• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the rate of convergence of the Legendre spectral collocation method for multidimensional nonlinear Volterra-Fredholm integral equations

    2021-04-26 03:18:58NermeenElkotMahmoudZakyEidDohaandIbrahemAmeen
    Communications in Theoretical Physics 2021年2期

    Nermeen A Elkot,Mahmoud A Zaky,Eid H Doha and Ibrahem G Ameen

    1 Department of Mathematics,Faculty of Science,Cairo University,Giza 12613,Egypt

    2 Department of Applied Mathematics,National Research Centre,Dokki,Cairo 12622,Egypt

    3 Department of Mathematics,Faculty of Science,Al-Azhar University,Cairo,Egypt

    Abstract While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kernels are now well understood,no systematic studies of the numerical solutions of their multi-dimensional counterparts exist.In this paper,we provide an efficient numerical approach for the multi-dimensional nonlinear Volterra-Fredholm integral equations based on the multi-variate Legendre-collocation approach.Spectral collocation methods for multi-dimensional nonlinear integral equations are known to cause major difficulties from a convergence analysis point of view.Consequently,rigorous error estimates are provided in the weighted Sobolev space showing the exponential decay of the numerical errors.The existence and uniqueness of the numerical solution are established.Numerical experiments are provided to support the theoretical convergence analysis.The results indicate that our spectral collocation method is more flexible with better accuracy than the existing ones.

    Keywords: spectral collocation method,convergence analysis,multi-dimensional integral equations

    1.Introduction

    In practical applications,one frequently encounters the multidimensional nonlinear Volterra-Fredholm integral equation of the form

    where φ(t1,t2,...,td) is the unknown function,f,g:D→?whereD?{(s1,…sd): 0 ≤si≤1,i=1,… ,d} satisfy the Lipschitz condition with respect to φ; y(t1,t2,…,td),k1(t1,r1,…,td,rd) and k2(t1,s1,…,td,sd) are given continuous functions.The multi-dimensional Volterra-Fredholm nonlinear integral equations arise in many physics,chemistry,biology and engineering applications,and they provide a vital tool for modeling many problems.Particular cases of such nonlinear integral equations arise in the mathematical design of the temporal-spatio development of an epidemic [1-4].They also appear in the theory of porous filtering,antenna problems in electromagnetic theory,fracture mechanics,aerodynamics,in the quantum effects of electromagnetic fields in the black body whose interior is filled by Kerr nonlinear crystal.

    During the last decade,many numerical schemes have been developed for the one- and two-dimensional version of the nonlinear Volterra-Fredholm integral equations [5-16].However,the studies on analysis and derivation of numerical schemes for the multi-dimensional nonlinear integral equations are still limited.Mirzaee and Hadadiyan [17] solved the second kind three-dimensional linear Volterra-Fredholm integral equations using the modified block-pulse functions.Wei et al[18]studied the convergence analysis of the Chebyshev collocation method for approximating the solution of the second kind multi-dimensional nonlinear Volterra integral equation with a weakly singular kernel.Pan et al [19] developed a quadrature method based on multi-variate Bernstein polynomials for approximating the solution of multi-dimensional Volterra integral equations.Sadri et al[20]constructed an operational approach for linear and nonlinear three-dimensional Fredholm,Volterra,and mixed Volterra-Fredholm integral equations.Liu et al [21] proposed two interpolation collocation methods for solving the second kind nonlinear multi-dimensional Fredholm integral equations utilizing the modified weighted Lagrange and the rational basis functions.Assari et al [22] presented a discrete radial basis functions collocation scheme based on scattered points for solving the second kind two-dimensional nonlinear Fredholm integral equations on a non-rectangular domain.Wei et al [23] provided a spectral collocation scheme for multi-dimensional linear Volterra integral equation with a smooth kernel.Wei et al [24,25] studied the convergence analysis of the Jacobi spectral collocation schemes for the numerical solution of multi-dimensional nonlinear Volterra integral equations.Doha et al[26]proposed Jacobi-Gausscollocation scheme for approximating the solution of Fredholm,Volterra,and systems of Volterra-Fredholm integral equations with initial and nonlocal boundary conditions.Zaky and Hendy[27]developed and analyzed a spectral collocation scheme for a class of the second kind nonlinear Fredholm integral equations in multi-dimensions.Zaky and Ameen [28]developed Jacobi spectral collocation scheme for solving the second kind multidimensional integral equations with non-smooth solutions and weakly singular kernels.

