• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of the soliton solutions for a complex modified Korteweg-de Vries equation by a finite difference method

    2021-04-26 03:19:14TaoXuGuoweiZhangLiqunWangXiangminXuandMinLi
    Communications in Theoretical Physics 2021年2期

    Tao Xu,Guowei Zhang,Liqun Wang,Xiangmin Xu and Min Li

    1 State Key Laboratory of Heavy Oil Processing,China University of Petroleum,Beijing 102249,China

    2 College of Science,China University of Petroleum,Beijing 102249,China

    3 Department of Mathematics and Physics,North China Electric Power University,Beijing 102206,China

    Abstract In this paper,a Crank-Nicolson-type finite difference method is proposed for computing the soliton solutions of a complex modified Korteweg-de Vries (MKdV) equation (which is equivalent to the Sasa-Satsuma equation) with the vanishing boundary condition.It is proved that such a numerical scheme has the second-order accuracy both in space and time,and conserves the mass in the discrete level.Meanwhile,the resulting scheme is shown to be unconditionally stable via the von Nuemann analysis.In addition,an iterative method and the Thomas algorithm are used together to enhance the computational efficiency.In numerical experiments,this method is used to simulate the single-soliton propagation and two-soliton collisions in the complex MKdV equation.The numerical accuracy,mass conservation and linear stability are tested to assess the scheme’s performance.

    Keywords: complex modified Korteweg-de Vries equation,finite difference method,soliton solutions

    1.Introduction

    Up to now,a number of integrable nonlinear evolution equations have been derived to describe various nonlinear wave phenomena,like the solitons,breathers and rogue waves [1-6].As a universe integrable model,the nonlinear Schr?dinger equation(NLSE)appears in optics[7],fluids[8],plasmas [9],quantum field theory [10],Bose-Einstein condensates [11],etc.Different from the Korteweg-de Vries equation,the NLSE field is complex and thus it admits the envelope solitons which are formed on the balance between the group velocity dispersion and cubic nonlinearity [7].By including some higher-order dispersion and nonlinear terms,the NLSE has also been generalized to describe the propagation of ultrashort optical pulses[12,13]and internal waves[14].When the third-order dispersion is considered,two important integrable versions are the Hirota equation[15]and Sasa-Satsuma (SS) equation [16].

    Through the Galilean-phase transformations,the Hirota equation and SS equation can be respectively written in the simple form [16-18]

    which are usually referred to be two integrable versions of the complex modified Korteweg-de Vries(MKdV)equation,where ξ and η are respectively the normalized time and space variables,p is the complex-valued function of ξ and η.Both equations(1)and (2) are solvable by the inverse scattering transform (IST)[16,19-21],and their integrable properties have been detailed from different aspects,including the Lax pair[16,22],Painlevé property[22],conservation laws[23,24],Hamiltonian structures[24,25],Darboux transformation (DT) [18,26-28],bilinear representation [15,29,30],and squared eigenfunctions [31].Meanwhile,a lot of efforts have been devoted to the exact analytical localized-wave solutions and their dynamical evolution behaviors (e.g.see [18-22,26-30,32-43]).

    Similarly to the NLSE,equation (1) has the bright soliton with the vanishing background and exhibits the standard elastic soliton collisions[15,17,18,26,32].Quite differently,because of the additional nonlinear term,equation(2)admits the singlehump (SH) and double-hump (DH) solitons as well as the multi-hump(MH)soliton having periodical oscillating behavior with the vanishing background[16,20].Moreover,it has been found that equation(2)can exhibit the unusual shape-changing soliton collisions,that is,the MH soliton changes into an SH or DH one upon a collision,and vice versa [27].From the viewpoint of physical applications,the DH and MH solitons may be used to design new error preventable line-coding scheme which is robust against the impairments arising from intrachannel collisions [44],and the shape-changing soliton collisions may have applications in all-optical information processing,optical switching,and routing of optical signals [45,46].In addition,we point that the symmetric and asymmetric DH solitons also exist in other integrable systems [47-49].

    However,we note that the exact analytical solutions of equation(2)may become weak in practical physical systems.This is because one must consider the possibility that the initial waves are not matched to the exact analytical solutions,or that there is a slight violation from the fixed ratio of the last three terms in equation (2) [7,50].Therefore,it is necessary and physically important to develop some numerical methods to simulate the soliton solutions of equation (2).In the past decades,a non-integrable complex MKdV equation was studied by the split-step Fourier spectral method [51],meshfree collocation method [52],Petrov-Galerkin method [53],and multisymplectic method [54,55].But for the integrable cases,only equation (1) was numerically solved by the integrable IST scheme which does not suffer from any against an initial perturbation.In section 5,we address the conclusions and discussions of this paper.

