• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulation instability,rogue waves and conservation laws in higher-order nonlinear Schr?dinger equation

    2021-04-26 03:18:52MinJieDongandLiXinTian
    Communications in Theoretical Physics 2021年2期

    Min-Jie Dong and Li-Xin Tian,2,*

    1 School of Mathematical Sciences,Nanjing Normal University,Nanjing,Jiangsu 210023,China

    2Nonlinear Scientific Research Center,Jiangsu University,Zhenjiang,Jiangsu 212013,China

    Abstract In this paper,the modulation instability (MI),rogue waves(RWs) and conservation laws of the coupled higher-order nonlinear Schr?dinger equation are investigated.According to MI and the 2 × 2 Lax pair,Darboux-dressing transformation with an asymptotic expansion method,the existence and properties of the one-,second-,and third-order RWs for the higher-order nonlinear Schr?dinger equation are constructed.In addition,the main characteristics of these solutions are discussed through some graphics,which are draw widespread attention in a variety of complex systems such as optics,Bose-Einstein condensates,capillary flow,superfluidity,fluid dynamics,and finance.In addition,infinitely-many conservation laws are established.

    Keywords: higher-order nonlinear Schr?dinger equation,modulation instability,rogue waves,conservation laws

    1.Introduction

    Rogue waves(RWs)are regarded as one of the highly unsafe phenomena in the ocean [1],and are usually called monster waves or extreme waves in the ocean.In addition to the ocean,RWs can exist in optical fibers,Bose-Einstein condensates [2],and finance [3,4].The peregrine soliton as the classic NLS equation is seen as a possible mathematical explanation in 2010 [2].

    Modulation instability(MI)is one of the main reasons for the formation of RWs in nonlinear dispersion systems,and its formation is intimately related to baseband MI.MI is found in the environment of water waves and is also known as the instability of Benjamin Fair [5].MI can be interpreted as the exponential growth of the initial sine wave perturbation of the plane wave solution.In addition to water waves,MI also exists in plasma,nonlinear optics [6] and Bose-Einstein condensate.However,according to [7-9],we know that not every type of MI leads to the formation of the RW.The baseband MI is defined as a condition where the cw background is unstable relative to a disturbance with an infinitesimal frequency by Baronio et al in 2014 [10].The passband MI is defined as the interference in which disturbances are experienced in a spectral region where the limit frequency does not include the zero frequency.This shows that in different nonlinear wave models,the existence conditions of RW solutions are consistent with baseband MI conditions.Experiments in optical fibers are designed to provide evidence of the passband and baseband polarization MI in the defocused Manakov system by Frisquet et al in 2015 [11].Recently,Yang research group studied MI and related localized wave excitations in general high-order NLSE,see [12,13].On the other hand,the MI developed from localized perturbations can also studied by the breathers exactly,namely the super-regular breathers,see [14-16].

    Conservation laws play an important role in discussing the integrability of soliton equations.Since Dogan discovered the infinite number of conservation law of the KdV equation[17],many methods have been developed.For example,the infinite number of conservation laws or conserved quantities of a continuous system can be obtained through the B?klund transformation,the couple of Ricatti equations [18],and the scattering problem [19].Recently,Tsuchida and Wadati proposed a graceful trace identity as a component extension to describe the protection of multi-component cases [20].In addition,all the above methods have been extended to discrete soliton lattices.

    In this paper,we shall use the Darboux-dressing transformation (DDT) to concentrate the rational solutions of the higher-order nonlinear Schr?dinger (HONLS) equation [21].

    where ψ is the wave function in optics,and t is the time variable,x is the propagation variable.The superscripts denote the complex conjugate and the subscripts represent the partial derivatives.Within our knowledge,the HONLS equation contains three completely integrable equations,which are α=0,δ=0;α ≠ 0,δ=0;α=0,δ ≠ 0.These equations have been studied by many scholars from different perspectives [22-25].

    To facilitate calculation,Liu and his colleagues assumed r=iψ andq=,the equation (1) can be transformed into following coupled higher-order nonlinear Schr?dinger(CHONLS) equation [26]

    To our knowledge,the MI,RWs and conservation laws of CHONLS equations have not been reported in the existing literatures.In this paper,the breather solution and the RWs of this equation through DDT are mainly studied.The change of the parameters α and δ will affect the propagation direction of the wave,which will shown in detail with the figure.We also study the relationship between the RWs and the MI of the equation,and the conservation law.

