• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy law preserving continuous finite element schemes for a gas metal arc welding system

    2021-04-26 03:19:08YanhaiLinandYongyueJiang
    Communications in Theoretical Physics 2021年2期

    Yanhai Lin and Yongyue Jiang

    1Fujian Province University Key Laboratory of Computation Science and School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China

    2 School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China

    Abstract In this paper a modified continuous energy law was explored to investigate transport behavior in a gas metal arc welding (GMAW) system.The energy law equality at a discrete level for the GMAW system was derived by using the finite element scheme.The mass conservation and current density continuous equation with the penalty scheme was applied to improve the stability.According to the phase-field model coupled with the energy law preserving method,the GMAW model was discretized and a metal transfer process with a pulse current was simulated.It was found that the numerical solution agrees well with the data of the metal transfer process obtained by high-speed photography.Compared with the numerical solution of the volume of fluid model,which was widely studied in the GMAW system based on the finite element method Euler scheme,the energy law preserving method can provide better accuracy in predicting the shape evolution of the droplet and with a greater computing efficiency.

    Keywords: phase field,gas metal arc welding (GMAW),metal transfer,discrete energy law,finite element method,numerical solution

    1.Introduction

    An in-depth understanding of the behavior of gas metal arc welding (GMAW) is very important because of the increasing demands of engineering practices,such as controlling the welding process to obtain more weld quality and higher productivity.In a GMAW system,the arc is always chosen as the heating source for melting the work-piece within the joining process.This technology is widely applied in railway,shipbuilding and other engineering processes because of its high flexibility,low cost,easy automation and excellent quality.Metal transfer,which plays an important role in GMAW,is a complex process involving multi-field coupling like electromagnetic fields,fluid flow and heat fields.In the metal transfer process,most of the heat from the arc,electrodes and heating melts the wire and the work-piece at the same time.

    One of the main important purposes in theoretical and experimental studies of the metal transfer process is to make a good prediction of the welding results with high precision.Firstly,based on a new steady mathematical model,a numerical analysis of the magnetic diffusion equation,the energy transport equation and the velocity and temperature of electrodes was created to predict the metal transport within inert gas welding arcs [1].Chen et al [2] used the volume of fluid(VOF)technique to investigate the flow transport behavior of metal processes with consideration of electro-magnetic forces,surface tension,gravitational force and arc plasmas.Based on the same technique,Hu and Tsai [3,4] also simulated a GMAW system that included the electrode,the arc and the weld pool by creating a new mathematical-physical model.Hu and Tsai[3]focused on the behavior of arc plasmas,while Hu and Tsai [4] focused on the results of the metal,such as transfer,the melting flow process and temperature,impingement onto the work-piece,and the welding pool formation and so on.Furthermore,Haidar [5] created a more detailed model for predicting thermodynamic behavior in GMAW and considered more factors such as viscous drag,inertia action,gravitational force,arc pressure and so on.Impacts of welding pool evaporation and thermodynamic behavior on the formation of the welding pool were investigated by Zacharia et al[6]which could make a prediction of the weld pool with higher precision.

    Recently,Anzehaee and Haeri [7] undertook an investigation of control of the thermal transport of the workpiece within a GMAW system by controlling the melting rate,heating transfer and detaching droplets scale.Later,Rao et al [8] presented a detailed complete mathematicalphysical model to investigate the influences of the thermal Marangoni effect on the liquid-solid interface,forces at free metal surfaces and the energy source at the plasma-anode surface on the transfer behavior of a GMAW system.Feng et al [9] studied the effects of weld pool inside or outside flows on the characteristics of droplets and metal transfer within a GMAW system.Cheon et al [10] investigated the finger-shaped evolution in the GMAW process by using a computational fluid dynamics (CFD) based numerical method with the commercial software Flow3D.Wu et al[11,12] experimentally investigated the effect of an additional electro-thermal-magnetic field on arc metal stream,liquid flow and heat transfer of a welding pool within a high-speed GMAW system.Xiong et al [13] numerically and experimentally presented the heat transfer behavior for a thin-walled part within a GMAW system.The effect of the variable preheating temperature distribution was taken into account.Sachajdak et al [14] presented CFD modeling for flow and metal heat transfer of a GMAW system by using the finite volume method (VFM).Komen et al [15]numerically presented the behavior of molten metal droplet transport and welding pool flow within a GMAW system using the incompressible smoothed particle hydrodynamics method.Also,some scholars have studied the GMAW process to focus on the arc [16,17],welding current[18,19],fume formation [20] and plasma [21,22] and so on.

