• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Site preference of Ti and Nb in L12-ordered Co-Al-W phase and their effect on the properties of the alloy: first-principles study

    2021-04-26 03:20:06ZihanWangJianxinZhangPanLiYoujianZhangHuixinJinandWenyangZhang
    Communications in Theoretical Physics 2021年2期

    Zihan Wang,Jianxin Zhang,Pan Li,Youjian Zhang,Huixin Jin and Wenyang Zhang

    Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education),School of Materials Science and Engineering,Shandong University,Jinan 250061,China

    Abstract In this work,the equilibrium structure,electronic and elastic properties of L12-ordered Co-Al-W and Co-Al-W-X (X=Ti and Nb) phase were calculated,using first-principles calculations.Among six nonequivalent sites(Al1,Al2,Co3,Co4,W5,W6),Ti and Nb prefer to occupy the W6 site,since the formation enthalpy of the system is lowest when Ti and Nb occupy the W6 site.Both Ti and Nb most affect the density of states of Al atoms.Compared with the Al2 site,which is the sub-preference site of Ti and Nb,the density of states of Al atoms is higher with the addition of Ti and Nb in the W6 site,which means that the latter system is more stable.According to the bulk modulus B,shear modulus G,Young’s modulus E,hardness HV and Poisson’s ratio σ,for Co3(Al,W) alloy,the addition of Ti and Nb in the W6 site decreases its hardness but increases its ductility.This work confirms that Ti and Nb can stabilize the Co3(Al,W)alloy and have a positive effect in solving the relatively poor ductility of this alloy,which has important implications for the development of cobalt-based alloys.

    Keywords: Co-Al-W phase,equilibrium structure,electronic and elastic properties,firstprinciples study

    1.Introduction

    Superalloys are a special type of high-temperature-resistant material that can work in complex stress and corrosive environments at temperatures above 800°C.In this class,the successful application is the nickel-based superalloys,which are widely used in turbine blades and engines [1,2].As a stable microstructure that contains cuboidal L12-ordered γ′-Ni3Al coherent precipitates appearing in a face-centered cubic(fcc)γ-Ni matrix,these alloys possess sustained high-temperature strength [3].However,for high-temperature alloys,high-temperature strength is not enough,and hot corrosion resistance is also required,since hot corrosion and oxidation are an important cause of material loss and performance degradation[4].In order to deal with the problem of hot corrosion,special coatings are used on nickel-based alloys,but such coatings are expensive and require high stability in longterm use [5,6].Therefore,an alloy with both high-temperature strength and hot corrosion resistance is required.

    Cobalt-based superalloys have excellent resistance to hot corrosion.They can form dense oxide scales to protect the internal metal from corrosion [7-9].However,the mechanical strength of nickel-based alloys is higher than that of cobaltbased alloys,which limits the application of cobalt-based alloys.The mechanical properties of cobalt-based alloys can be improved by adding solid solution elements and carbides to the alloys [10,11].The Co3Al phase does not exist in the binary Co-Al phase diagram[12].However,Sato et al discovered the L12-ordered Co-Al-W phase,which is similar to the γ′phase in the nickel-based alloy in the cobalt-based superalloy,which sets the goal of studying the cobalt-based superalloy[11].The thermodynamic stability of γ′-Co3(Al,W) with the addition of Ta and Hf was studied,and it was found that an addition of up to 2.2 at.%Ta does not change the phase equilibria in the Co-Al-W ternary system,but a small addition of Hf stabilizes the γ′phase[13].Elemental partitioning and mechanical properties of Ti- and Ta-containing Co-Al-W-based superalloys was studied by atom probe tomography and nanoindentation [14].In cobalt-based superalloys,Ti,Ta,Nb,Mo and V tend to enter the γ′ phase and increase the solvus temperature of the γ′phase,whereas Cr,Mn,Fe and Re tend to enter the γ phase and lower the solvus temperature [15-19].In some cases,the strength of the cobalt-based superalloy is close to the strength of the existing nickel-based superalloy [12].