    2.Exact analytical soliton solutions

    By using the N-fold DT and choosing the seed solution p=0,we obtain the N-soliton solutions of equation(2)in the determinant form [27]

    in which the block matrices FN×L,GN×Land HN×Lare given by

    with

    Taking N=1 in solution (3),the one-soliton solution can be written as

    instabilities [56],whereas equation (2) has received little attention in the numerical aspect.

    In this paper,we will propose a conservative finite difference method to equation (2) with the vanishing boundary condition,and use it to numerically simulate the propagation and collisions for three types of solitons.The rest of this paper is organized as follows.In section 2,we review the exact analytical soliton solutions as well as their propagation and collision properties.In section 3,we present a Crank-Nicolson (CN)-type finite difference scheme for equation (2),and make numerical analysis for the accuracy,mass conservation and linear stability.In section 4,we perform numerical experiments for the one-and two-soliton solutions,and check the numerical accuracy,mass conservation and linear stability

    Figure 1.Three types of one-soliton solutions of equation (2): (a) Aan SH soliton with β1=0,γ1=1 and b) a DH soliton with β1=1,γ1=0 and c) an MH soliton with β1=0.5,γ1=1 an

    With N=2,solution (3)describes the elastic two-soliton collisions in the sense that the soliton velocities and masses are conserved before and after collision.According to the profiles of asymptotic solitons,the soliton collisions can be classified into three different cases [27]: (i) If (β1,β2),(γ1,γ2),(β1,γ2) or (β2,γ1)=0,the two interacting solitons are either the SH or DH ones.(ii) If none of βkand γk(k=1,2)is 0,the collisions occur between two MH solitons with internal oscillation.(iii) If only one of βk,γk(k=1,2)is 0,one soliton is always of the MH type,but the other one may experience the change of shape upon a collision,that is,the SH or DH soliton changes into an oscillating MH one,or the MH soliton into an SH or DH one.It should be noted that the shape-changing soliton collision is a peculiar property of equation (2),which has never been reported in other (1+1)-dimensional single-component integrable equations.

    3.CN-type finite difference scheme and numerical analysis

    By choosing an interval Ω=[L1,L2] properly and large enough,equation (2) with the vanishing boundary condition lim∣η∣→∞p=0 can be approximated by

    In order to obtain the numerical method for discretizing the problem (8)-(10),we choose the time step τ > 0 and mesh size h=(L2- L1)/N (with N as an even positive integer),and denote the grid points and time steps as

    Meanwhile,based on the Taylor series expansion,we give the following three useful formulas:

    where a,b,c are three positive integers.For simplicity,we introduce the finite difference operators

    withbeing the numerical approximation of p at the point(ηj,ξn) (j=0,… ,N; n=0,1,…).

    With proper integers for a,b and c,equations (12)-(14)give rise to

    Based on the above equations,we obtain the following finite difference scheme of equation (8) as follows:

    where the CN scheme is used for the temporal derivative,the central finite differences is used for the spatial derivatives,andMeanwhile,the boundary condition (9) is discretized as

    and the initial condition (10) is discretized as

    Remark 3.1.In addition to the boundary condition (21),we should also impose the numerical derivatives pη=0 at two end points of the interval Ω.Hence,we introduce the artificial grids j=-1 and j=N + 1,and take the following conditions:

    Lemma 3.2.The local truncation error of the difference equation (20) to equation (2) is of O(τ2+ h2).

    Proof.The result can be directly obtained by using equations (16)-(19). □

    For the CN-type finite difference scheme (20)-(22),we can get the mass conservation in the discrete level as follows.

    Lemma 3.3.If we define the discrete mass as

    then the CN-type finite difference method (20)-(22)conserves the mass in the discrete level,i.e.

    Proof.Multiplying equation (20) byand adding the resulted equation with its complex conjugate,we obtain

    Taking the summation of equation (26) from j=1 to N - 1 and noticing (24),we have

    This,together with the boundary conditions (21) and (23),implies that=0for all n ≥ 0. □

    Next,we examine the linear stability of the CN-type finite difference scheme (20)-(22) by the von Neumann method.Following the way in[57],we freeze some variables in the nonlinear terms of equation (20),that is,

    where (jk,nk) (k=1,2) are the indices such that

    Then,we perform the von Neumann analysis for the corresponding linear equation and obtain the following result.

    Lemma 3.4.The CN-type finite difference scheme (20)-(22)to equation (2) is unconditionally linearly stable.