    The VOF does not consider the thermocapillary/Marangoni effect,which is a very important factor in the study of multiphase fluids with a clear surface.Thermocapillary/Marangoni forces are always caused by surface tension,which is always due to temperature or concentration gradients.Borcia and Bestehorn[23]presented the effect of a deformable surface on Marangoni fluid flow within liquid-gas two-phase flows using the phasefield technique.Using the same method,Anderson et al [24]considered solidification of a pure substance that includes convections in the fluid-phase,and both the solid-phase and fluidphase were treated as viscous fluids in the model.Furthermore,Borcia and coworkers [25,26] extended the phase-field technique when describing the Marangoni driven flow within gasliquid or liquid-liquid systems in drops,bubbles and thin liquid film.Guo et al[27]presented continuous finite element schemes for a phase-field model within a double-layer liquid Benard-Marangoni driven problem,and both the buoyancy forces and the Marangoni forces were taken into account.Furthermore,Guo and Lin [28] also presented the influences of thermodynamical factors on binary quasi-incompressible fluid by using the phase-field technique.It was found that the interface condition of the traditional sharp surface model could be recovered from the phase-field model,and the phase-field model treated different phases as a single phase.

    Recently,Yang et al [29] presented a welding system to study the cable-type welding wire GMAW process,and a high-speed camera system and other electrical equipment was used to examine droplet formation,arc shape and metal transfer.Zhao and Chung[30]presented the numerical results of magneto-hydrodynamic metal transport in a GMAW system by using the phase-field technique.The transport phenomenon could be shown clearly,and they found that the numerical simulation results closely matched the experimental data.Zhao and Chung [31] presented the effect of heating thermal-dynamics on heat and metal processes within a pulsed GMAW system.Furthermore,Zhao et al [32] presented the influences of pulsing parameters on the metal process within GMAW based on the same phase-field method,and different sets of current waveforms were taken into account and compared.In view of the phase-field technique coupled with the continuous finite method,Jiang and coworkers [33-35] presented a new energy law model for a simple GMAW system.It was found that the simulation process with the new energy law gave good agreement with the experimental result captured by high-speed electronic equipment.

    Motivated by the above motional works (Zhao and coworkers [30-32] and Jiang and coworkers [33-35]),we consider in this regard an energy law preserving technique for a GMAW system by using the continuous finite element technique.A continuous energy law and a similar energy law at discrete level were obtained.

    2.Governing equations,model and energy law

    In this study,the simple GMAW system is considered (see figure 1,the schematic of the physical model and computational domain).It is assumed that Ω is the bounded computational domain of the weld pool.Here,Γ is the boundary of Ω.The governing partial differential equations of the GMAW system with the phase-field model are created as [33-35]:

    Figure 1.The simple physical model of the GMAW system.

    whereρis the density of fluid,tis time,v is velocity.Here,pis pressure,ηis viscosity,μis the chemical potential,and it represents the mixture energy as it has two parts contributing to separation and mixing,fis the order coefficient of different phases of the mixture,i.e.f= 1 describes the fluid case whilef=-1 describes the metal case.G is the gravitational acceleration andG= (0 ,-9.8).J is the current density,B is a selfinduced electro-magnetic field,Mis a phonological mobility parameter andεis the thickness of the interface.In equation(5),Tis the temperature,cpis specific heat,kis the thermal conductivity coefficient,His the latent heat,σeis electrical conductivity,kbis the Stefan-Boltzmann coefficient andeis electronic charge.A is a magnetic vector andΦ is the electrical potential.Furthermore,the boundary conditions and computing domain of Zhao and Chung[30],which consider the phase-field model instead of the VOF method,are applied in the process of calculation.In addition,fandμsatisfy?nf=0and?nμ= 0.