    In the past decade,the first-principles method has become an important method for studying the phase stability,mechanical and thermodynamic properties of crystalline materials [20-22].Some properties of L12γ′-Co3(M,W) (M=Al,Ge,Ga) have been studied through the first-principles method,which indicates that the γ′ precipitate has a positive significance for improving the performance of cobalt-based alloys [21-24].Ti and Nb are often added to the γ′precipitate.They are found to be the most effective in improving the γ′ solvus temperature of Co-Al-W based alloys and are γ′-forming elements which enhance the volume fraction of the γ′ phase [15-17].The current Co-Al-W based alloy has a main deficiency,which is relatively poorer ductility compared to a nickel-based superalloy[25,26].Ti and Nb have an effect on its mechanical properties and probably solve this problem.In addition,the site preference behavior of Ti and Nb in γ′ precipitates and the interaction with their nearby atoms play an important role in improving the performance of γ′precipitates,so we perform a first-principles study on the phase stability,elastic and electronic properties and site preference of the L12-ordered Co3(Al,W)precipitate doped with Ti and Nb in this work.

    2.Theoretical methods

    2.1.Computational details

    In the unit cell of A3B compound with the cubic L12structure whose space group is Pm3m,A atoms are located at face centers and B atoms are at cube corners[27].In this work,the chemical formula is assumed as Co24(Al4,W4),which has six nonequivalent positions (Al1,Al2,Co3,Co4,W5,W6) for the substitution by Ti and Nb,as shown in figure 1.The composition of Co24(Al4,W4) is similar to the value of γ′ precipitates measured in the experiment [11,13,14].

    In this work,the first-principles method,which is based on the density functional theory (DFT) [28],was applied.The Cambridge Serial Total Energy Package (CASTEP) [28] program was used to perform all the calculations.The generalized gradient approximation (GGA) with Wang parameterization(PW91) and ultra-soft pseudopotential of Vanderbily-type were adopted.The plane wave cut-off energy and k-point were 400 eV and 3 × 3 × 3,respectively.The Broyden Fletcher Goldfarb Shanno(BFGS)method[29]was applied to relax the structures.The geometry optimizations were considered to be converged when the energy change per atom,maximum force,maximum stress and maximum atomic displacement were less than 1.0 × 10-5eV,0.03 eV ?-1,0.05 GPa and 0.001 ?,respectively.The specific parameters in elastic constant calculation are energy 2.0 ×10-6eV/atom,maximum force 0.006 eV ?-1,maximum atomic displacement 0.0002 ? and maximum strain amplitude 0.003.The spin polarization is considered.

    Figure 1.Crystal structure of L12-ordered Co3(Al,W) phase.

    Table 1.Calculated structural properties of Co3(Al,W) phase,including lattice constants a and c,formation enthalpy H.

    2.2.Elastic properties

    The elastic constants can reflect the deformation resistance of a material caused by external stress and express some mechanical properties.The Young’s modulus E,shear modulus G,Poisson’s ratio σ and bulk modulus B can be acquired by the Voigt-Reuss-Hill method [30],which is considered to be a good method to evaluate the theoretical polycrystalline elastic modulus.

    Figure 2.The DOS of pure Co3(Al,W)and doped Co3(Al,W):(a)the pure Co3(Al,W);(b)the DOS of Al with addition of Ti or Nb in the Al2 or W6 site; (c) Ti in the W6 site; (d) Ti in the Al2 site; (e) Nb in the W6 site; (f) Nb in the Al2 site.

    The upper and lower limits of the polycrystalline constants are the values obtained by the Voigt and Reuss equations [31].Thence,the shear and bulk moduli are estimated by the arithmetic mean values of the Voigt and Reuss moduli [31].

    For cubic [32]:

    The hardness of materials can be correlated with the product of the squared Pugh’s modulus ratio (k=G/B) and the shear modulus [33]:

    3.Results and discussion

    3.1.Structural properties

    In order to analyze the stability of the pure system and doped system,the formation enthalpy (H),which is equal to the energy of formation at 0 K temperature and 0 GPa pressure when the zero-vibration contribution is much smaller than the formation energy,was calculated.A negative H value indicates that the system is stable.The lower formation enthalpy demonstrates a more stable system,which can be applied to assess site replacement behavior of Ti and Nb in Co-Al-W phase.The formation enthalpy can be assessed by the following equation [34-36]:

    where Etotis the total energy of the supercell,niis the number of i atom in the supercell,and Eatom(i)is the energy per atom of bulk i.Here,the hexagonal close packed(hcp)structure for Co and Ti,face-centered cubic (fcc) structure for Al,and body-centered cubic (bcc) structure for W and Nb are considered as their most stable elemental phases.

    Figure 2.(Continued.)

