哟哟哟哟哟| 久久精品影院6| 别揉我奶头~嗯~啊~动态视频| 国产片内射在线| 久久精品亚洲熟妇少妇任你| 在线观看66精品国产| 午夜精品国产一区二区电影| 亚洲伊人色综图| 久久精品国产亚洲av香蕉五月| 在线免费观看的www视频| 久久久久久大精品| 天堂中文最新版在线下载| 久久天躁狠狠躁夜夜2o2o| 欧美日韩视频精品一区| 热99re8久久精品国产| 亚洲精品国产色婷婷电影| 日日夜夜操网爽| 亚洲一区二区三区色噜噜 | 一级毛片精品| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 在线国产一区二区在线| 亚洲精品久久成人aⅴ小说| 又大又爽又粗| 欧美日韩国产mv在线观看视频| 一级a爱片免费观看的视频| 国产精品久久久久久人妻精品电影| 色尼玛亚洲综合影院| 日本黄色视频三级网站网址| 国产精品av久久久久免费| 成人亚洲精品av一区二区 | 热99re8久久精品国产| 国产亚洲精品综合一区在线观看 | 亚洲成av片中文字幕在线观看| 男女下面进入的视频免费午夜 | 美女扒开内裤让男人捅视频| 搡老熟女国产l中国老女人| ponron亚洲| 岛国视频午夜一区免费看| 十八禁人妻一区二区| 狂野欧美激情性xxxx| 黄片播放在线免费| 国产免费男女视频| 日本免费一区二区三区高清不卡 | 亚洲av成人av| 欧美精品一区二区免费开放| 久久久国产一区二区| 又黄又粗又硬又大视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩av久久| 999精品在线视频| 男女午夜视频在线观看| 久久中文看片网| av在线天堂中文字幕 | 最新美女视频免费是黄的| 又黄又粗又硬又大视频| 黑人巨大精品欧美一区二区mp4| 亚洲一区二区三区色噜噜 | 日本a在线网址| 国产欧美日韩综合在线一区二区| 欧美日韩精品网址| 免费高清在线观看日韩| 成人18禁高潮啪啪吃奶动态图| 999久久久国产精品视频| 久久99一区二区三区| 亚洲免费av在线视频| 美女国产高潮福利片在线看| 午夜福利免费观看在线| 国内久久婷婷六月综合欲色啪| 免费在线观看影片大全网站| 欧美激情高清一区二区三区| 黄色怎么调成土黄色| 男女午夜视频在线观看| 欧美色视频一区免费| av电影中文网址| 18禁国产床啪视频网站| 亚洲第一欧美日韩一区二区三区| 少妇粗大呻吟视频| 夜夜爽天天搞| 亚洲专区字幕在线| 长腿黑丝高跟| 日本三级黄在线观看| 国产精品综合久久久久久久免费 | 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美三级三区| 成熟少妇高潮喷水视频| 99国产极品粉嫩在线观看| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 国产一区在线观看成人免费| 黄色片一级片一级黄色片| 色老头精品视频在线观看| 国产精品二区激情视频| 亚洲免费av在线视频| 久久香蕉精品热| 极品教师在线免费播放| 人人妻人人添人人爽欧美一区卜| 久久精品国产亚洲av香蕉五月| 国产精品美女特级片免费视频播放器 | 欧美性长视频在线观看| 亚洲精品国产精品久久久不卡| 精品久久蜜臀av无| 99久久人妻综合| 久久精品成人免费网站| 免费日韩欧美在线观看| 亚洲狠狠婷婷综合久久图片| 人人妻人人添人人爽欧美一区卜| 国产av一区二区精品久久| 国产精品美女特级片免费视频播放器 | 亚洲欧美激情在线| 69av精品久久久久久| 一级毛片女人18水好多| 久久亚洲精品不卡| 欧美黄色淫秽网站| 97碰自拍视频| 香蕉国产在线看| 国产精品久久久久成人av| 亚洲成av片中文字幕在线观看| 久久久久国产一级毛片高清牌| 黄色 视频免费看| 亚洲国产精品一区二区三区在线| 亚洲国产欧美网| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 