    According to the metal characteristics of the GMAW system process,the governing equations of the model can be rewritten as follows:

    The dimensionless physical quantities are

    Substituting these dimensionless parameters to equations (7)-(12) and dropping the star,we have

    where

    To improve the efficiency and stability of the calculation process,a positive constantcis presented to modified equations (9)-(10) for the stability as

    DenoteW1,3(Ω) = (W1,3(Ω))2,L2(Ω) =L2(Ω)2andFurthermore,we should find v,J,A∈W1,3(Ω),p∈L02(Ω),f,μ,Φ,T∈W1,3(Ω) such that (we also substitute the last two equations into the system)

    where,we takeγ=Te(ω+cf) ,u = v,q=p,into equations(13)-(19

    )and the continuous weak form becomes

    By using equations (26) + (27) + (28)-(29) + (30) +(31)-(32),the continuous energy law can be given as:

    where

    3.Discrete format of the finite element method

    We rewrite the continuity condition (7) and current density continuity condition(25)with penalty formulation[33-36]to improve the efficiency and stability of the calculation process with ? ·v+dp=0,? ·J+dT=0,whered= 10-6is a small penalty.A finite-difference-scheme in time and a conformalC0-finite-element technique in space are set to provide expressions of the weak form of the research (see Jiang and coworkers[33-36]).Here,Δtis the time-step size andare approximations of=v(nΔt),are the approximations at timetn+1=(n+ 1) Δt.The revised midpoint schemes are used in the weak form and the discretized formulation as follows

    where

    Figure 2.Different waves of the pulse current: a is the peak moment, b is the project moment andc is the base moment.

    Table 1.Values of time and current in different moments of the first period of the pulse current.

    where we should use some derivation as follows:

    From the above,the discrete energy law(43)is similar to the continuous energy law (33).A linearization and an iterative method at each time step should be done to(35)-(41)because the discrete scheme is nonlinear implicit.The fixed point theory is applied in the linearization.The following iterative scheme (fors=1,2,…) is used at every timetn+1,i.e.findingAsandJs(as the approximation ofrespectively)to satisfy

    Figure 3.The evolution of the droplet in metal transfer with the pulse current at different times.

    Figure 4.(a) The evolution of the total free energy E and the total energy E+ Q.(b) Errors of the discrete energy law.

    Table 2.The value and estimated order of ? ·J for the numerical solution of the metal transfer.

    Figure 5.The metal transfer process obtained by high-speed photography.

    4.Results and discussion

    In this section,we use equations (46)-(52) to simulate the dynamic behavior of metal transfer within the GMAW system.In the numerical calculation process,the FreeFem++ platform[33-38]is used to obtain the numerical solutions,and the Tecplot drawing software is applied to show the figure results.The numerical results of v,J,A,f,ω,Tare given by the continuous finite element technique.A 1.2 millimetre diameter stainless steel is set as the electrode,and 5 millimetres is set as the initial arc length.Pure argon is chosen as the shielding gas.Different values of the pulse current in figure 2 are chosen as the welding current(see more details in table 1).Figure 2 shows different waves of the pulse current.The large figure of figure 2 is the first period of the pulse current and the small figure is three periods.In the first period,ais the peak moment as from t=0 to =2.429,bis the project moment as from t=2.429 to t=4.428,andcis the base moment as from t=4.428 to t=15.00.Table 1 shows specific values of time and current in different moments of the first period of the pulse current in the calculation process.

    Table 3.A comparison between numerical solutions and the highspeed photography data.

    As the interface has variations in thickness,fvaries from-1 to 1,we choosef= 0 as the position of the interface and show the evolution of the drop in figure 3 at nine different time points: t=0,1.374,2.538,3.068,4.077,5.719,6.012,6.314 and 6.602(see more details in figure 2).From figure 3,we can see that as the pulse current during the peak moment rises quickly,the droplet growing up mainly happens during the peak time (t=1.374).From t=2.538 to t=4.077,the necking effect is taken on at the root of the attaching droplet during the project moment,and the interaction between the wire and the droplet becomes thinner and thinner.These changes are due to the electro-magnetic field generated by the changing current.Furthermore,an increase in mass molten metal is another cause of these phenomena.The structure of the droplet changes from circle to pear shape and then to flat ellipse in the vertical direction due to the arc pressure.During the base moment from t=5.719 to t=6.602,as the total effect of the arc pressure,the magnetic force along the radial direction and the gravity of the droplet overcomes the resistance of the surface tension,the droplet breaks up in a short time.Figure 3 also shows that these numerical simulation results match the theory of the metal transfer process better compared with the reported results [33-35].

    The energy changes and errors of the discrete energy law are depicted in figure 4,whereE(equation(44))stands for the total free energy andE+Q(equation (45)) is the total energy,as shown in section 3.The result in figure 4 shows the same behavior as that in Jiang et al [33],whereEincreases over time whereasE+Qdecreases.The accuracy of the energy law is validated with the error in the energy law reduced to an order of magnitudesO(10-10),which depends on the tolerance chosen in the fixed point iterative method and seems to be good enough for the computation.