    The lattice constants (a and c) and formation enthalpy(H)of the pure system and doped system are shown in table 1.Our calculation results are similar to others’ calculation results and experimental results,which shows that our calculation results are credible [11,37].It can be seen that Co3(Al,W)with Ti and Nb replacing any atom in six sites is stable,since their formation enthalpy are all negative.However,compared with the pure system,only when Ti is in the site of Al1,Al2,Co3,W5and W6,and Nb is in the site of Al2,W5and W6,is the value of formation enthalpy lower.This shows that doping in these sites can make the original system more stable.Ti and Nb show the strongest preference for the W6site,followed by the Al2site,since the system has the lowest formation enthalpy when Ti and Nb occupy the W6site.Among the six substituted sites,the lattice constants of the system with the Co3and Co4site replaced change more than that of others,as Ti and Nb at these two sites make the symmetry of the system slightly worse.However,the lattice constants change very little,before and after doping,which signifies that the addition of Ti and Nb has little effect on the structure of the system.

    3.2.Electronic structures

    The density of states (DOS) and partial density of states(PDOS) of the L12Co-Al-W and Co-Al-W-X (X=Ti and Nb) phases were calculated,providing information on the physical basis for the phase stability.The DOS of the pure system and the most stable (Ti or Nb is in the W6site) and second stable(Ti or Nb is in the Al2site)doping systems are shown in figure 2.The level at zero energy is the Fermi energy level(EF),which is described by the dotted line and is defined to be the highest energy level occupied by the valence electrons at 0 K.The density of states corresponding to the Fermi surface is not zero,indicating that both pure and doped systems are conductive phases[38].The pseudogap that is the deep valley close to EFappears in both the pure system and the systems with Ti or Nb occupying the W6or Al2site,which means that these alloys show a little covalent feature[39].What is more,their EFlocates in the valley or the left of the pseudogap,demonstrating that both pure and doped systems are stable[38].According to the partial density of states,this shows that the major valence electron contributions to the bonding electrons in the whole regions are Co (3d),Al (3p),W (5d),Ti (3d) and Nb (4d).The hybridization of Al and W mainly occurs at -7.5 eV ~-5 eV and -5 eV ~-2.5 eV.Co and W mainly hybridize around -1.5 eV.Doping Ti and Nb has little effect on Co and W atoms,but has a great effect on Al atoms,for the density of states.In figure 2(b),the DOS value of Al atoms in the system with Ti occupying the W6site is greater than that in the system with Ti doped in the Al2site,indicating that the former system is more stable[40],which is consistent with the previous result that is acquired from the formation enthalpy.In addition,the pseudogap of the former is narrower than that of the latter,which reveals that the bond of the former is more metallic than the latter[38].The effects of Nb on the Co-Al-W phase are the same as Ti since their DOS are similar.

    Figure 2.(Continued.)

    Table 2.Calculated elastic stiffness constants Cij(GPa)and elastic compliance matrix Sij(1/GPa)of Co3(Al,W)and Co3(Al,W)with Ti or Nb doping.

    3.3.Elastic properties

    As the most stable structure is when Ti and Nb occupy the W6site,followed by the Al2site,this section studies the mechanical properties in these two cases.The structures of the Co-Al-W and Co-Al-W-X (X=Ti,Nb) phases are cubic.Table 2 shows the elastic stiffness constants and elastic compliance matrix of them.The corresponding mechanical stability conditions are [41]:

    It is obvious that the Co-Al-W and Co-Al-W-X (X =Ti,Nb) phases satisfy the above conditions,indicating that they are all mechanically stable.As the value of C11is larger than that of C12and C44,for both the pure system and doped system,they are all very incompressible under uniaxial stress along x axis [31].

    Figure 3.The elastic properties of pure Co3(Al,W) and doped Co3(Al,W) with Ti and Nb occupying the Al2 and W6 site: (a) the bulk modulus B,shear modulus G and Young’s modulus E; (b) the hardness HV; (c) the ratios between bulk modulus and shear modulus B/G;(d) Poisson’s ratio σ.