    Proof.Replacing the nonlinear terms of equation(20)like the way in (28),we have the following linear equation:

    Then,we assume=vneikjhand substitute it into equation (31),yielding

    that is,

    From the above equation,the amplification factor can be obtained as

    where |v| ≡ 1 implies that the finite difference scheme (20)-(22) is unconditionally linearly stable. □

    Although the above finite difference scheme has the second-order accuracy both in space and time and enjoys the unconditional linear stability,one has to solve a set of fully nonlinear coupled algebraic equations at every time step,which is time consuming and tedious in programming.In order to improve the computational efficiency and make the algorithm easy to program,we adopt the iterative method[58,59] and the Thomas algorithm together to solve equation (20).To be specific,the iterative scheme can be described as follows:

    with

    From tnto tn+1,the iteration stops when

    where l=0,1,2,… denotes the iterative time,∈is a given error bond.For simplicity,the iterative equation (35) can be written in the matrix form

    Figure 2.Time evolution for three different one-soliton solutions of equation (2): (a) an SH soliton with β1=0,γ1=2 and λ1=-0.25 + 0.2i; (b) a DH soliton with β1=2,γ1=0 and λ1=-0.3 + 0.06i; (c) an MH soliton with β1=0.5,γ1=2 and i .

    with

    where the coefficients are given by

    At each step,we need to compute the coefficient matricesfrom pn,l.Thus,the penta-diagonal system of equation (37)can be solved via the Thomas algorithm,and the computational cost per time step is O(N).

    4.Numerical results

    In this section,we will numerically simulate the soliton evolution and collisions in equation (2) with the vanishing background,and test the numerical accuracy and linear stability of the adopted finite difference method.Throughout this section,we use the l∞-norm of error between the numerical solutionand the analytical solution p(ηj,ξn) as

    to quantify the numerical solutions.

    4.1.Numerical simulation of one-soliton evolution

    Figure 3.Time evolution of error norms for three cases of onesoliton solutions in figures 2(a)-(c).

    Figure 4.Time evolution of discrete masses for three cases of onesoliton solutions in figures 2(a)-(c).

    Figure 5.Time evolution of three different two-soliton solutions of equation(2):(a)shape-preserving collision between an SH soliton and a DH soliton with β1=β2=1,γ1=γ2=0,λ1=-0.32 - 0.1i and λ2=0.32 - 0.3i; (b) shape-preserving collision between two MH solitons with β1=β2=1,γ1=γ2=1,λ1=-0.375 - 0.12i and λ2=0.375 - 0.3i; (c) shape-changing collision between an MH soliton and a DH soliton with β1=β2=1,γ1=0,γ2=1,λ1=0.4 - 0.08i and λ2=-0.3 - 0.3i.

    Figure 6.Transverse plots of the two-soliton collision associated with figure 6(a) at (a) ξ=0,(b) ξ=17,(c) ξ=23,and (d) ξ=40.

    Figure 7.Time evolution of error norms for three cases of twosoliton solutions in figures 5(a)-(c).

    First,we simulate the one-soliton evolution by choosing solution (6)at ξ=-15 as the initial data.In our simulations,we take the interval Ω=[-30,30]so that the boundaries do not affect the soliton propagation.Meanwhile,we set h=0.05,τ=0.001 and error bond ∈=10-11for the iterative computation of equation (35).With different values of β1,γ1and λ1,figures 2(a)-(c) respectively illustrate the time evolution of the SH,DH and MH solitons,which shows the same dynamical behavior as the exact analytical solutions behave [27].More precisely,we calculate the error norms between the numerical and analytical solutions for ξ ∈ [0,30],as shown in figure 3.It can be seen that the error norms for three cases in figures 2(a)-(c) are within the order 10-3.Besides,we give the time evolution of the discrete masses defined in (24)from ξ=0 to 30(see figure 4),which shows that M1is a conserved quantity and agrees well with the exact value as given in (7).

    Figure 8.Time evolution of discrete masses for three cases of twosoliton solutions in figures 5(a)-(c).

    Figure 9.Time evolution of the error norms from ξ=0 to 10 for three types of one-soliton solutions with different initial perturbations,where the parameters are chosen as follows: (a) β1=0,γ1=2 and λ1=- 0.25 + 0.2i,(b) β1=2,γ1=0 and λ1=-0.3 + 0.06i,(c) β1=0.5,γ1=2 and

    Figure 10.Comparison of the exact analytical solution and numerical solutions at ξ=10 for (a) SH soliton,(b) DH soliton,and (c) MH soliton,where and the other parameters are the same as those in figure 9.

    We should mention that the time-splitting pseudo-spectral (TSPS) method is very effective in computing the envelope solitons of NLSE [60].In comparison,the TSPS method performs better in the accuracy and costs less CPU time than the finite difference method.However,the former requires a judicious choice of the time step and mesh size.For example,with the same τ,h and initial values as adopted in figures 2(a)-(c),the TSPS method shows a good performance in simulating the SH and DH solitons,but there occurs a severe distortion for the MH soliton when the evolution time is less than 10.