    We use the same method to examine the accuracy of the numerical solution in Jiang et al [33],is computed at a time step in this paper.We show the estimated orderγof the continuous finite element method for ?·Jwith

    in table 2 and the value ofγis close to 2.

    The numerical simulation results of the droplet metal transfer are compared to the images obtained by the highspeed photography in figure 5 to show the validity of the numerical solution.We focus on two diameters (horizontal and vertical) at the moment that the separated metal droplets touch the welding pool.In addition,the average value of three thousand periods is set as the high-speed photography.The comparison in table 3 also contains the data of two diameters and relative errors given by the VOF model,the phase-field model with the Euler scheme (PFME) and the phase-field model with the energy law preserving method (PFMELP).From the results of table 3,it is obvious that the validity of the size and the geometry of the separated metal droplets is PFMELP > PFME > VOF.

    5.Conclusions

    In this paper,a new continuous energy law was created to model the transport behavior and phenomena occurring within a GMAW system.The energy law equality at a discrete level was derived by using the finite element method.The mass conservation and current density continuous equation with the penalty scheme was applied to improve the stability in the computing process.To the best of our knowledge,this continuous energy law and the discrete energy law for GMAW have not been derived before.According to the phase-field model coupled with the energy law preserving method,the GMAW model was discretized and the metal transfer process with a pulse current was simulated.Some findings are as follows:

    Then, as soon as the King s daughter was alone with her maidens, she exclaimed: Now, pray make a great effort and don t even _look_ at those spinning-wheels

    (a) The numerical simulation results of this new energy model match the theory of the metal transfer process better compared with the reported results.

    (b) The new energy model is suitable for the GMAW system and the validity of the shape or geometry of the separated metal droplets as PFMELP > PFME > VOF.

    Acknowledgments

    Yanhai Lin was supported by the National Natural Science Foundation of China(Grant No.11702101),the Fundamental Research Funds for the Central Universities and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (Grant No.ZQN-PY502),the Natural Science Foundation of Fujian Province(Grant No.2019J05093),and Quanzhou High-Level Talents Support Plan.

    Conflict of interest

    The authors declare that this study has no conflict of interest.