    Solving multi-dimensional Volterra-Fredholm integral equations is much more challenging than low-dimensional problems due to dimension effect,especially those are nonlinear.The main purpose of this paper is to propose and analyze a Legendre spectral collocation method for multi-dimensional nonlinear Volterra-Fredholm integral equations.Compared to Galerkin spectral methods,spectral collocation methods are more flexible to deal with complicated problems,especially those are nonlinear.We get the discrete scheme by using multivariate Gauss quadrature formula for the integral term.We provide theoretical estimates of exponential decay for the errors of the approximate solutions.Moreover,we establish the existence and uniqueness of the numerical solution.

    The paper is organized as follows.In the following section,we investigate the existence and uniqueness of the solution to equation (1.1).In section 3,we state some preliminaries and notation.The spectral collocation discretization of(1.1)is given in section 4.In section 5,the rate of convergence of the proposed scheme is derived.In section 6,we investigate the existence of the numerical solution.In section 7,we investigate the uniqueness of the numerical solution.The numerical experiments are performed in section 7 illustrating the performance of our scheme.We conclude the paper with some discussions in section 8.

    2.Existence and uniqueness of the solution

    In this section,we prove the existence and uniqueness of solution to (1.1).The L∞- norm is defined as

    For sake of simplicity,we rewrite equation (1.1) as φ=Tφ,where

    and consider the following assumptions:

    d2=<∞,and the nonlinear functions f,g satisfy the Lipschitz conditions

    where L1and L2are non-negative real constants.

    Theorem 1.If the assumptions (T1)-(T4) are satisfied,then equation (1.1) admits a unique solution inL∞(Id).

    Proof.Letφ∈L∞(Id).Then,we deduce from the assumptions(T1) - (T3) that

    Hence,‖Tφ‖∞<∞and the operator T mapL∞(Id) toL∞(Id).Consequently,it follows directly from the assumptions(T2)- (T4) that the operator T is a contraction

    Thus,the proof follows directly from the Banach fixed point theorem. □

    3.Multi-variate Legendre-Gauss interpolation

    In this section,we provide some properties of the Legendre polynomials.

    · LetPNbe the space of polynomials of degree at most N in Ω,where Ω?(-1,1) and Ωd?(-1,1)d.

    · Let ωμ,ν(y)=(1-y)μ(1+y)νbe a non-negative weight function defined in Ω and corresponding to the Jacobi parameters μ,ν >-1.

    · Let? be the set of all real numbers,? be the set of all non-negative integers,and ?0=? ∪0.

    · The lowercase boldface letters denotes d-dimensional vectors and multi-indexes,e.g.andb= (b1,… ,b d) ∈?d.We denote by ek=(0,…,1,…,0)the kth unit vector in?dand 1 = (1 ,1,… ,1) ∈?d.For a constantc∈?,we introduce the following operations:

    · We define

    · Given a multi-variate function φ(z),we define the qth partial (mixed) derivative as

    The set of Legendre polynomials{L n(y)} forms a complete orthogonal system in L2(Ω),i.e.

    where δm,nis the Kronecker symbol and

    The d-dimensional Legendre polynomial is given by

    Hence,

    The multi-dimensional Gauss-Legendre quadrature formula is given by

    Hence

    For any φ ∈C(Ωd),then the Gauss-Legendre interpolation operatoris computed uniquely by

    For each direction,we assume that the number of Gauss quadrature points is N+1 points.We define

    respectively.For 1 ≤j ≤d,the index setsare defined as

    Lemma 1([29]).Forμ∈withd≤q≤M+1,

    where c is a non-negative constant independent ofq,Mand μ.

    4.Legendre collocation discretization

    In this section,we describe the procedure of solving problem(1.1) in the domain Ωd?(-1,1)d.Using the change of variables:

    and employing the linear transformations:

    then equation (1.1) can be expressed as follows:

    which may be written in the compact form

    where

    For computing the second integral term in (4.2),we use the linear transformation:

    to transform the integral interval [-1,xi] to [-1,1].Therefore,equation (4.2) becomes

    where

    Setting

    and inserting (4.4) into (4.3) lead to the following scheme

    The implementation of the spectral collocation scheme is performed as follows:

    Setting

    and

    enable one to immediately write

    and this with relation (3.2) yield

    Using (4.7) again yields

    where

    Consequently

    where

    Using the orthogonality of the Legendre polynomial,we obtain the following system of algebraic equations.