    The remainder of our article is constructed as follows.In section 2,according to the modulating instability,the linear stability of nonlinear plane waves with variable coefficients in the presence of small perturbations will be analyzed.In section 3,the DDT of the Lax pair system will be presented.In section 4,the new breather wave and RWs of equation(2)will be systematically derived.The first-order,second-order,and third-order accurate RWs are given and their dynamic characteristics will be analyzed.In section 5,the conservation laws will be constructed.Our conclusions will be drawn in section 6.

    2.Modulation instability

    In this section,we pay attention to MI on the plane wave state of the equation (2),which is believed to be the cause of the formation of RWs.According to [12-16],the plane wave solutions of equation (2) have the following form

    where a denotes the amplitude,b denotes the frequency,both of them are real constants,and c is the plane wave number.Substituting equation (3) into (2),it can be obtained that

    In order to perform the linear stability analysis,we add a small perturbation term in the the plane wave solution

    where ε is a small parameter,Q and R are the function of x and t.Substituting the above solution (5) into the (2),then collecting the terms in the first order of ε,we can get the following perturbation equation for Q and R

    Noting the linearity of the above equation (6) with respect to R and Q,we assume R and Q as

    where Λ is the wave number,Ω is the modulation frequency,while U and V are small parameters.Putting equation(8)into(6),the following dispersion relation for the perturbations are obtained

    Figure 1.Gain spectra of modulation instability for the parameter values:(a)α=1,δ=1; (b)α=0,δ=0;(c)α=1,δ=0;(d)α=0,δ=1 ,and for the different power levels as legend.

    where

    the existence conditions of the solutions for U and V (i.e.UV ≠ 0) can be obtained

    Solving equation (11),the following dispersion relation are obtained

    The power gain at any frequency Ω is obtained from equation (12) and is given by

    in which G stands for the gain with (Λ2-4a2)Figure 1 shows the gain spectra at three power levels.

    3.Lax pair and the DDT

    Due to complete integrability [26],equation (2) can be cast into the following 2 × 2 linear eigenvalue problem

    where Φ= (φ1,φ2)′(′mean a matrix transpose)is the vector eigenfunction,φ1and φ2are the complex functions of(x,t),M and N are the 2 × 2 square matrices,and

    with i2=-1,J=diag(i,-i) and

    the compatibility condition Mt- Nx+ MN - NM=0.

    Theorem 1.The following unified DDT yields

    where

    and I2=diag(1,1),Φ is a special vector for the lax pair with λ=λ1.

    It is necessary to show that the linear system can be rewritten in next form

    and transformation between potential functions reads as

    where commutator [A,B]=AB - BA.

    4.Breather wave solutions and RWs

    In what follows,we will construct breathing waves and RWs of the equation (2) based on the DDT.

    4.1.Breather wave solutions

    Based on the [27-34],the corresponding solution of the Lax pair can be sought in a new form

    where Z is an arbitrary complex vector.It is easy to obtain that R and S meet

    where

    Through complex calculations,the exponential matrices F can be written as

    where

    Similarly,the G is obtained

    Figure 2.Breather solutions in equation (2) for parameters:α =,d = (a),(b),(c)λ = i; (d),(e),(f)λ =

    where

    Whenλ=-±ia,the exponential exp (iRx+ iSt)can be transformed into a combination of polynomial and exponential functions.

    where

    4.2.Rogue waves

    According the Theorem,the first-order RWs arrive at

    Figure 3.One-order RWs in equation (2) for parameters (a),(d):α =,d =; (b),(e):α =,d =; (c),(f):α =,d=

    where

    with

    It is easy to observe that the expression of R1contains two arbitrary parameters α and δ,which are the third-order dispersion coefficient and the four-order dispersion coefficient respectively.With the increase of α and δ,the crest of the RWs deflect clockwise and its width decreases.Figure 3 illustrates the above dynamic characteristics.