    国产精品一区www在线观看| 青青草视频在线视频观看| av免费在线看不卡| 亚洲熟女精品中文字幕| 日韩av在线免费看完整版不卡| 免费看光身美女| 黄色欧美视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 99热这里只有是精品在线观看| 午夜爱爱视频在线播放| 18禁在线无遮挡免费观看视频| 国产精品爽爽va在线观看网站| 在线天堂最新版资源| 国产成人freesex在线| 97超碰精品成人国产| 欧美潮喷喷水| 涩涩av久久男人的天堂| 中文字幕免费在线视频6| 国产精品一区www在线观看| 日韩亚洲欧美综合| 亚洲欧美清纯卡通| 久久精品久久精品一区二区三区| 噜噜噜噜噜久久久久久91| 国产av不卡久久| 日本wwww免费看| 久久久亚洲精品成人影院| 欧美日韩一区二区视频在线观看视频在线 | 一级毛片我不卡| 久久精品久久精品一区二区三区| 免费大片18禁| 久久久精品94久久精品| 国产成人精品婷婷| 亚州av有码| 日本wwww免费看| 九九久久精品国产亚洲av麻豆| 国产 一区精品| 国产精品福利在线免费观看| 亚洲精品自拍成人| 国产伦精品一区二区三区视频9| 一区二区三区精品91| av网站免费在线观看视频| 日韩人妻高清精品专区| 欧美精品一区二区大全| 国产熟女欧美一区二区| 肉色欧美久久久久久久蜜桃 | 亚洲最大成人av| 久久久久久国产a免费观看| 九色成人免费人妻av| 国产欧美另类精品又又久久亚洲欧美| 七月丁香在线播放| 亚洲av男天堂| www.色视频.com| 最新中文字幕久久久久| 最新中文字幕久久久久| 国产 一区精品| 成人国产麻豆网| 久久精品久久久久久噜噜老黄| 日本午夜av视频| 精品人妻视频免费看| 日韩欧美精品v在线| 中文欧美无线码| 国产精品偷伦视频观看了| 2021天堂中文幕一二区在线观| 2022亚洲国产成人精品| 免费看a级黄色片| 国产黄频视频在线观看| 蜜臀久久99精品久久宅男| 亚洲激情五月婷婷啪啪| 日产精品乱码卡一卡2卡三| av在线观看视频网站免费| 免费看a级黄色片| 亚洲天堂av无毛| 亚洲成人中文字幕在线播放| 深夜a级毛片| 亚洲一区二区三区欧美精品 | 国产高清国产精品国产三级 | 中文字幕av成人在线电影| 高清午夜精品一区二区三区| 成年版毛片免费区| 欧美+日韩+精品| 看黄色毛片网站| 老女人水多毛片| 国产大屁股一区二区在线视频| av线在线观看网站| 精品99又大又爽又粗少妇毛片| 蜜桃亚洲精品一区二区三区| 成人二区视频| 热re99久久精品国产66热6| 亚洲精品第二区| 老司机影院成人| 亚洲四区av| 美女内射精品一级片tv| 在线观看免费高清a一片| 啦啦啦中文免费视频观看日本| 久久久久久久精品精品| 亚洲av一区综合| 在线观看国产h片| 夫妻午夜视频| 男女边吃奶边做爰视频| 夫妻午夜视频| 国产高清国产精品国产三级 | 亚洲av中文av极速乱| 婷婷色麻豆天堂久久| 亚洲精品日韩在线中文字幕| av在线观看视频网站免费| 国产亚洲5aaaaa淫片| 蜜臀久久99精品久久宅男| 亚洲精品视频女| 汤姆久久久久久久影院中文字幕| 欧美亚洲 丝袜 人妻 在线| 看非洲黑人一级黄片| 国内精品美女久久久久久| 人人妻人人澡人人爽人人夜夜| 亚洲av二区三区四区| 国产高潮美女av| 街头女战士在线观看网站| 日韩不卡一区二区三区视频在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品精品国产色婷婷| 国产精品女同一区二区软件| 日日摸夜夜添夜夜爱| 亚洲精品国产av成人精品| 国产精品一区www在线观看| 人妻系列 视频| 日本爱情动作片www.在线观看| 亚洲最大成人av| 欧美成人a在线观看| 国内精品宾馆在线| 久久精品国产亚洲网站| 欧美丝袜亚洲另类| 成人亚洲精品av一区二区| 欧美成人午夜免费资源| 麻豆乱淫一区二区| 免费看日本二区| 精品人妻一区二区三区麻豆| 亚洲在线观看片| 十八禁网站网址无遮挡 | 日本av手机在线免费观看| 国产成人a∨麻豆精品| 亚洲精品国产av成人精品| 国产 精品1| 晚上一个人看的免费电影| av线在线观看网站| 天堂网av新在线| 欧美日本视频| 国产精品.