    5.Convergence analysis

    In this section,we investigate the convergence and error analysis of the proposed method.

    Let βibe the Legendre-Gauss nodes in Ωdand τi=τ(x,βi).The mapped Legendre-Gauss interpolation operatoris defined by

    then

    and

    Accordingly,the following relation can easily be achieved

    and

    Assume that I is the identity operator in d-dimension.Then we obtain for any d ≤s ≤N+1 that

    For convenience,we denote EN=Φ(x)-ΦN(x).Clearly

    Lemma 2.The following inequality holds:

    where

    Proof.It follows directly from (4.2) that

    Subtracting (5.11) from (5.10),leads to

    This,together with (5.7),leads to the desired result. □

    Theorem 2.Let Φ and ΦNbe the solutions of(4.3)and(4.5),respectively.Let Φ ∈d≤s≤N+1,and the nonlinear functions F and G satisfy the Lipschitz conditions

    where L1and L2are real non-negative constants satisfyM1L1+M2L2<1withMi= ‖Ki‖∞,i=1,2.Then,we have

    Proof.By lemma (1),we get

    Next,we estimate‖E2‖.By using the Gauss-Legendre integration formula (3.1),we have

    Using the Cauchy-Schwarz inequality yields

    and by noting that

    then,we get

    To estimate‖E3‖ ,then using the Legendre-Gauss integration formula (3.1) gives

    again the application of Cauchy-Schwarz inequality and(5.16) leads to

    Using the Lipschitz condition,we obtain

    By using the triangle inequality,we have

    further from lemma 1,we get

    To estimate‖E4‖ ,the Legendre-Gauss integration formula(3.1) is used to give

    and application of Cauchy-Schwarz inequality and(5.6)lead to

    Finally,an estimation to‖E5‖is obtained using the Legendre-Gauss integration formula (3.1)

    Using the Lipschitz condition,we get

    Using the triangle inequality,we have

    We further get from (5.6) that

    We know that

    Hence,a combination of (5.13),(5.17),(5.22),(5.24) and(5.28) leads to the desired conclusion of this theorem.

    6.Existence of the approximate solution

    We consider the following iteration process:

    Let

    Then,we have

    where

    Using Cauchy-Schwarz inequality for estimating‖Q1‖leads to

    and application of Lipschitz condition gives

    We next estimate‖Q2‖using Cauchy-Schwarz inequality to get

    Using(5.4),(5.16)and the Lipschitz condition enable us to write

    Since,L1M1+M2L2<1,thenas m →∞.

    7.Uniqueness of the approximate solution

    Let Φ1,N,Φ2,Nbe two different solutions satisfy (4.3).We consider the following iteration processes:

    Let

    Subtraction (7.1) from (7.3),leads to

    where

    Using Cauchy-Schwarz inequality for estimating‖R1‖,leads to

    and using the Lipschitz condition,we obtain

    We next estimate‖R2‖using Cauchy-Schwarz inequality,we get

    Using(5.4),(5.16)and the Lipschitz condition,enable us to write

    Since,L1M1+M2L2<1,thenas m →∞.Accordingly Φ1,N=Φ2,Nand this proves the uniqueness of the approximate solution.

    Table 1.The L2- errors for example 1 versus N.

    Table 2.The L∞- errors for example 2 versus N.

    8.Numerical results and comparisons

    In this section,two test problems are presented to show the efficiency of the proposed method.

    Example 1.We consider the following nonlinear Volterra-Fredholm integral equation [6,30,31]:

    The exact solution of this equation isφ(ζ) =cos (ζ).Using the variablesandy(t) =we obtain the following equivalent integral equation

    In table 1,for various values of N,we report the numerical results of the presented method and the numerical schemes based on shifted piecewise cosine basis [6],Haar wavelets [30] and the Picard iteration method [31] to solve this example.As it is shown in this table,the present numerical results are more accurate than those reported in[6,30,31] to solve example 1.

    Example 2.Consider the following two-dimensional Volterra integral equation [32]:

    where

    The exact solution is given as

    The Lipschitz conditions are satisfied with M1=0,M2=0.5,d1=d2=0,L1=0,L2=1.For different values for γ,the exact solution φ may have large total variation

    The L∞-errors for this example are given in table 2.These results indicate that,when γ decreases,TV(φ) increases and the method converges slower.The absolute error eN,for N=9 and γ=1,-1,-2,is displayed in figures 1-3.