欧美日韩黄片免| 亚洲av熟女| 99精品在免费线老司机午夜| 久久中文看片网| 久久精品国产99精品国产亚洲性色 | 久久精品亚洲精品国产色婷小说| 久久久久久久午夜电影 | 国产黄a三级三级三级人| 成人三级做爰电影| 亚洲成人免费av在线播放| 亚洲色图 男人天堂 中文字幕| 免费日韩欧美在线观看| 亚洲性夜色夜夜综合| 人人澡人人妻人| 亚洲国产看品久久| 性少妇av在线| 身体一侧抽搐| 电影成人av| 国产av一区在线观看免费| 国产深夜福利视频在线观看| 午夜福利在线观看吧| 咕卡用的链子| 女性生殖器流出的白浆| 最新美女视频免费是黄的| 巨乳人妻的诱惑在线观看| 18禁黄网站禁片午夜丰满| 少妇 在线观看| 亚洲性夜色夜夜综合| 国产成人av激情在线播放| 99re在线观看精品视频| 99久久精品国产亚洲精品| 999久久久精品免费观看国产| 国产成人精品无人区| 麻豆一二三区av精品| 在线免费观看的www视频| 久久草成人影院| 国产精品综合久久久久久久免费 | 99热国产这里只有精品6| 精品少妇一区二区三区视频日本电影| 交换朋友夫妻互换小说| 国产伦一二天堂av在线观看| 亚洲人成77777在线视频| 丰满迷人的少妇在线观看| 在线观看一区二区三区| 婷婷丁香在线五月| 亚洲成人免费av在线播放| 日韩有码中文字幕| 老司机靠b影院| av超薄肉色丝袜交足视频| 国产熟女xx| 在线天堂中文资源库| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 婷婷丁香在线五月| 一级a爱片免费观看的视频| 久久这里只有精品19| 身体一侧抽搐| 国产av又大| 亚洲欧美日韩另类电影网站| 久久人妻福利社区极品人妻图片| 精品午夜福利视频在线观看一区| 日韩免费高清中文字幕av| 久久人人精品亚洲av| 精品免费久久久久久久清纯| 多毛熟女@视频| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 如日韩欧美国产精品一区二区三区| 看免费av毛片| 亚洲国产精品999在线| 欧美日韩一级在线毛片| 午夜视频精品福利| 99香蕉大伊视频| 亚洲欧美激情在线| 久久久久九九精品影院| 在线观看免费视频日本深夜| www.www免费av| 精品福利观看| av网站免费在线观看视频| 搡老熟女国产l中国老女人| 五月开心婷婷网| 91老司机精品| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 国产xxxxx性猛交| 亚洲成a人片在线一区二区| 女人被躁到高潮嗷嗷叫费观| 国产精品成人在线| 国产无遮挡羞羞视频在线观看| av超薄肉色丝袜交足视频| 757午夜福利合集在线观看| 久久中文字幕一级| 亚洲欧美一区二区三区久久| av在线天堂中文字幕 | 99热只有精品国产| 久久人妻av系列| 久热这里只有精品99| 少妇的丰满在线观看| 新久久久久国产一级毛片| 久99久视频精品免费| 国产无遮挡羞羞视频在线观看| 99riav亚洲国产免费| 欧美精品亚洲一区二区| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 国产成人精品久久二区二区91| 老司机深夜福利视频在线观看| 嫩草影院精品99| 黄色毛片三级朝国网站| 久久精品人人爽人人爽视色| 9191精品国产免费久久| 一个人免费在线观看的高清视频| 精品国产国语对白av| 久久久久久大精品| 91在线观看av| 国内毛片毛片毛片毛片毛片| 午夜福利影视在线免费观看| 黄频高清免费视频| www日本在线高清视频| 性色av乱码一区二区三区2| 国产熟女xx| 亚洲性夜色夜夜综合| 91在线观看av| 午夜亚洲福利在线播放| 欧美激情久久久久久爽电影 | 久久草成人影院| 亚洲美女黄片视频| 中出人妻视频一区二区| 男女下面进入的视频免费午夜 | 国产精品久久久久久人妻精品电影| 在线十欧美十亚洲十日本专区| 欧美日韩乱码在线| 国产免费男女视频| 亚洲熟妇熟女久久| 成人三级做爰电影| 动漫黄色视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲久久久国产精品| 国产极品粉嫩免费观看在线| 亚洲色图综合在线观看| 巨乳人妻的诱惑在线观看| 欧美日韩一级在线毛片| 亚洲欧美精品综合一区二区三区| 国产成人精品在线电影| 高清在线国产一区| www.