久久久| 男女边摸边吃奶| 少妇人妻 视频| 国产亚洲91精品色在线| 一级毛片久久久久久久久女| 久久国内精品自在自线图片| 下体分泌物呈黄色| 欧美极品一区二区三区四区| 中文字幕久久专区| 91狼人影院| 国产精品久久久久久久电影| 男女边摸边吃奶| 国内揄拍国产精品人妻在线| 国产亚洲91精品色在线| 午夜免费鲁丝| 能在线免费看毛片的网站| 国产人妻一区二区三区在| 久久久久久久国产电影| 欧美一级a爱片免费观看看| 亚洲无线观看免费| 老司机影院毛片| 亚洲精品乱码久久久久久按摩| 美女主播在线视频| 少妇的逼好多水| 欧美zozozo另类| 男人爽女人下面视频在线观看| 国产精品一二三区在线看| 亚洲不卡免费看| 看黄色毛片网站| 国产高清不卡午夜福利| 日韩一本色道免费dvd| 久久精品国产自在天天线| av一本久久久久| 国产免费视频播放在线视频| 亚洲成人久久爱视频| 久久久久久久国产电影| 免费人成在线观看视频色| 国产欧美亚洲国产| 亚洲欧美精品自产自拍| 少妇人妻一区二区三区视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 五月玫瑰六月丁香| 国产国拍精品亚洲av在线观看| 91在线精品国自产拍蜜月| 精品一区二区三区视频在线| 99热这里只有精品一区| 亚洲av中文字字幕乱码综合| 99视频精品全部免费 在线| 亚洲av国产av综合av卡| 免费av毛片视频| 亚洲精品国产色婷婷电影| 男插女下体视频免费在线播放| 色视频www国产| 国产成人精品一,二区| 人妻一区二区av| 成年女人看的毛片在线观看| 国产 一区精品| 啦啦啦在线观看免费高清www| 亚洲av一区综合| av女优亚洲男人天堂| 久久久久久久国产电影| 80岁老熟妇乱子伦牲交| 网址你懂的国产日韩在线| 亚洲精品亚洲一区二区| 高清日韩中文字幕在线| 国产精品女同一区二区软件| av女优亚洲男人天堂| 午夜精品国产一区二区电影 | 国产精品久久久久久久电影| 亚洲天堂av无毛| 亚洲欧洲日产国产| 日韩欧美精品免费久久| 免费看av在线观看网站| av专区在线播放| 亚洲色图av天堂| 日本与韩国留学比较| 亚洲一级一片aⅴ在线观看| 亚洲,一卡二卡三卡| av女优亚洲男人天堂| 伊人久久国产一区二区| 亚洲性久久影院| 在线观看av片永久免费下载| 亚洲av男天堂| 在线观看免费高清a一片| 韩国高清视频一区二区三区| 精品视频人人做人人爽| av福利片在线观看| 亚洲成人中文字幕在线播放| 久久久久久国产a免费观看| 国产亚洲精品久久久com| 精品99又大又爽又粗少妇毛片| 欧美日本视频| 精品人妻偷拍中文字幕| 国产精品国产三级国产av玫瑰| 卡戴珊不雅视频在线播放| 亚洲精品中文字幕在线视频 | 色吧在线观看| 卡戴珊不雅视频在线播放| 99热这里只有是精品在线观看| 久久这里有精品视频免费| 国产老妇女一区| 免费观看a级毛片全部| 午夜激情久久久久久久| 亚洲婷婷狠狠爱综合网| 蜜桃亚洲精品一区二区三区| 亚洲精华国产精华液的使用体验| 制服丝袜香蕉在线| 久久久久久伊人网av| 国产高清有码在线观看视频| 少妇人妻精品综合一区二区| 国产色婷婷99| 插逼视频在线观看| 久久精品久久久久久噜噜老黄| 深爱激情五月婷婷| 亚洲欧美日韩另类电影网站 | 一区二区三区乱码不卡18| 干丝袜人妻中文字幕| 国产在线男女| 两个人的视频大全免费| 亚洲一级一片aⅴ在线观看| 在线观看免费高清a一片| 中文字幕亚洲精品专区| 人妻 亚洲 视频| 国产女主播在线喷水免费视频网站| 99热国产这里只有精品6| 91在线精品国自产拍蜜月| 韩国高清视频一区二区三区| 成人午夜精彩视频在线观看| 午夜福利网站1000一区二区三区| 日韩制服骚丝袜av| 国产av国产精品国产| 国产精品伦人一区二区| 国产伦在线观看视频一区| 亚洲av国产av综合av卡| 中国国产av一级| 亚洲欧美日韩另类电影网站 | 国产精品嫩草影院av在线观看| 又爽又黄a免费视频| 看免费成人av毛片| 日本色播在线视频| 嫩草影院新地址| 亚洲成人一二三区av| 久热这里只有精品99| 成人毛片a级毛片在线播放| 爱豆传媒免费全集在线观看| 亚洲精品影视一区二区三区av| 国产精品久久久久久久久免| 国产成人一区二区在线| 国产精品成人在线| 久久久精品94久久精品| 99热全是精品| 人妻 亚洲 视频| 91久久精品电影网| 又粗又硬又长又爽又黄的视频| 日本一二三区视频观看| 在线观看人妻少妇| 一级毛片黄色毛片免费观看视频| 七月丁香在线播放| 亚洲综合精品二区| videos熟女内射| 国产男女超爽视频在线观看| 亚洲av成人精品一二三区| 美女内射精品一级片tv| 新久久久久国产一级毛片| 在线天堂最新版资源| 爱豆传媒免费全集在线观看| 插阴视频在线观看视频| av在线app专区| 插逼视频在线观看| 日日撸夜夜添| 亚洲四区av| 欧美一级a爱片免费观看看| 成年女人看的毛片在线观看| 黄片无遮挡物在线观看| 亚洲av男天堂| 嫩草影院新地址| 99热这里只有是精品在线观看| 国产精品不卡视频一区二区| 汤姆久久久久久久影院中文字幕| 国产精品女同一区二区软件| 18禁动态无遮挡网站| 国产精品.