    The bulk modulus B and shear modulus G reflect the ability to withstand the volume change under pressure and shear deformation under shear pressure,respectively [42].In figure 3(a),the values of B and G decline (increase),with the occupation of Ti and Nb in the W6(Al2)site,which means that the resistance ability to volume change and shape change by applied pressure is reduced(improved).Young’s modulus E can be used as a qualitative indicator to reflect the hardness of a material,and a large value of E indicates that the solid is hard[43].It shows that with adding Ti and Nb in the W6site,the values of E decline,which clarifies that the hardness of the doped system decreases.This is consistent with the content in figure 3(b),which is that the HVvalue reduces with the addition of Ti and Nb in the W6site.However,the change of E and HVvalue in the system of the Al2site occupied by Ti and Nb is the opposite.The hardness of a metal is generally expressed by its resistance to local deformation[44].It is obvious that Ti and Nb occupying the W6site weaken the ability of the alloy to resist deformation,compared to the Al2site.The ratios between bulk modulus and shear modulus B/G and Poisson’s ratio σ reflect the brittleness and ductility of a material[42].A high(low)B/G value signifies a tendency for ductility(brittleness),and 1.75 is a key value to assess ductility and brittleness [42].In figure 3(c),all the B/G values are larger than 1.75,which indicates that both the pure system and doped system are ductile.Poisson’s ratio σ(-1 <σ <0.5)can represent the shear resistance of a material[45].A high Poisson’s ratio σ means that the material has good plasticity[45].Figure 3(d)shows that Ti and Nb occupying the W6(Al2)site are able to enhance(decrease)the plasticity of the alloy,probably since the system doped in the W6site is more metallic than that in the Al2site,which is stated in the section on electronic structures.The ductility is closely related to the fracture mechanisms and embrittlement,and generally,achieving high σ is regarded as an approach to improve the toughness[46-48].It is obvious that Ti and Nb occupying the W6site result in less likelihood of fracture and embrittlement,which provides the direction of the design of the Co-based alloy.

    4.Conclusions

    The present work was carried out for the equilibrium structure,electronic and elastic properties of the L12-ordered Co-Al-W and Co-Al-W-X(X=Ti and Nb)phases,using first-principles calculations.It is found that in doping Ti and Nb to any of six nonequivalent sites,the formation enthalpy of these systems are negative.However,compared with the pure system,the doped system with Ti and Nb occupying the W6site is the most stable,followed by the Al2site,as the formation enthalpy are most negative.Therefore,Ti and Nb prefer to occupy the W6site in the Co-Al-W phase.Ti and Nb most affect the DOS of Al atoms and the DOS shows that the system with the W6site doped is most stable.The addition of Ti and Nb in the W6(Al2)site declines(increases)the hardness and the resistance to volume change and shape change of the alloy and improves(reduces) the ductility of the alloy.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Numbers 51971118,51771102,51471098).