    Figure 1.The absolute errors of example 2 at γ=1 and N=9.

    Figure 2.The absolute errors of example 2 at γ=-1 and N=9.

    9.Conclusion

    The extension of existing numerical methods for onedimensional integral equations to their corresponding highdimensional integral equations is not trivial.We presented an efficient spectral collocation scheme for the numerical solution of the multi-dimensional nonlinear Volterra-Fredholm integral equations based on multi-variate Legendre-collocation method.We have studied the existence and uniqueness of the solution using the Banach fixed point theorem.Moreover,we provided rigorous error estimates showing that the numerical errors decay exponentially in the weighted Sobolev space.We have also established the existence and uniqueness of the numerical solution.Our numerical tests confirmed the theoretical findings,showing that an elevated rate of convergence in comparison with the numerical results reported in[6,30-32].Our spectral collocation method is more flexible with better accuracy than the existing ones.In our future extension,we will consider a unified spectral collocation method for multi-dimensional nonlinear systems of integral equations with convergence analysis.

    Figure 3.The absolute errors of example 2 at γ=-2 and N=9.

    Acknowledgments

    The authors would like to thank the editor Bolin Wang,the associate editor,and the anonymous reviewers for their constructive comments and suggestions which improved the quality of this paper.

    ORCID iDs

    嘟嘟电影网在线观看| 777米奇影视久久| 一二三四中文在线观看免费高清| 成人亚洲精品av一区二区| 欧美潮喷喷水| 久久精品人妻少妇| av一本久久久久| 国产亚洲精品久久久com| 亚洲精品456在线播放app| 中文字幕av在线有码专区| 久久久久久久久久人人人人人人| 美女国产视频在线观看| 美女内射精品一级片tv| 亚洲av在线观看美女高潮| 久久久久免费精品人妻一区二区| 汤姆久久久久久久影院中文字幕 | 麻豆成人午夜福利视频| 色尼玛亚洲综合影院| 国产精品99久久久久久久久| 男女国产视频网站| 大片免费播放器 马上看| 性插视频无遮挡在线免费观看| 免费观看性生交大片5| 久久综合国产亚洲精品| 激情 狠狠 欧美| 