    4.2.Numerical simulation of two-soliton collisions

    Next,we simulate the collisions between two solitons for equation (2) by the same finite difference method.To do so,we take solution (3) at ξ=-20 as the initial data,and solve the problem numerically on the interval Ω=[-40,40] with the mesh size h=0.01,time step τ=0.001 and error bond ∈=10-11.In figures 5(a) and (b),we demonstrate the shape-preserving collisions between an SH soliton and a DH soliton and between two MH solitons,respectively.Ignoring the internal oscillation of MH solitons,all the interacting solitons in such two cases retain their individual shapes and velocities,and experience only a small phase shift after the collision.Differently,figure 5(c) depicts a shape-changing two-soliton collision,that is,an SH soliton changes into an MH one when interacting with another MH soliton.However,this type of collision is also elastic in the sense that the masses of interacting solitons are conserved,which can be confirmed in figure 8.All the collisions are clean and display no dispersed radiation (for example,see figure 6),indicating the elastic nature.

    Moreover,we give the time evolution of error norms and discrete masses from ξ=0 to 40 in figures 7 and 8.The error norms for three cases in figures 5(a)-(c) are within the order 10-3,but the last two cases exhibit a stronger oscillation with the time ξ because of the periodical behavior of MH solitons.From figure 8,we find that there is very little dissipation for the discrete masses and the values are very close to 4(|λ1R| + |λ2R|),which implies that the total masses of two solitons are conserved before and after the collision.

    Table 1.Spatial error analysis of three one-soliton solutions with time step τ=0.01 and different mesh sizes.

    Table 2.Time error analysis of three one-soliton solutions with mesh step h=0.001 and different time steps.

    4.3.Numerical accuracy and linear stability

    In this subsection,we use the one-soliton solution in (6) to numerically check the accuracy and linear stability of the CNtype finite difference method.

    By setting a fixed time step but different mesh sizes,table 1 shows the error norms at the time ξ=2 for three different one-soliton solutions,where the parameters are selected as β1=1,γ1=0,λ1=-0.25 + 0.2i for the SH soliton,β1=1,γ1=0,λ1=-0.3 + 0.075i for the DH soliton,andβ1= 0.5,γ1= 1,λ1=- 0 .3 +i for the MH soliton,respectively.Likewise,table 2 presents the error norms at the time ξ=2 with a fixed mesh size but different time steps,where the parameters for the three one-soliton cases are the same as those in table 1.Evidently,the numerical experiments verify that the CN-type finite difference method is second-order accurate both in space and time,which is consistent with the statement in lemma 3.2.

    For the study of linear stability,we perturb the initial solution p1in the form

    Regarding the above three one-soliton cases,figure 10 makes a comparison of the exact analytical solution and numerical solutions at ξ=10 within (41).It can be seen that the soliton solutions enjoy a good linear stability against the initial perturbations.

    5.Conclusions

    Recently,the soliton dynamics of the complex MKdV equation(2)(which is an integrable equation equivalent to the SS equation) has attracted much interest both in mathematics and physics.In this paper,we have proposed a CN-type finite difference method for computing the soliton solutions of equation (2) with the vanishing boundary condition.It has been shown that the resulting numerical scheme admits the second-order accuracy both in space and time,conserves the discrete mass,and enjoys the unconditional linear stability in the sense of the von Nuemann analysis.For solving a fully nonlinear coupled algebraic equations obtained from equation (20),we have adopted an iterative method and the Thomas algorithm to enhance the computational efficiency.In numerical experiments,we have simulated the single-soliton propagation and two-soliton collisions,which shows a good performance in the numerical accuracy,mass conservation and linear stability against with the initial perturbations.Therefore,our proposed numerical method is efficient in simulating the soliton solutions of equation (2) with the vanishing boundary condition.In the future,considering that equation(2)admits more abundant and complicated solitonic behaviors with the nonvanishing background[37,40,43],one may explore the finite difference scheme to equation(2)with the Neumann boundary condition [60].However,it will be a challenging work to maintain the discrete mass conservation.

    Acknowledgments

    This work was partially supported by the Natural Science Foundation of Beijing Municipality (Grant No.1212007),and by the Science Foundations of China University of Petroleum,Beijing (Grant Nos.2 462 020YXZZ004 and 2 462 020XKJS02).