    内地一区二区视频在线| 日本午夜av视频| 激情五月婷婷亚洲| 午夜激情av网站| 欧美精品高潮呻吟av久久| 日本黄色日本黄色录像| 欧美精品一区二区免费开放| 在线观看美女被高潮喷水网站| 欧美日韩av久久| 国产在线一区二区三区精| 日本黄色日本黄色录像| 国产欧美日韩综合在线一区二区| 视频中文字幕在线观看| 欧美成人精品欧美一级黄| 亚洲人成网站在线观看播放| 久久久亚洲精品成人影院| 自拍欧美九色日韩亚洲蝌蚪91| 日日摸夜夜添夜夜爱| 热re99久久精品国产66热6| 少妇的逼水好多| 永久免费av网站大全| 一本—道久久a久久精品蜜桃钙片| 啦啦啦视频在线资源免费观看| 黄网站色视频无遮挡免费观看| 午夜免费观看性视频| 国产有黄有色有爽视频| 日本-黄色视频高清免费观看| 免费观看av网站的网址| www.av在线官网国产| 日韩熟女老妇一区二区性免费视频| 国产成人精品在线电影| 久久国产精品大桥未久av| www.av在线官网国产| av.在线天堂| 亚洲精品乱码久久久久久按摩| 国产精品无大码| 草草在线视频免费看| 亚洲一级一片aⅴ在线观看| 亚洲精品乱久久久久久| 国产亚洲最大av| 一区二区三区乱码不卡18| 亚洲精品一区蜜桃| 一级毛片黄色毛片免费观看视频| 爱豆传媒免费全集在线观看| 久久久久精品性色| 97超碰精品成人国产| 亚洲精品乱码久久久久久按摩| 男女边吃奶边做爰视频| 9热在线视频观看99| 日韩视频在线欧美| 视频在线观看一区二区三区| 青青草视频在线视频观看| 欧美丝袜亚洲另类| 90打野战视频偷拍视频| 一本—道久久a久久精品蜜桃钙片| 性色avwww在线观看| 精品亚洲成a人片在线观看| 伦理电影大哥的女人| 男人操女人黄网站| 一本色道久久久久久精品综合| 午夜福利视频精品| 韩国av在线不卡| 又黄又爽又刺激的免费视频.| 精品国产露脸久久av麻豆| www.色视频.com| 18禁在线无遮挡免费观看视频| 高清毛片免费看| 老司机影院毛片| 亚洲综合色惰| 美国免费a级毛片| 丁香六月天网| 精品人妻偷拍中文字幕| 狂野欧美激情性xxxx在线观看| 亚洲五月色婷婷综合| 国产午夜精品一二区理论片| 亚洲色图 男人天堂 中文字幕 | 男女午夜视频在线观看 | 最近2019中文字幕mv第一页| 国产精品国产av在线观看| 亚洲av国产av综合av卡| av在线播放精品| 欧美 日韩 精品 国产| 看免费成人av毛片| 成人国产av品久久久| 狂野欧美激情性xxxx在线观看| 国产日韩欧美视频二区| 伦理电影大哥的女人| 亚洲av成人精品一二三区| 精品卡一卡二卡四卡免费| 新久久久久国产一级毛片| 日本免费在线观看一区| 亚洲精品国产色婷婷电影| 99热6这里只有精品| 18禁国产床啪视频网站| 日韩精品有码人妻一区| 色婷婷久久久亚洲欧美| 秋霞伦理黄片| 超色免费av| 亚洲情色 制服丝袜| 热re99久久精品国产66热6| 亚洲国产精品999| 欧美日韩精品成人综合77777| 卡戴珊不雅视频在线播放| 亚洲美女搞黄在线观看| 交换朋友夫妻互换小说| 中文字幕最新亚洲高清| 亚洲美女搞黄在线观看| 久久久久久久久久久久大奶| 日本av手机在线免费观看| 久久久久久久国产电影| 边亲边吃奶的免费视频| 久久青草综合色| 久久精品国产a三级三级三级| 人体艺术视频欧美日本| 国产国拍精品亚洲av在线观看| 久久久久精品性色| 岛国毛片在线播放| 午夜激情久久久久久久| 美女视频免费永久观看网站| 狠狠婷婷综合久久久久久88av| 日韩中文字幕视频在线看片| 久久精品久久久久久久性| 国产在线视频一区二区| 少妇的丰满在线观看| av女优亚洲男人天堂| 亚洲人成网站在线观看播放| 一区在线观看完整版| 久久午夜福利片| 极品少妇高潮喷水抽搐| 精品福利永久在线观看| 亚洲色图综合在线观看| 一个人免费看片子| 在线观看免费日韩欧美大片| 日日摸夜夜添夜夜爱| 在线观看人妻少妇| 欧美亚洲 丝袜 人妻 在线| 国产成人av激情在线播放| 天天躁夜夜躁狠狠躁躁| av网站免费在线观看视频| 久久久精品94久久精品| 亚洲国产精品国产精品| 纵有疾风起免费观看全集完整版| 天堂8中文在线网| 亚洲av在线观看美女高潮| 午夜福利在线观看免费完整高清在| 夫妻午夜视频| 欧美日韩亚洲高清精品| 免费高清在线观看日韩| 制服人妻中文乱码| 精品亚洲成a人片在线观看| 久久久久久久久久久久大奶| 日日摸夜夜添夜夜爱| 少妇精品久久久久久久| 91午夜精品亚洲一区二区三区| 综合色丁香网| 97在线人人人人妻| 成人手机av| 9191精品国产免费久久| 97超碰精品成人国产| 