自偷自拍.com| 高清黄色对白视频在线免费看| 国产av一区在线观看免费| 97碰自拍视频| 中国美女看黄片| 看片在线看免费视频| 日韩 欧美 亚洲 中文字幕| 一区二区三区精品91| 免费在线观看视频国产中文字幕亚洲| 精品一品国产午夜福利视频| 欧美人与性动交α欧美精品济南到| 免费在线观看视频国产中文字幕亚洲| 男女床上黄色一级片免费看| 女人被狂操c到高潮| 精品少妇一区二区三区视频日本电影| 国产一区二区激情短视频| 夫妻午夜视频| 新久久久久国产一级毛片| 两人在一起打扑克的视频| 色在线成人网| www.精华液| 两个人免费观看高清视频| 成人影院久久| 国产一区二区三区综合在线观看| 看片在线看免费视频| 国产精品爽爽va在线观看网站 | 午夜老司机福利片| 女人高潮潮喷娇喘18禁视频| 国产单亲对白刺激| 精品人妻在线不人妻| 久久伊人香网站| 国产91精品成人一区二区三区| 久久人人爽av亚洲精品天堂| 啦啦啦 在线观看视频| 精品高清国产在线一区| 黄频高清免费视频| 一级a爱视频在线免费观看| 69av精品久久久久久| 久热爱精品视频在线9| 久久久久国内视频| 欧美日韩亚洲高清精品| 国产成人一区二区三区免费视频网站| 国产三级在线视频| 欧美午夜高清在线| 亚洲欧美日韩高清在线视频| 久久精品国产清高在天天线| 久久精品人人爽人人爽视色| 亚洲一码二码三码区别大吗| 国产aⅴ精品一区二区三区波| 日韩欧美一区视频在线观看| 99久久精品国产亚洲精品| 一进一出抽搐gif免费好疼 | 搡老熟女国产l中国老女人| 99在线人妻在线中文字幕| 精品一区二区三区av网在线观看| 久久精品国产亚洲av香蕉五月| 国产精品久久电影中文字幕| 亚洲国产精品999在线| 真人一进一出gif抽搐免费| 亚洲av五月六月丁香网| 国产一区二区在线av高清观看| 一级毛片女人18水好多| 亚洲成av片中文字幕在线观看| 两个人看的免费小视频| 日本 av在线| 亚洲avbb在线观看| 搡老岳熟女国产| 无人区码免费观看不卡| 老司机靠b影院| 视频在线观看一区二区三区| 国产免费男女视频| 国产黄a三级三级三级人| 国产片内射在线| 啦啦啦免费观看视频1| 久久这里只有精品19| 美女 人体艺术 gogo| 亚洲午夜理论影院| videosex国产| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av香蕉五月| 亚洲免费av在线视频| 成人国产一区最新在线观看| av超薄肉色丝袜交足视频| 欧美日韩瑟瑟在线播放| 一边摸一边抽搐一进一小说| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 熟女少妇亚洲综合色aaa.| 国产精品免费一区二区三区在线| 日日爽夜夜爽网站| 亚洲欧美一区二区三区黑人| 欧美成人午夜精品| 在线观看免费午夜福利视频| 亚洲美女黄片视频| 成人影院久久| 91成年电影在线观看| 老司机亚洲免费影院| 99riav亚洲国产免费| 999久久久国产精品视频| 少妇的丰满在线观看| 免费av毛片视频| 脱女人内裤的视频| 欧美日韩乱码在线| 日韩中文字幕欧美一区二区| 性少妇av在线| 国产精品久久久人人做人人爽| av国产精品久久久久影院| 黄色视频,在线免费观看| 国产乱人伦免费视频| 后天国语完整版免费观看| 