国产精品日韩av在线免费观看| 久久99蜜桃精品久久| 男的添女的下面高潮视频| 亚洲成人av在线免费| 国产精品久久久久久久电影| 国产精品一区二区性色av| 蜜臀久久99精品久久宅男| 自拍偷自拍亚洲精品老妇| 免费播放大片免费观看视频在线观看| 草草在线视频免费看| 国产成人免费观看mmmm| 精品久久久久久久久av| 嫩草影院精品99| 欧美成人a在线观看| 国产一级毛片在线| 亚洲性久久影院| 汤姆久久久久久久影院中文字幕 | 久久精品久久久久久久性| 小蜜桃在线观看免费完整版高清| 只有这里有精品99| 最近中文字幕高清免费大全6| 99热这里只有是精品在线观看| 天堂av国产一区二区熟女人妻| 亚洲av日韩在线播放| 免费不卡的大黄色大毛片视频在线观看 | 国产高清三级在线| 天堂中文最新版在线下载 | 欧美另类一区| 欧美3d第一页| 三级经典国产精品| 国产成人91sexporn| 日日干狠狠操夜夜爽| 成人二区视频| 国产男女超爽视频在线观看| 婷婷六月久久综合丁香| 午夜精品在线福利| 国产伦精品一区二区三区四那| 欧美精品一区二区大全| 91久久精品国产一区二区三区| 水蜜桃什么品种好| 小蜜桃在线观看免费完整版高清| 亚洲精品视频女| 国产一区二区亚洲精品在线观看| 国产精品一二三区在线看| kizo精华| 又大又黄又爽视频免费| 日韩av在线大香蕉| videos熟女内射| 在线天堂最新版资源| 日日撸夜夜添| 日韩 亚洲 欧美在线| 亚洲av中文字字幕乱码综合| 街头女战士在线观看网站| 日韩强制内射视频| 人妻少妇偷人精品九色| av专区在线播放| 久久精品国产亚洲av涩爱| 黄片无遮挡物在线观看| 性插视频无遮挡在线免费观看| 精品亚洲乱码少妇综合久久| 日本-黄色视频高清免费观看| 黑人高潮一二区| 久久久色成人| 亚洲精华国产精华液的使用体验| 日韩欧美精品v在线| 一夜夜www| 成人亚洲精品av一区二区| 亚洲av二区三区四区| 亚洲国产精品专区欧美| 国产人妻一区二区三区在| 日韩欧美一区视频在线观看 | 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 高清日韩中文字幕在线| 乱系列少妇在线播放| 欧美变态另类bdsm刘玥| 91av网一区二区| 91精品伊人久久大香线蕉| 日日啪夜夜爽| 边亲边吃奶的免费视频| av在线天堂中文字幕| 欧美丝袜亚洲另类| 人人妻人人澡人人爽人人夜夜 | 91精品国产九色| 国产精品一区二区三区四区免费观看| 免费不卡的大黄色大毛片视频在线观看 | 日韩,欧美,国产一区二区三区| 婷婷色综合大香蕉| 午夜免费激情av| 国产免费又黄又爽又色| 哪个播放器可以免费观看大片| 卡戴珊不雅视频在线播放| 99久久人妻综合| 日本免费在线观看一区| 听说在线观看完整版免费高清| 嘟嘟电影网在线观看| 国产精品一区二区在线观看99 | 九九爱精品视频在线观看| 大陆偷拍与自拍| 亚洲av成人av| 成人鲁丝片一二三区免费| 大香蕉久久网| 2018国产大陆天天弄谢| 亚洲成人一二三区av| 免费大片黄手机在线观看| 亚洲美女视频黄频| 熟女人妻精品中文字幕| 熟妇人妻久久中文字幕3abv| 黑人高潮一二区| 最近的中文字幕免费完整| av在线亚洲专区| 五月伊人婷婷丁香| 国产在视频线精品| 国产伦在线观看视频一区| 久久久久精品久久久久真实原创| 男人和女人高潮做爰伦理| 日韩欧美一区视频在线观看 | 亚洲精品一区蜜桃| 久久这里有精品视频免费| 免费看a级黄色片| 成人午夜高清在线视频| 一级毛片aaaaaa免费看小| 亚洲真实伦在线观看| 日日摸夜夜添夜夜爱| 免费黄频网站在线观看国产| 只有这里有精品99| 免费观看的影片在线观看| 少妇的逼水好多| 亚洲av中文av极速乱| 99久久中文字幕三级久久日本| 国产男人的电影天堂91| 欧美成人一区二区免费高清观看| 乱系列少妇在线播放| 99热这里只有精品一区| 人妻一区二区av| 天天躁夜夜躁狠狠久久av| 日韩欧美三级三区| 精品久久久久久久末码| 内地一区二区视频在线| 亚洲欧美日韩东京热| 国产精品.