成人国产麻豆网| 色视频在线一区二区三区| 久久人人爽人人片av| 乱人伦中国视频| 精品视频人人做人人爽| 国产有黄有色有爽视频| 哪个播放器可以免费观看大片| 久久人人爽人人爽人人片va| 精品卡一卡二卡四卡免费| 欧美丝袜亚洲另类| 欧美97在线视频| 欧美激情国产日韩精品一区| 久久久久久久久久人人人人人人| 亚洲成av片中文字幕在线观看 | 日韩 亚洲 欧美在线| 18+在线观看网站| 日韩伦理黄色片| 国产亚洲精品久久久com| 宅男免费午夜| 亚洲成国产人片在线观看| 一级黄片播放器| 黄色配什么色好看| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆精品久久久久久蜜桃| 国产成人精品福利久久| 亚洲色图综合在线观看| 亚洲丝袜综合中文字幕| www.色视频.com| 日韩 亚洲 欧美在线| 女人久久www免费人成看片| 777米奇影视久久| 在线观看www视频免费| 国产男女超爽视频在线观看| av一本久久久久| 久久精品久久久久久久性| 国产av码专区亚洲av| 国产片内射在线| 狠狠精品人妻久久久久久综合| 亚洲第一区二区三区不卡| 成人18禁高潮啪啪吃奶动态图| av线在线观看网站| 亚洲精品,欧美精品| videossex国产| 80岁老熟妇乱子伦牲交| 成人国产麻豆网| www日本在线高清视频| 欧美+日韩+精品| 七月丁香在线播放| 黄色 视频免费看| 制服丝袜香蕉在线| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 亚洲伊人久久精品综合| 另类精品久久| 伊人亚洲综合成人网| 国产av国产精品国产| 国产成人精品一,二区| 欧美日韩视频精品一区| 国产精品一区www在线观看| www.av在线官网国产| 国产激情久久老熟女| 中文字幕制服av| 美女大奶头黄色视频| 日日爽夜夜爽网站| 欧美老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 亚洲成人一二三区av| 国产免费福利视频在线观看| 18禁在线无遮挡免费观看视频| kizo精华| 精品午夜福利在线看| 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版| 美国免费a级毛片| 久久久久久久久久成人| 一级毛片电影观看| 日本欧美视频一区| 日韩中字成人| 久久久精品区二区三区| 久久免费观看电影| 久久国内精品自在自线图片| 在线天堂中文资源库| 亚洲欧洲日产国产| 国产免费又黄又爽又色| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 亚洲人成77777在线视频| 亚洲国产精品一区三区| h视频一区二区三区| 国产探花极品一区二区| 精品午夜福利在线看| 纯流量卡能插随身wifi吗| 交换朋友夫妻互换小说| 久久国内精品自在自线图片| 国产高清不卡午夜福利| 午夜免费鲁丝| 国产不卡av网站在线观看| 七月丁香在线播放| 丝瓜视频免费看黄片| 在线观看免费日韩欧美大片| 免费黄色在线免费观看| 欧美精品人与动牲交sv欧美| 又黄又粗又硬又大视频| 99精国产麻豆久久婷婷| 看免费av毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av.av天堂| 国产无遮挡羞羞视频在线观看| 亚洲精品aⅴ在线观看| av卡一久久| 高清视频免费观看一区二区| av天堂久久9| 国产色婷婷99| 最近最新中文字幕免费大全7| 欧美3d第一页| 只有这里有精品99| 欧美xxxx性猛交bbbb| 久久国产精品大桥未久av| 校园人妻丝袜中文字幕| 免费看不卡的av| 色婷婷av一区二区三区视频| 精品99又大又爽又粗少妇毛片| 蜜臀久久99精品久久宅男| 日本欧美国产在线视频| 免费观看在线日韩| videossex国产| 亚洲国产日韩一区二区| 黄片播放在线免费| kizo精华| av天堂久久9| 日韩电影二区| 啦啦啦在线观看免费高清www| 18禁动态无遮挡网站| 免费高清在线观看视频在线观看| 熟女人妻精品中文字幕| 亚洲精品aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 90打野战视频偷拍视频| 亚洲成人手机| 精品酒店卫生间| 精品第一国产精品| 欧美激情 高清一区二区三区| 欧美精品国产亚洲| 少妇精品久久久久久久| 国产一区二区在线观看av| 亚洲国产欧美日韩在线播放| 国产精品一国产av| 麻豆精品久久久久久蜜桃| 