    国产伦精品一区二区三区视频9| 寂寞人妻少妇视频99o| 日韩成人av中文字幕在线观看| 丰满乱子伦码专区| 丰满乱子伦码专区| 男女免费视频国产| 国产乱来视频区| 国产日韩一区二区三区精品不卡 | 一级黄片播放器| 久久国产亚洲av麻豆专区| 日韩中字成人| 亚洲电影在线观看av| 亚洲精品中文字幕在线视频 | 一级毛片我不卡| 日日摸夜夜添夜夜爱| 我的女老师完整版在线观看| av播播在线观看一区| 午夜福利网站1000一区二区三区| 国产一区有黄有色的免费视频| 美女福利国产在线| 色婷婷av一区二区三区视频| 夫妻性生交免费视频一级片| 丁香六月天网| 久久精品国产亚洲网站| 国产av国产精品国产| 啦啦啦中文免费视频观看日本| 日产精品乱码卡一卡2卡三| 国产精品蜜桃在线观看| 亚洲va在线va天堂va国产| 成人18禁高潮啪啪吃奶动态图 | 久久青草综合色| av免费在线看不卡| 亚洲精品自拍成人| 国产精品久久久久久久电影| 国产精品99久久久久久久久| 久久久久久久久久成人| 麻豆成人av视频| 99国产精品免费福利视频| 我要看黄色一级片免费的| 2018国产大陆天天弄谢| 另类精品久久| 国产男人的电影天堂91| 亚洲第一区二区三区不卡| 岛国毛片在线播放| 日本黄色日本黄色录像| 人人妻人人爽人人添夜夜欢视频 | 黄色配什么色好看| 精品卡一卡二卡四卡免费| av不卡在线播放| 欧美另类一区| 亚洲美女视频黄频| 制服丝袜香蕉在线| 欧美变态另类bdsm刘玥| 一级av片app| 精品久久久精品久久久| 各种免费的搞黄视频| 国内少妇人妻偷人精品xxx网站| 99久久精品一区二区三区| 亚洲精品中文字幕在线视频 | 国产成人aa在线观看| 免费观看的影片在线观看| 黑人猛操日本美女一级片| 一级a做视频免费观看| 久久久国产一区二区| 国产亚洲欧美精品永久| 有码 亚洲区| 亚洲内射少妇av| av一本久久久久| 免费大片18禁| 天堂8中文在线网| 亚洲成人手机| 777米奇影视久久| 亚洲欧美精品专区久久| 在线观看av片永久免费下载| 亚洲精品自拍成人| 久久久久久久久久久久大奶| 男女边摸边吃奶| 性高湖久久久久久久久免费观看| 久久亚洲国产成人精品v| h视频一区二区三区| 国产色爽女视频免费观看| 国产深夜福利视频在线观看| 国产成人aa在线观看| 我要看日韩黄色一级片| 国产精品欧美亚洲77777| 欧美亚洲 丝袜 人妻 在线| 26uuu在线亚洲综合色| 免费黄频网站在线观看国产| 亚洲精品中文字幕在线视频 | 黄色毛片三级朝国网站 | 亚洲av在线观看美女高潮| 国产深夜福利视频在线观看| 精品99又大又爽又粗少妇毛片| 自线自在国产av| 国产乱人偷精品视频| 国产一区有黄有色的免费视频| 中国美白少妇内射xxxbb| 午夜福利,免费看| 夫妻性生交免费视频一级片| 亚洲欧美日韩东京热| 人人妻人人看人人澡| av线在线观看网站| 内地一区二区视频在线| 国内精品宾馆在线| 精品久久久久久久久av| 成人毛片60女人毛片免费| 中文字幕人妻熟人妻熟丝袜美| av国产精品久久久久影院| 自拍偷自拍亚洲精品老妇| 午夜免费观看性视频| 在现免费观看毛片| 免费av中文字幕在线| 交换朋友夫妻互换小说| 国产成人freesex在线| 日本欧美视频一区| 美女内射精品一级片tv| 观看av在线不卡| 夫妻性生交免费视频一级片| 国产黄片美女视频| 亚洲精品久久久久久婷婷小说| av免费观看日本| 99久久中文字幕三级久久日本| 国产熟女午夜一区二区三区 | 蜜桃在线观看..| 黄色欧美视频在线观看| 色视频www国产| 成年人午夜在线观看视频| 好男人视频免费观看在线| 国产综合精华液| 777米奇影视久久| 精品久久久久久电影网| av播播在线观看一区| 男的添女的下面高潮视频| 91久久精品电影网| 成人综合一区亚洲| 亚洲精华国产精华液的使用体验| av有码第一页| 亚洲av日韩在线播放| 亚洲精品自拍成人| 精品国产一区二区久久| 黄片无遮挡物在线观看| 99热国产这里只有精品6| 我的女老师完整版在线观看| 久久久久久久久大av| 国产精品秋霞免费鲁丝片| 日韩制服骚丝袜av| 国国产精品蜜臀av免费| 国产av国产精品国产| 亚洲国产色片| 99热这里只有精品一区| 国产深夜福利视频在线观看| 又黄又爽又刺激的免费视频.