久久久| 91狼人影院| 九九在线视频观看精品| 91久久精品电影网| 国产精品国产三级国产av玫瑰| 一二三四中文在线观看免费高清| 日本黄色片子视频| 久久这里有精品视频免费| 欧美xxⅹ黑人| 免费电影在线观看免费观看| 亚洲aⅴ乱码一区二区在线播放| 欧美3d第一页| 中文字幕av在线有码专区| 91久久精品电影网| 久久久久久久久久黄片| 性色avwww在线观看| 日本一本二区三区精品| 人人妻人人澡欧美一区二区| 国内精品宾馆在线| 天天一区二区日本电影三级| 国产一区二区亚洲精品在线观看| 成年av动漫网址| 国产成人精品久久久久久| 青春草亚洲视频在线观看| 久久精品国产鲁丝片午夜精品| 午夜福利高清视频| 欧美xxxx黑人xx丫x性爽| 免费人成在线观看视频色| 亚洲成人中文字幕在线播放| 熟女人妻精品中文字幕| 九九在线视频观看精品| 搡老妇女老女人老熟妇| 久久精品熟女亚洲av麻豆精品 | 能在线免费观看的黄片| 黄色配什么色好看| 国产成人福利小说| 国产综合懂色| av免费观看日本| 亚洲最大成人手机在线| 欧美激情久久久久久爽电影| 男女边吃奶边做爰视频| 高清在线视频一区二区三区| 美女大奶头视频| 国内精品宾馆在线| 亚洲av二区三区四区| 久久久精品94久久精品| 久久精品国产鲁丝片午夜精品| 亚洲精品乱码久久久久久按摩| 色播亚洲综合网| 国产伦精品一区二区三区四那| 最新中文字幕久久久久| 美女高潮的动态| 国产有黄有色有爽视频| 日日干狠狠操夜夜爽| 免费观看精品视频网站| 日本wwww免费看| 亚洲精品第二区| 精品不卡国产一区二区三区| 日本爱情动作片www.在线观看| 精品久久久噜噜| 精品久久久久久久久亚洲| 一区二区三区乱码不卡18| 久久亚洲国产成人精品v| 免费av毛片视频| 非洲黑人性xxxx精品又粗又长| 久久久久久久久久人人人人人人| 国产黄片视频在线免费观看| 国产在线男女| 黑人高潮一二区| 亚洲精品456在线播放app| 国产精品一区二区性色av| 欧美激情在线99| 亚洲av中文字字幕乱码综合| 五月玫瑰六月丁香| 久热久热在线精品观看| 少妇高潮的动态图| 日韩欧美精品v在线| 国产高清有码在线观看视频| 成人鲁丝片一二三区免费| 国产伦理片在线播放av一区| 国产三级在线视频| 日韩精品有码人妻一区| 国产精品日韩av在线免费观看| 久久精品夜色国产| kizo精华| 午夜福利网站1000一区二区三区| 国产成人91sexporn| av国产久精品久网站免费入址| 精品亚洲乱码少妇综合久久| 九九在线视频观看精品| 亚洲18禁久久av| 日本欧美国产在线视频| 黄色欧美视频在线观看| 精品人妻偷拍中文字幕| 成人特级av手机在线观看| 麻豆精品久久久久久蜜桃| 内射极品少妇av片p| 26uuu在线亚洲综合色| 少妇裸体淫交视频免费看高清| 免费看日本二区| 亚洲成色77777| 亚洲精品色激情综合| 久久久久久久大尺度免费视频| 日韩人妻高清精品专区| 男人爽女人下面视频在线观看| 国产黄片美女视频| 观看美女的网站| 国产激情偷乱视频一区二区| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 国产亚洲5aaaaa淫片| 五月天丁香电影| 老司机影院毛片| 日本av手机在线免费观看| 亚洲丝袜综合中文字幕| 亚洲国产欧美在线一区| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 久久久久性生活片| 久久热精品热| 国产精品一区www在线观看| 美女脱内裤让男人舔精品视频| 久久97久久精品| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 国产亚洲av片在线观看秒播厂 | 最近2019中文字幕mv第一页| 国产黄频视频在线观看| 日韩亚洲欧美综合| 国产精品久久久久久久电影| 一级毛片我不卡| 大香蕉久久网| 日日摸夜夜添夜夜爱| 91狼人影院| 国产一区二区亚洲精品在线观看| 成人一区二区视频在线观看| 午夜激情久久久久久久| 国产一区有黄有色的免费视频 | 免费看av在线观看网站| 久久99蜜桃精品久久| 国内精品宾馆在线| 午夜福利在线观看免费完整高清在| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 搡老妇女老女人老熟妇| 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 蜜桃久久精品国产亚洲av| 欧美日韩在线观看h| 免费黄色在线免费观看| 午夜日本视频在线| 亚洲人与动物交配视频| 日韩av在线免费看完整版不卡| 午夜精品在线福利| 国内精品美女久久久久久| 国语对白做爰xxxⅹ性视频网站| 国产精品.