男的添女的下面高潮视频| 午夜老司机福利剧场| 黄色一级大片看看| 久久精品久久精品一区二区三区| 亚洲在久久综合| 国产片内射在线| 男人添女人高潮全过程视频| 在线观看三级黄色| 精品一区二区三卡| 欧美精品国产亚洲| 亚洲国产看品久久| 久久人人爽人人爽人人片va| 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 国产亚洲精品久久久com| 国产av一区二区精品久久| 91国产中文字幕| 视频区图区小说| 大片免费播放器 马上看| 美女中出高潮动态图| 制服诱惑二区| 少妇猛男粗大的猛烈进出视频| 国产免费又黄又爽又色| 亚洲精品,欧美精品| 性色avwww在线观看| 巨乳人妻的诱惑在线观看| 汤姆久久久久久久影院中文字幕| av国产精品久久久久影院| tube8黄色片| a级毛片在线看网站| 久久97久久精品| 一个人免费看片子| 日本与韩国留学比较| 一级毛片我不卡| 国产精品人妻久久久久久| 亚洲欧洲国产日韩| 成年人午夜在线观看视频| 精品人妻熟女毛片av久久网站| 最黄视频免费看| 下体分泌物呈黄色| 久久久久久久久久久免费av| 丰满迷人的少妇在线观看| 午夜影院在线不卡| 欧美日韩视频精品一区| 激情视频va一区二区三区| 亚洲av中文av极速乱| 黄色视频在线播放观看不卡| 亚洲一区二区三区欧美精品| 国产成人aa在线观看| 日韩人妻精品一区2区三区| 国产老妇伦熟女老妇高清| 肉色欧美久久久久久久蜜桃| 亚洲欧美清纯卡通| 亚洲欧美精品自产自拍| 国产片特级美女逼逼视频| 大陆偷拍与自拍| 国产精品久久久久久av不卡| 性高湖久久久久久久久免费观看| 亚洲高清免费不卡视频| 色网站视频免费| 18禁在线无遮挡免费观看视频| 波野结衣二区三区在线| 一区二区三区乱码不卡18| 美女脱内裤让男人舔精品视频| av国产久精品久网站免费入址| 大香蕉久久网| 久久精品国产综合久久久 | 国产精品熟女久久久久浪| 国产精品久久久久久久电影| 亚洲四区av| 久久99一区二区三区| 国产片特级美女逼逼视频| 边亲边吃奶的免费视频| 99热6这里只有精品| 国产极品天堂在线| 欧美3d第一页| 99热国产这里只有精品6| 女的被弄到高潮叫床怎么办| 亚洲欧洲国产日韩| 91成人精品电影| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲成国产av| 少妇的逼好多水| 男女无遮挡免费网站观看| 有码 亚洲区| 赤兔流量卡办理| 成人18禁高潮啪啪吃奶动态图| 国产成人一区二区在线| 久久99热这里只频精品6学生| 黄色配什么色好看| 午夜老司机福利剧场| 肉色欧美久久久久久久蜜桃| 欧美日韩av久久| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 香蕉国产在线看| 亚洲精品中文字幕在线视频| 免费在线观看黄色视频的| 久久精品国产a三级三级三级| 国产成人免费观看mmmm| 男人添女人高潮全过程视频| 狂野欧美激情性xxxx在线观看| 国产毛片在线视频| 在线观看免费高清a一片| 色94色欧美一区二区| 18禁在线无遮挡免费观看视频| 九九在线视频观看精品| 亚洲精品日本国产第一区| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产专区5o| 国产精品一国产av| 亚洲伊人色综图| 日韩三级伦理在线观看| 少妇被粗大的猛进出69影院 | 免费少妇av软件| 一级a做视频免费观看| 国产不卡av网站在线观看| 国产成人av激情在线播放| 伦理电影大哥的女人| 一级毛片我不卡| 国产福利在线免费观看视频| 久久精品夜色国产| 亚洲熟女精品中文字幕| 亚洲精品一区蜜桃| 国产国拍精品亚洲av在线观看| 久久久欧美国产精品| 欧美少妇被猛烈插入视频| 久久精品国产自在天天线| 久久精品国产a三级三级三级| 爱豆传媒免费全集在线观看| 久久毛片免费看一区二区三区| 国产日韩一区二区三区精品不卡| 在线天堂中文资源库| 精品国产国语对白av| 日本黄大片高清| 97精品久久久久久久久久精品| 香蕉国产在线看| 国产爽快片一区二区三区| 日韩制服骚丝袜av| 日韩电影二区| 国产综合精华液| 色94色欧美一区二区| 国产亚洲精品久久久com| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久久性| 国产国语露脸激情在线看| 极品少妇高潮喷水抽搐| 国产成人91sexporn| av在线老鸭窝| 久久久精品94久久精品| 看免费成人av毛片| 高清欧美精品videossex| 狠狠婷婷综合久久久久久88av| 欧美精品亚洲一区二区| 国产熟女午夜一区二区三区| 丝袜喷水一区| 久久ye,这里只有精品| 捣出白浆h1v1| 最近手机中文字幕大全| 男女边摸边吃奶| 成人二区视频| 最近最新中文字幕免费大全7| 秋霞伦理黄片| 啦啦啦中文免费视频观看日本| 欧美最新免费一区二区三区| 男人爽女人下面视频在线观看| 一区二区三区精品91| 18禁观看日本| 亚洲国产欧美在线一区| 亚洲,欧美精品.