| 国产欧美日韩精品一区二区| 看免费成人av毛片| www.av在线官网国产| 九九在线视频观看精品| 91精品一卡2卡3卡4卡| 乱码一卡2卡4卡精品| 丰满少妇做爰视频| 噜噜噜噜噜久久久久久91| 菩萨蛮人人尽说江南好唐韦庄| 三级经典国产精品| av线在线观看网站| 免费黄色在线免费观看| 校园人妻丝袜中文字幕| 男人舔奶头视频| 日韩,欧美,国产一区二区三区| 亚洲人成网站在线播| 久久久久网色| 国产精品免费大片| 亚洲电影在线观看av| 内地一区二区视频在线| 综合色丁香网| 蜜臀久久99精品久久宅男| 一级爰片在线观看| 国产爽快片一区二区三区| 久久精品国产亚洲av天美| 国产亚洲av片在线观看秒播厂| 丁香六月天网| 不卡视频在线观看欧美| 蜜臀久久99精品久久宅男| 日日撸夜夜添| 最近中文字幕高清免费大全6| 久久久久国产精品人妻一区二区| 99久久人妻综合| 国产伦精品一区二区三区四那| 九草在线视频观看| 久久久久久久久久久久大奶| 永久网站在线| 成人亚洲精品一区在线观看| 精品熟女少妇av免费看| 免费人妻精品一区二区三区视频| 亚洲av男天堂| 亚洲av电影在线观看一区二区三区| 青青草视频在线视频观看| 美女福利国产在线| 亚洲国产精品成人久久小说| 亚洲精品乱码久久久v下载方式| 久久久久久久国产电影| 国产亚洲av片在线观看秒播厂| 十八禁网站网址无遮挡 | 亚洲国产精品专区欧美| 男女国产视频网站| 2021少妇久久久久久久久久久| 一级黄片播放器| 国产亚洲一区二区精品| 国产日韩欧美亚洲二区| 久久av网站| 国产免费福利视频在线观看| 九九久久精品国产亚洲av麻豆| 一级二级三级毛片免费看| 国模一区二区三区四区视频| 性色avwww在线观看| 亚洲欧美清纯卡通| 夜夜骑夜夜射夜夜干| av不卡在线播放| 在线 av 中文字幕| 麻豆成人午夜福利视频| 欧美日韩av久久| 亚洲欧美日韩另类电影网站| 久久久久精品性色| 最近的中文字幕免费完整| 秋霞在线观看毛片| 99热这里只有是精品在线观看| 欧美3d第一页| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av天美| 丁香六月天网| 大香蕉久久网| 久久久午夜欧美精品| 亚洲一级一片aⅴ在线观看| 久久青草综合色| 韩国av在线不卡| 夜夜爽夜夜爽视频| 伦理电影大哥的女人| 亚洲真实伦在线观看| freevideosex欧美| 国产黄片美女视频| 亚洲,欧美,日韩| av视频免费观看在线观看| 夜夜爽夜夜爽视频| 在线观看人妻少妇| 又爽又黄a免费视频| 人妻系列 视频| 亚洲国产最新在线播放| 中文字幕av电影在线播放| 视频中文字幕在线观看| 午夜久久久在线观看| 欧美 日韩 精品 国产| 亚洲综合精品二区| 日韩一区二区视频免费看| 麻豆精品久久久久久蜜桃| 亚洲,一卡二卡三卡| 好男人视频免费观看在线| 高清黄色对白视频在线免费看 | av女优亚洲男人天堂| 美女cb高潮喷水在线观看| 久久精品久久精品一区二区三区| 噜噜噜噜噜久久久久久91| 搡老乐熟女国产| 丰满乱子伦码专区| 亚洲av中文av极速乱| 日韩一本色道免费dvd| 街头女战士在线观看网站| 少妇丰满av| 免费大片18禁| 国产片特级美女逼逼视频| 成年av动漫网址| 精品亚洲成a人片在线观看| 国产91av在线免费观看| 国产爽快片一区二区三区| 亚洲国产精品999| 欧美区成人在线视频| 一级,二级,三级黄色视频| 欧美日韩在线观看h| 国产真实伦视频高清在线观看| 精品国产乱码久久久久久小说| 我的女老师完整版在线观看| 卡戴珊不雅视频在线播放| 建设人人有责人人尽责人人享有的| 精品视频人人做人人爽| 少妇高潮的动态图| 大话2 男鬼变身卡| 伊人亚洲综合成人网| 如日韩欧美国产精品一区二区三区 | 国产精品偷伦视频观看了| 最近最新中文字幕免费大全7| 最新的欧美精品一区二区| 美女主播在线视频| 一级毛片 在线播放| 亚洲,一卡二卡三卡| 少妇熟女欧美另类| 成人美女网站在线观看视频| 欧美最新免费一区二区三区| 自拍偷自拍亚洲精品老妇| 日韩大片免费观看网站| 国产亚洲最大av| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美视频二区| 国产一区有黄有色的免费视频| 不卡视频在线观看欧美| 男人舔奶头视频| 有码 亚洲区| 亚洲精品日本国产第一区| 久久久久久久久久久丰满| 成年人免费黄色播放视频 | 亚洲国产精品一区二区三区在线| 亚洲精品视频女| 国产精品人妻久久久影院| 大片免费播放器 马上看| 中文字幕免费在线视频6| 日日摸夜夜添夜夜添av毛片| 久久久久久久久久久免费av| 中亚洲国语对白在线视频| 极品人妻少妇av视频| 亚洲欧美日韩高清在线视频 | 免费一级毛片在线播放高清视频 | 大香蕉久久网| 美女主播在线视频| av一本久久久久| 免费在线观看视频国产中文字幕亚洲 | 999精品在线视频| 久久国产精品男人的天堂亚洲| 亚洲精品国产精品久久久不卡| 视频在线观看一区二区三区| 十分钟在线观看高清视频www| 久久人人爽av亚洲精品天堂| 美女国产高潮福利片在线看| 悠悠久久av| 亚洲精品美女久久av网站| 中亚洲国语对白在线视频| 法律面前人人平等表现在哪些方面 | 在线观看舔阴道视频| 亚洲专区国产一区二区| 青春草视频在线免费观看| 黑丝袜美女国产一区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国内亚洲2022精品成人 | 999精品在线视频| 十八禁网站免费在线| 美女主播在线视频| 91精品国产国语对白视频| 丝瓜视频免费看黄片| 午夜福利一区二区在线看| 亚洲,欧美精品.| 亚洲av国产av综合av卡| 国产在视频线精品| 欧美日韩中文字幕国产精品一区二区三区 | 老司机靠b影院| videosex国产| 在线观看免费高清a一片| 国产不卡av网站在线观看| 精品久久蜜臀av无| 少妇粗大呻吟视频| 麻豆国产av国片精品| 黄网站色视频无遮挡免费观看| 久久99一区二区三区| 精品久久久精品久久久| 国产亚洲精品久久久久5区| 天天躁日日躁夜夜躁夜夜| 国产又色又爽无遮挡免| 高清在线国产一区| 国产精品久久久人人做人人爽| 亚洲成国产人片在线观看| 老熟女久久久| 欧美黄色淫秽网站| tube8黄色片| 欧美黄色淫秽网站| 搡老岳熟女国产| av片东京热男人的天堂| 涩涩av久久男人的天堂| 成人国产av品久久久| 12—13女人毛片做爰片一| 黄片大片在线免费观看| 亚洲中文字幕日韩| 国产黄频视频在线观看| 激情视频va一区二区三区| a在线观看视频网站| 欧美成人午夜精品| 十八禁人妻一区二区| 九色亚洲精品在线播放| 最近最新免费中文字幕在线| 亚洲精品在线美女| 免费黄频网站在线观看国产| 男女之事视频高清在线观看| 熟女少妇亚洲综合色aaa.| 午夜视频精品福利| 电影成人av| 国产成人精品久久二区二区免费| 精品一品国产午夜福利视频| 亚洲一区二区三区欧美精品| 在线观看舔阴道视频| 久久中文看片网| 国产男人的电影天堂91| 999久久久国产精品视频| 男女边摸边吃奶| 午夜成年电影在线免费观看| 成人av一区二区三区在线看 | 极品人妻少妇av视频| 又紧又爽又黄一区二区| 日韩电影二区| 久9热在线精品视频| 热99国产精品久久久久久7| 考比视频在线观看| 中文字幕人妻熟女乱码| 无限看片的www在线观看| 日韩视频在线欧美| 国产黄频视频在线观看| 精品国产国语对白av| 美女午夜性视频免费| 久久性视频一级片| 咕卡用的链子| av欧美777| 麻豆av在线久日| 国精品久久久久久国模美| 国产野战对白在线观看| 久久天躁狠狠躁夜夜2o2o| 色视频在线一区二区三区| 亚洲精品国产区一区二| 大香蕉久久网| 桃花免费在线播放| 欧美国产精品va在线观看不卡| 亚洲国产毛片av蜜桃av| 国产精品成人在线| 久久国产亚洲av麻豆专区| 91成人精品电影| 国产黄色免费在线视频| 日日摸夜夜添夜夜添小说| 国产主播在线观看一区二区| 精品国产一区二区久久| 精品福利观看| 午夜福利在线免费观看网站| 亚洲成国产人片在线观看| 亚洲国产欧美日韩在线播放| 精品免费久久久久久久清纯 | 亚洲精品美女久久av网站| 大码成人一级视频| 韩国高清视频一区二区三区| 肉色欧美久久久久久久蜜桃| 久久青草综合色| 国产日韩欧美在线精品| 男人操女人黄网站| 亚洲自偷自拍图片 自拍| 国产主播在线观看一区二区| 大香蕉久久成人网| 亚洲专区字幕在线| www.av在线官网国产| 久久久久国产一级毛片高清牌| 日韩一区二区三区影片| 午夜福利在线免费观看网站| 欧美中文综合在线视频| 亚洲精品国产av蜜桃| 麻豆av在线久日| 国产在视频线精品| 天天影视国产精品| 久久久久国内视频| 亚洲欧美一区二区三区久久| 国产xxxxx性猛交| 亚洲精品日韩在线中文字幕| 中文字幕av电影在线播放| 亚洲国产毛片av蜜桃av| 女警被强在线播放| 麻豆乱淫一区二区| 性色av乱码一区二区三区2| 日日爽夜夜爽网站| 日韩电影二区| 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| 叶爱在线成人免费视频播放| 两性夫妻黄色片| 国产高清国产精品国产三级| 99国产极品粉嫩在线观看| 免费人妻精品一区二区三区视频| 久久精品亚洲熟妇少妇任你| 午夜福利在线免费观看网站| 日本av手机在线免费观看| 国产av一区二区精品久久| 99热网站在线观看| 国产欧美日韩一区二区三区在线| 精品福利永久在线观看| 日韩免费高清中文字幕av| 精品少妇黑人巨大在线播放| www.