久久久| 亚洲国产av新网站| 国产精品久久久久久av不卡| 久久精品国产亚洲av天美| 插逼视频在线观看| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 免费黄频网站在线观看国产| 高清午夜精品一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说| 国产爱豆传媒在线观看| 大片电影免费在线观看免费| 国产 精品1| 小蜜桃在线观看免费完整版高清| 男女啪啪激烈高潮av片| 精品一区在线观看国产| 最近2019中文字幕mv第一页| 国产在线男女| 自拍偷自拍亚洲精品老妇| 久久久精品欧美日韩精品| 超碰97精品在线观看| 小蜜桃在线观看免费完整版高清| av在线观看视频网站免费| 日本爱情动作片www.在线观看| 亚洲国产精品国产精品| 国产老妇女一区| 日本猛色少妇xxxxx猛交久久| 免费黄色在线免费观看| 97超碰精品成人国产| 亚洲精品日韩av片在线观看| 一个人观看的视频www高清免费观看| 在线亚洲精品国产二区图片欧美 | 一级毛片aaaaaa免费看小| 午夜福利网站1000一区二区三区| 久久久久久久午夜电影| 99热这里只有是精品在线观看| 成人高潮视频无遮挡免费网站| 国产精品久久久久久精品电影| 禁无遮挡网站| 亚洲人成网站高清观看| av网站免费在线观看视频| 狂野欧美激情性xxxx在线观看| 欧美成人精品欧美一级黄| 夫妻性生交免费视频一级片| 高清av免费在线| 少妇熟女欧美另类| 亚洲在久久综合| 精品久久久久久电影网| 在现免费观看毛片| 中文资源天堂在线| 26uuu在线亚洲综合色| 大片免费播放器 马上看| 国产一区有黄有色的免费视频| 久久久亚洲精品成人影院| 青青草视频在线视频观看| 日本三级黄在线观看| 人妻夜夜爽99麻豆av| 搡老乐熟女国产| 久久久久久久大尺度免费视频| 波野结衣二区三区在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩亚洲高清精品| 免费观看av网站的网址| 激情五月婷婷亚洲| 国产欧美日韩一区二区三区在线 | .国产精品久久| 国产成年人精品一区二区| 精品一区二区三区视频在线| 亚洲性久久影院| 精品一区二区免费观看| 麻豆成人午夜福利视频| 欧美人与善性xxx| 最近最新中文字幕免费大全7| 亚洲欧美中文字幕日韩二区| 欧美+日韩+精品| 免费av毛片视频| 少妇人妻精品综合一区二区| 欧美激情久久久久久爽电影| 99热网站在线观看| av女优亚洲男人天堂| 国产一区二区三区综合在线观看 | 男女那种视频在线观看| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 欧美成人精品欧美一级黄| 精品国产露脸久久av麻豆| 男女国产视频网站| 久久久久久久国产电影| 成人毛片60女人毛片免费| 搡老乐熟女国产| 中文字幕免费在线视频6| 国产av码专区亚洲av| 亚洲最大成人av| 丝瓜视频免费看黄片| 男的添女的下面高潮视频| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| 蜜臀久久99精品久久宅男| 精品久久久精品久久久| 日韩欧美一区视频在线观看 | 国产亚洲一区二区精品| 国产有黄有色有爽视频| 舔av片在线| 97在线人人人人妻| 久久久午夜欧美精品| 最后的刺客免费高清国语| 小蜜桃在线观看免费完整版高清| 日韩中字成人| 亚洲欧美中文字幕日韩二区| 国产毛片a区久久久久| 久久久国产一区二区| 可以在线观看毛片的网站| 伦理电影大哥的女人| 久久人人爽人人爽人人片va| 亚洲精品456在线播放app| 亚洲第一区二区三区不卡| 欧美性猛交╳xxx乱大交人| 精品亚洲乱码少妇综合久久| 亚洲国产精品成人久久小说| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 热re99久久精品国产66热6| 日本-黄色视频高清免费观看| 18禁在线播放成人免费| 99热这里只有是精品50| 日本色播在线视频| 2021少妇久久久久久久久久久| 免费大片黄手机在线观看| 国产男人的电影天堂91| 特大巨黑吊av在线直播| 中文天堂在线官网| 国产免费视频播放在线视频| 欧美潮喷喷水| 亚洲欧美成人综合另类久久久| 精品人妻熟女av久视频| 成年版毛片免费区| 亚洲最大成人av| 