| 卡戴珊不雅视频在线播放| 永久网站在线| 在线观看www视频免费| 人人妻人人澡人人看| 国产精品久久久av美女十八| 国产高清国产精品国产三级| 90打野战视频偷拍视频| 人妻少妇偷人精品九色| 欧美日韩精品成人综合77777| 久久久国产欧美日韩av| 男女国产视频网站| 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说| 成人手机av| av在线app专区| 夫妻午夜视频| 成人免费观看视频高清| 高清欧美精品videossex| freevideosex欧美| 久久精品国产a三级三级三级| 免费久久久久久久精品成人欧美视频 | 久久人妻熟女aⅴ| 欧美成人午夜精品| 菩萨蛮人人尽说江南好唐韦庄| 成年女人在线观看亚洲视频| av在线播放精品| 国产成人精品久久久久久| 丰满饥渴人妻一区二区三| 国产成人91sexporn| 赤兔流量卡办理| 午夜福利视频精品| 母亲3免费完整高清在线观看 | 一个人免费看片子| 美女xxoo啪啪120秒动态图| 五月开心婷婷网| 美女福利国产在线| 免费高清在线观看日韩| 一区二区三区乱码不卡18| 一级毛片黄色毛片免费观看视频| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| av在线播放精品| 国产在线免费精品| 国产1区2区3区精品| 性高湖久久久久久久久免费观看| 美女福利国产在线| 久久女婷五月综合色啪小说| 亚洲成人手机| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 男女免费视频国产| 九色亚洲精品在线播放| 天天操日日干夜夜撸| 亚洲国产色片| 一级,二级,三级黄色视频| 欧美成人午夜精品| 两性夫妻黄色片 | 女性生殖器流出的白浆| 9191精品国产免费久久| 肉色欧美久久久久久久蜜桃| 国产老妇伦熟女老妇高清| 一级,二级,三级黄色视频| 国产亚洲一区二区精品| 肉色欧美久久久久久久蜜桃| 女性被躁到高潮视频| 大陆偷拍与自拍| 2021少妇久久久久久久久久久| 母亲3免费完整高清在线观看 | 嫩草影院入口| 99国产综合亚洲精品| 老司机亚洲免费影院| 婷婷色麻豆天堂久久| 丝袜在线中文字幕| 国产成人精品婷婷| 少妇高潮的动态图| 欧美日韩av久久| 一区二区av电影网| 久久毛片免费看一区二区三区| 国产免费一区二区三区四区乱码| 超色免费av| 在线观看一区二区三区激情| 91在线精品国自产拍蜜月| 人体艺术视频欧美日本| 三级国产精品片| 我的女老师完整版在线观看| 亚洲久久久国产精品| 中文乱码字字幕精品一区二区三区| av福利片在线| 赤兔流量卡办理| 人妻人人澡人人爽人人| 午夜av观看不卡| 久久精品熟女亚洲av麻豆精品| 毛片一级片免费看久久久久| 蜜臀久久99精品久久宅男| 少妇精品久久久久久久| av在线播放精品| 日韩一本色道免费dvd| 亚洲少妇的诱惑av| 亚洲欧洲精品一区二区精品久久久 | 我要看黄色一级片免费的| av播播在线观看一区| 亚洲三级黄色毛片| 91精品伊人久久大香线蕉| 最新的欧美精品一区二区| 又黄又爽又刺激的免费视频.| 亚洲 欧美一区二区三区| 边亲边吃奶的免费视频| 99久久人妻综合| 亚洲情色 制服丝袜| 国产免费一级a男人的天堂| 九九爱精品视频在线观看| 久久影院123| 精品熟女少妇av免费看| 欧美成人精品欧美一级黄| 黑人猛操日本美女一级片| 国产熟女欧美一区二区| 蜜桃国产av成人99| 多毛熟女@视频| 黑丝袜美女国产一区| 999精品在线视频| 九色成人免费人妻av| 国产精品一区二区在线观看99| 国产亚洲一区二区精品| 高清av免费在线| 90打野战视频偷拍视频| 欧美3d第一页| 多毛熟女@视频| 全区人妻精品视频| 国产精品久久久久久久久免| 色哟哟·www| 全区人妻精品视频| 午夜精品国产一区二区电影| 久久午夜综合久久蜜桃| 高清黄色对白视频在线免费看| 国产在线一区二区三区精| 日韩成人av中文字幕在线观看| 久久免费观看电影| 国产高清三级在线|