久久久| 嫩草影院新地址| 国产伦理片在线播放av一区| 舔av片在线| 日韩欧美一区视频在线观看 | 国产成人一区二区在线| 欧美性猛交╳xxx乱大交人| 精品久久久久久久人妻蜜臀av| 国产一区亚洲一区在线观看| 最近最新中文字幕大全电影3| 亚洲怡红院男人天堂| 亚洲av电影不卡..在线观看| 久久久久精品久久久久真实原创| 99热这里只有精品一区| 日本wwww免费看| 国产91av在线免费观看| 亚洲av成人精品一二三区| 晚上一个人看的免费电影| 91aial.com中文字幕在线观看| 日韩 亚洲 欧美在线| 永久免费av网站大全| 国产精品熟女久久久久浪| 夜夜看夜夜爽夜夜摸| 午夜福利在线观看吧| 久久久久久久久久久免费av| 午夜福利在线观看吧| 成人亚洲精品一区在线观看 | 草草在线视频免费看| 成人亚洲精品av一区二区| 免费观看a级毛片全部| 麻豆av噜噜一区二区三区| 国产av在哪里看| 久久久久性生活片| 亚洲成人精品中文字幕电影| 极品教师在线视频| 精品国产三级普通话版| 日本三级黄在线观看| 日韩不卡一区二区三区视频在线| 亚洲精品一区蜜桃| 丰满人妻一区二区三区视频av| 极品少妇高潮喷水抽搐| 亚州av有码| 日本一本二区三区精品| 高清av免费在线| 免费少妇av软件| 久久久久久久久久黄片| 国产日韩欧美在线精品| 国产成人福利小说| 日韩一区二区视频免费看| 有码 亚洲区| 美女被艹到高潮喷水动态| 天堂√8在线中文| 日韩电影二区| 淫秽高清视频在线观看| 伦精品一区二区三区| 免费大片18禁| 国产成人精品福利久久| 亚洲高清免费不卡视频| 欧美日韩综合久久久久久| 欧美成人a在线观看| .国产精品久久| 大片免费播放器 马上看| .国产精品久久| 97热精品久久久久久| 插逼视频在线观看| 大香蕉97超碰在线| 国产爱豆传媒在线观看| 国产视频内射| 日本色播在线视频| 成年av动漫网址| 搡女人真爽免费视频火全软件| 欧美高清性xxxxhd video| 日韩精品有码人妻一区| 直男gayav资源| 免费av毛片视频| 国产亚洲av片在线观看秒播厂 | 亚洲久久久久久中文字幕| 亚洲美女视频黄频| 国产精品麻豆人妻色哟哟久久 | 欧美激情国产日韩精品一区| 国产免费视频播放在线视频 | 能在线免费观看的黄片| 免费看a级黄色片| 男人狂女人下面高潮的视频| 亚洲av成人精品一二三区| 尤物成人国产欧美一区二区三区| 五月玫瑰六月丁香| 少妇的逼水好多| 亚洲av电影在线观看一区二区三区 | 国内精品一区二区在线观看| videossex国产| 你懂的网址亚洲精品在线观看| 婷婷色综合www| 我的老师免费观看完整版| 亚洲欧美中文字幕日韩二区| 国产极品天堂在线| 亚洲国产成人一精品久久久| 亚洲国产av新网站| 日韩欧美国产在线观看| 天堂√8在线中文| 久久久精品免费免费高清| 久久久精品欧美日韩精品| 国产伦一二天堂av在线观看| 午夜福利视频精品| 免费观看在线日韩| 久久精品夜色国产| 免费观看a级毛片全部| 亚洲久久久久久中文字幕| 亚洲av男天堂| 男女那种视频在线观看| 久久久久精品久久久久真实原创| 99热全是精品| 国产精品久久久久久久电影| 六月丁香七月| 久久久久久久久久久免费av| 女人十人毛片免费观看3o分钟| 午夜视频国产福利| 最近最新中文字幕免费大全7| 蜜桃亚洲精品一区二区三区| 国产亚洲5aaaaa淫片| 青春草国产在线视频| 日本与韩国留学比较| 建设人人有责人人尽责人人享有的 | 亚洲在久久综合| 色综合站精品国产| 久久这里有精品视频免费| 久久久久久久午夜电影| 夜夜爽夜夜爽视频| 高清日韩中文字幕在线| 婷婷色av中文字幕| 国产亚洲5aaaaa淫片| 网址你懂的国产日韩在线| 我的女老师完整版在线观看| 99久国产av精品| 91午夜精品亚洲一区二区三区| 美女cb高潮喷水在线观看| 日韩成人伦理影院| 一边亲一边摸免费视频| 高清毛片免费看| 自拍偷自拍亚洲精品老妇| 国产成人aa在线观看| 国产免费福利视频在线观看| 丰满少妇做爰视频| 久久久久久久久久人人人人人人| 