国产 一区 欧美 日韩| 97人妻精品一区二区三区麻豆| 久久久久网色| 大香蕉久久网| 国产高清国产精品国产三级 | 久久久久久久大尺度免费视频| 欧美精品人与动牲交sv欧美| 欧美成人a在线观看| 在线播放无遮挡| 国产欧美另类精品又又久久亚洲欧美| 婷婷色av中文字幕| av在线蜜桃| 亚洲欧美日韩卡通动漫| 久热这里只有精品99| 精品久久久久久电影网| 日本黄色片子视频| 国产午夜福利久久久久久| 97热精品久久久久久| 日日摸夜夜添夜夜添av毛片| 久久人人爽人人爽人人片va| 国产欧美日韩一区二区三区在线 | 99久久精品一区二区三区| 一区二区av电影网| 热re99久久精品国产66热6| 国产女主播在线喷水免费视频网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频 | 日韩一本色道免费dvd| 男插女下体视频免费在线播放| 免费看光身美女| 精品一区在线观看国产| 久久久久久久亚洲中文字幕| 哪个播放器可以免费观看大片| 熟女人妻精品中文字幕| 人体艺术视频欧美日本| 欧美激情在线99| 麻豆成人av视频| 啦啦啦在线观看免费高清www| 精品人妻一区二区三区麻豆| 国产真实伦视频高清在线观看| 国产 精品1| 欧美日韩一区二区视频在线观看视频在线 | 七月丁香在线播放| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 久久久久久久久久久免费av| 一级毛片久久久久久久久女| 免费看不卡的av| 大码成人一级视频| 伊人久久国产一区二区| 亚洲熟女精品中文字幕| 少妇 在线观看| 国产午夜福利久久久久久| av国产久精品久网站免费入址| 人妻制服诱惑在线中文字幕| 久久久精品欧美日韩精品| 亚洲丝袜综合中文字幕| 亚洲一级一片aⅴ在线观看| 日本三级黄在线观看| 日本色播在线视频| 国产亚洲一区二区精品| 亚洲av欧美aⅴ国产| 春色校园在线视频观看| 成人免费观看视频高清| 亚洲av一区综合| 国产又色又爽无遮挡免| 色哟哟·www| 成人综合一区亚洲| 97超视频在线观看视频| 蜜桃久久精品国产亚洲av| 欧美日韩精品成人综合77777| 人妻系列 视频| 男的添女的下面高潮视频| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 欧美日韩国产mv在线观看视频 | 五月开心婷婷网| 亚洲,一卡二卡三卡| 国产探花极品一区二区| 亚洲av一区综合| 国产伦在线观看视频一区| 我要看日韩黄色一级片| 亚洲丝袜综合中文字幕| 日韩三级伦理在线观看| 免费黄频网站在线观看国产| 久久久成人免费电影| 中文字幕人妻熟人妻熟丝袜美| 九九久久精品国产亚洲av麻豆| 欧美高清性xxxxhd video| 少妇被粗大猛烈的视频| 国产精品久久久久久精品古装| 免费高清在线观看视频在线观看| 欧美xxxx性猛交bbbb| 中文天堂在线官网| 日本欧美国产在线视频| 永久网站在线| 99久国产av精品国产电影| 亚洲电影在线观看av| 久久久久九九精品影院| 久久久久久久久久人人人人人人| 亚洲精品影视一区二区三区av| 久久鲁丝午夜福利片| 91在线精品国自产拍蜜月| 成人高潮视频无遮挡免费网站| 久久97久久精品| 成人高潮视频无遮挡免费网站| 免费观看性生交大片5| 尾随美女入室| av一本久久久久| 日韩在线高清观看一区二区三区| 久久ye,这里只有精品| 亚洲欧美成人精品一区二区| 青春草亚洲视频在线观看| 日韩成人伦理影院| 青春草亚洲视频在线观看| 亚洲无线观看免费| 少妇裸体淫交视频免费看高清| 不卡视频在线观看欧美| 中文精品一卡2卡3卡4更新| 99热这里只有是精品50| 亚洲av福利一区| 亚洲丝袜综合中文字幕| 国产精品三级大全| 国产欧美日韩精品一区二区| 欧美国产精品一级二级三级 | 一级a做视频免费观看| av专区在线播放| 国产精品三级大全| 国产午夜精品一二区理论片| 男女国产视频网站| kizo精华| 欧美日韩视频高清一区二区三区二| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| 一级毛片黄色毛片免费观看视频| 高清欧美精品videossex| 我的老师免费观看完整版| 最近的中文字幕免费完整| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网| 久久国产乱子免费精品| 中文字幕亚洲精品专区| 久久久成人免费电影| 成人美女网站在线观看视频| 麻豆国产97在线/欧美| 久久久欧美国产精品| 超碰av人人做人人爽久久|