精华液| 国产精品久久久av美女十八| 久久香蕉激情| 国产日韩欧美视频二区| 欧美精品一区二区大全| 在线观看舔阴道视频| 亚洲精品美女久久久久99蜜臀| 美女扒开内裤让男人捅视频| 亚洲少妇的诱惑av| 欧美日韩福利视频一区二区| 国产视频一区二区在线看| 51午夜福利影视在线观看| 99久久综合免费| 国产成人免费无遮挡视频| 国产一区有黄有色的免费视频| 久久这里只有精品19| 久久久久久人人人人人| 中国美女看黄片| 日韩大片免费观看网站| 成年人午夜在线观看视频| 日韩欧美免费精品| 亚洲欧美一区二区三区久久| 日韩熟女老妇一区二区性免费视频| 久久热在线av| 无遮挡黄片免费观看| 精品国产一区二区久久| 纯流量卡能插随身wifi吗| 国产精品偷伦视频观看了| 午夜激情av网站| 久久国产精品大桥未久av| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品999| 国产精品欧美亚洲77777| 91成人精品电影| 亚洲欧美成人综合另类久久久| 少妇粗大呻吟视频| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩亚洲综合一区二区三区_| 脱女人内裤的视频| 久久av网站| 久久ye,这里只有精品| h视频一区二区三区| av又黄又爽大尺度在线免费看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费午夜福利视频| 成人av一区二区三区在线看 | 悠悠久久av| 69精品国产乱码久久久| 婷婷色av中文字幕| 男人操女人黄网站| 国产精品1区2区在线观看. | 国精品久久久久久国模美| 国产一区二区三区综合在线观看| 精品一区在线观看国产| 在线永久观看黄色视频| 成人三级做爰电影| 日本欧美视频一区| 首页视频小说图片口味搜索| 99国产极品粉嫩在线观看| e午夜精品久久久久久久| 国产日韩欧美亚洲二区| e午夜精品久久久久久久| 涩涩av久久男人的天堂| 爱豆传媒免费全集在线观看| 日本五十路高清| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩亚洲高清精品| 大型av网站在线播放| 国产精品久久久久成人av| 中文字幕人妻丝袜一区二区| av网站在线播放免费| 国产真人三级小视频在线观看| 夜夜夜夜夜久久久久| 波多野结衣av一区二区av| 大片电影免费在线观看免费| 欧美av亚洲av综合av国产av| 欧美人与性动交α欧美精品济南到| 三上悠亚av全集在线观看| 亚洲欧美成人综合另类久久久| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人澡人人看| 精品人妻1区二区| 日韩大片免费观看网站| 久久精品熟女亚洲av麻豆精品| 欧美精品av麻豆av| h视频一区二区三区| 黑人猛操日本美女一级片| 欧美激情 高清一区二区三区| 窝窝影院91人妻| 性高湖久久久久久久久免费观看| 精品高清国产在线一区| 国产免费福利视频在线观看| 不卡av一区二区三区| 久久久久久久久久久久大奶| 国产视频一区二区在线看| 中文字幕人妻熟女乱码| av在线app专区| 欧美另类亚洲清纯唯美| 亚洲国产精品999| 国产1区2区3区精品| 肉色欧美久久久久久久蜜桃| 日韩 亚洲 欧美在线| 欧美日韩视频精品一区| 天天躁夜夜躁狠狠躁躁| 亚洲精品乱久久久久久| 在线永久观看黄色视频| av在线播放精品| 狠狠婷婷综合久久久久久88av| 九色亚洲精品在线播放| 国产熟女午夜一区二区三区| 女人被躁到高潮嗷嗷叫费观| 女人精品久久久久毛片| 日韩电影二区| 两个人看的免费小视频| 国产精品国产av在线观看| 亚洲欧美日韩高清在线视频 | 国产av一区二区精品久久| 熟女少妇亚洲综合色aaa.| 精品人妻在线不人妻| 欧美精品av麻豆av| 成年人免费黄色播放视频| 天堂8中文在线网| www.999成人在线观看| 9191精品国产免费久久| 最近中文字幕2019免费版| 一本久久精品| 亚洲欧美一区二区三区黑人| 欧美日韩av久久| 亚洲激情五月婷婷啪啪| 亚洲熟女毛片儿| 欧美人与性动交α欧美精品济南到| 99国产极品粉嫩在线观看| 国产亚洲欧美精品永久|