国产男靠女视频免费网站| 多毛熟女@视频| 欧美日本中文国产一区发布| 日韩国内少妇激情av| 久久久久九九精品影院| av天堂在线播放| 国产精品久久电影中文字幕| 成年人免费黄色播放视频| 亚洲自偷自拍图片 自拍| 国产成人影院久久av| 日本免费一区二区三区高清不卡 | 99国产精品99久久久久| 国产成人精品久久二区二区91| 在线观看www视频免费| 极品人妻少妇av视频| 日本 av在线| av国产精品久久久久影院| 男女之事视频高清在线观看| 精品国产超薄肉色丝袜足j| 99久久精品国产亚洲精品| 黄色女人牲交| 国产成人精品久久二区二区免费| 交换朋友夫妻互换小说| 国产精品综合久久久久久久免费 | 亚洲情色 制服丝袜| 亚洲性夜色夜夜综合| 在线观看66精品国产| 三级毛片av免费| 久久狼人影院| 一级毛片精品| 啪啪无遮挡十八禁网站| 大型黄色视频在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 久久久水蜜桃国产精品网| www日本在线高清视频| 亚洲色图 男人天堂 中文字幕| 无遮挡黄片免费观看| 正在播放国产对白刺激| 天天添夜夜摸| 侵犯人妻中文字幕一二三四区| 在线观看日韩欧美| 午夜福利欧美成人| 一级毛片精品| 老鸭窝网址在线观看| ponron亚洲| 精品久久久久久成人av| 国产精品日韩av在线免费观看 | 男人舔女人下体高潮全视频| 一级毛片精品| 亚洲国产欧美一区二区综合| 日韩欧美国产一区二区入口| 正在播放国产对白刺激| 俄罗斯特黄特色一大片| 亚洲成人免费电影在线观看| 国产亚洲欧美98| 日韩欧美三级三区| 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 搡老岳熟女国产| 欧美最黄视频在线播放免费 | 亚洲av成人一区二区三| 1024视频免费在线观看| 亚洲精品一区av在线观看| 国产aⅴ精品一区二区三区波| 叶爱在线成人免费视频播放| 亚洲精品在线美女| 精品午夜福利视频在线观看一区| 国产黄a三级三级三级人| 欧美日韩av久久| 久久久精品国产亚洲av高清涩受| 他把我摸到了高潮在线观看| 欧美日韩国产mv在线观看视频| 黄片大片在线免费观看| 美女大奶头视频| 99精品在免费线老司机午夜| 一级片免费观看大全| 黑人巨大精品欧美一区二区蜜桃| 欧美大码av| 欧美日韩乱码在线| 成人av一区二区三区在线看| 午夜成年电影在线免费观看| 成在线人永久免费视频| 亚洲 欧美 日韩 在线 免费| 国产单亲对白刺激| 国产黄a三级三级三级人| 午夜激情av网站| 国产精品秋霞免费鲁丝片| 午夜免费观看网址| 免费在线观看视频国产中文字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费视频网站a站| 中文字幕av电影在线播放| 久久精品91无色码中文字幕| 午夜免费成人在线视频| 亚洲在线自拍视频| 高清黄色对白视频在线免费看| 男人舔女人的私密视频| 中文字幕最新亚洲高清| 精品免费久久久久久久清纯| 午夜精品国产一区二区电影| 久久久久精品国产欧美久久久| 久久人妻福利社区极品人妻图片| 悠悠久久av| www.精华液| av在线天堂中文字幕 | 一边摸一边抽搐一进一小说| 久久人人精品亚洲av| av国产精品久久久久影院| 国产精品久久视频播放| 天天躁狠狠躁夜夜躁狠狠躁| 日日爽夜夜爽网站| 日韩大码丰满熟妇| 在线观看一区二区三区激情| 窝窝影院91人妻| cao死你这个sao货| 乱人伦中国视频| 夜夜躁狠狠躁天天躁| 电影成人av| 亚洲成人精品中文字幕电影 | 黄片小视频在线播放| 免费在线观看视频国产中文字幕亚洲| 免费在线观看黄色视频的| 18禁国产床啪视频网站| www日本在线高清视频| 美女 人体艺术 gogo| 99精品欧美一区二区三区四区| 亚洲色图av天堂| 精品国产一区二区久久| 亚洲久久久国产精品|