91久久精品国产一区二区成人| 熟女电影av网| 少妇人妻精品综合一区二区| 少妇丰满av| 日本一本二区三区精品| 激情 狠狠 欧美| 国产精品一区二区三区四区免费观看| 国产亚洲av嫩草精品影院| 亚洲精品亚洲一区二区| 久久久久久久国产电影| 777米奇影视久久| 国产精品不卡视频一区二区| 91久久精品国产一区二区成人| 亚洲第一区二区三区不卡| 国产成人aa在线观看| 久久国产乱子免费精品| 国产色爽女视频免费观看| 成人特级av手机在线观看| 成人高潮视频无遮挡免费网站| 亚洲综合精品二区| 午夜福利在线在线| 国产91av在线免费观看| 欧美精品国产亚洲| 搞女人的毛片| 高清欧美精品videossex| 日韩精品青青久久久久久| 午夜福利成人在线免费观看| 亚州av有码| 亚洲精品一二三| 欧美激情在线99| 免费观看在线日韩| 国产69精品久久久久777片| 久久久成人免费电影| 大又大粗又爽又黄少妇毛片口| 免费看美女性在线毛片视频| 插逼视频在线观看| 免费黄色在线免费观看| 亚洲欧美成人综合另类久久久| 精品一区二区三卡| 亚洲精品久久午夜乱码| 亚洲欧美精品自产自拍| 天堂俺去俺来也www色官网 | 亚洲一区高清亚洲精品| 国产成人免费观看mmmm| 91精品一卡2卡3卡4卡| 亚洲婷婷狠狠爱综合网| 22中文网久久字幕| 18禁动态无遮挡网站| 国产精品av视频在线免费观看| 日韩视频在线欧美| 国产黄片视频在线免费观看| 天堂中文最新版在线下载 | 99久久人妻综合| 男女边吃奶边做爰视频| 欧美不卡视频在线免费观看| 国产精品一区www在线观看| 精品久久久久久久久亚洲| 天堂网av新在线| 视频中文字幕在线观看| 肉色欧美久久久久久久蜜桃 | 亚洲性久久影院| 一区二区三区乱码不卡18| freevideosex欧美| 又爽又黄a免费视频| 淫秽高清视频在线观看| 国产高清不卡午夜福利| 日韩一区二区三区影片| 欧美高清成人免费视频www| 亚洲高清免费不卡视频| 婷婷色麻豆天堂久久| 亚洲av在线观看美女高潮| a级毛片免费高清观看在线播放| 白带黄色成豆腐渣| 亚洲欧美一区二区三区国产| 九九久久精品国产亚洲av麻豆| 成人欧美大片| 男女视频在线观看网站免费| 日韩一本色道免费dvd| 亚洲精品乱码久久久v下载方式| 亚洲欧洲日产国产| 亚洲成色77777| 国产中年淑女户外野战色| 日韩制服骚丝袜av| 欧美日本视频| 一区二区三区乱码不卡18| 只有这里有精品99| 日本一本二区三区精品| 国产黄色小视频在线观看| 国产成人精品久久久久久| 久热久热在线精品观看| 一边亲一边摸免费视频| 亚洲色图av天堂| 三级毛片av免费| 亚洲综合色惰| 国产伦在线观看视频一区| 国内精品宾馆在线| 精品久久久久久久久亚洲| 可以在线观看毛片的网站| 男女视频在线观看网站免费| freevideosex欧美| 免费黄频网站在线观看国产| 午夜亚洲福利在线播放| 大话2 男鬼变身卡| 午夜精品国产一区二区电影 | 久久99热这里只频精品6学生| 两个人的视频大全免费| 内地一区二区视频在线| 嫩草影院精品99| 欧美三级亚洲精品| 亚洲精品456在线播放app| 九色成人免费人妻av| 黄色日韩在线| 久久99热6这里只有精品| av又黄又爽大尺度在线免费看| 国产一区二区三区综合在线观看 | 久久午夜福利片| 人人妻人人澡欧美一区二区| 精品久久久噜噜| 久久韩国三级中文字幕| 国产精品国产三级专区第一集| 国产大屁股一区二区在线视频| 日韩成人av中文字幕在线观看| 成人毛片60女人毛片免费| 高清毛片免费看| 亚洲av电影在线观看一区二区三区 | 国产永久视频网站| 日日啪夜夜爽| 亚洲av一区综合| 精品一区二区三区人妻视频| 亚洲人成网站在线播| 嫩草影院精品99| 国内精品美女久久久久久| 成年av动漫网址| 亚洲av电影在线观看一区二区三区 | 国产永久视频网站| 亚洲天堂国产精品一区在线| 久久99热这里只频精品6学生| 国产永久视频网站| 亚洲天堂国产精品一区在线| 嫩草影院新地址| 久久精品人妻少妇| 国产精品麻豆人妻色哟哟久久 | 我的老师免费观看完整版| 别揉我奶头 嗯啊视频| 成人漫画全彩无遮挡| 亚洲欧美精品自产自拍| 亚洲美女搞黄在线观看| 亚洲va在线va天堂va国产| 美女大奶头视频| 波多野结衣巨乳人妻|