    Similarly,the second-order RWs arrive at

    where

    The F1and G1expressed as

    where

    Figure 4.Second-order RWs in equation (2) for parameters (a),(d):α =; (b),(e)α =; (c),(f):α=

    Figure 5.Second-order RWs in equation(2)for parameters α = (a):s0=0 s1=1,(b):s0=0 s1=10,(c):s0=0 s1=100.

    Figure 6.The third-order RWs in equation (2) for parameters (a),(d):α =; (b),(e):α=; (c),(f):α=

    Figure 7.The third-order RWs in equation(2)for parameters α= .(a)s0=0 s1=1 s2=1,(b)s0=0 s1=10 s2=10,(c)s0=0 s1=100 s2=100.

    As shown in figure 4,a three-dimensional diagram of the second-order RWs are plotted,according to which we observe that the main peak is surrounded by four lower peaks when s1=0.However,when amplify s1,the single peak can split into three peaks,which are symmetric about the straight line t=0 in the(x,t)-plane of figure 5.The solution is called the‘three sisters’ or a ‘RW triplet’.

    Due to the complex expressions showing of the higher-order solutions,the third-order RWs are plotted on here.Figures 7 and 8 illustrate two different spatial and temporal distribution patterns of the third-order solution under the same parameter values and different sj(j=1,2,3),from which,we can see that the wave presents a ring pattern with the internal second-order fundamental mode.The distance between a ring pattern and inner secondorder fundamental pattern increases with the increase of s2.Figure 7 is the ring-triangle distribution,figure 8 shows a fivepass distribution including six first-order basic patterns.

    5.Conservation laws

    In this section,according to [35-37] we present infinitely many independent conservation laws as a further support of the integrability for equation (2),from its Lax pairs.By introducing the functionthe Ricatti equation obtained

    Supposing Γ=Γ-1λ + Σn=0Γnλ-n,where Γnare the functions of x and t to be determined,substituting it into expression (39) and equating the coefficients of the same power of Γ to zero,the recurrence relations are obtained,

    Figure 8.The third-order RWs in equation (2) for parameters α = s0 =0,s1=0,(a) s2=10,(b) s2=100,(c) s2=1000.

    From the compatibility conditionone can get

    Substituting expressions(5)into(40),the infinitely-many conservation laws for System (2) derived as

    with

    where Rnand Snrepresent the conserved fluxes and conserved densities,respectively.

    6.Conclusions

    In this paper,we studied the MI of equation (2),which described MI for the possible generation mechanism of RWs.Based on the DDT method,we studied the first-,second-and third-order RW solutions under different forms of equation(2).In order to help the readers better understand the solutions,figures 2-7 give the breather wave and RWs by looking for the appropriate parameters,respectively.Based on Lax pair (15),an infinite number of conservation laws (41)was constructed to prove the integrability of equation (2).

    Acknowledgments

    We express our sincere thanks to the editor and the referees for their valuable comments.This work is supported by the National Natural Science Foundation of China (Grant No.71690242,No.11731014,No.12001241) and the Basic Research Program of Jiangsu Province (Grant No.BK20200885).

    满18在线观看网站| 90打野战视频偷拍视频| 在线观看一区二区三区激情| 久久久久国产网址| 中文欧美无线码| 亚洲av男天堂| 午夜91福利影院| 水蜜桃什么品种好| 精品视频人人做人人爽| 日本-黄色视频高清免费观看| 国产黄频视频在线观看| 一级毛片电影观看| 99久国产av精品国产电影| 啦啦啦啦在线视频资源| 久久av网站| 国产成人精品无人区| 国产熟女午夜一区二区三区| 日韩成人av中文字幕在线观看| 国产片特级美女逼逼视频| 亚洲美女搞黄在线观看| 成人免费观看视频高清| 国产欧美日韩综合在线一区二区| 国产成人av激情在线播放| 欧美日韩av久久| 性色av一级| 男女边吃奶边做爰视频| 亚洲伊人色综图| 亚洲成人手机| 中文字幕最新亚洲高清| 久久久久视频综合| 久久久久国产一级毛片高清牌| 欧美精品国产亚洲| 亚洲欧洲日产国产| 成人影院久久| 午夜免费鲁丝| 国产av国产精品国产| 99久久综合免费| 天天躁日日躁夜夜躁夜夜| 久久国内精品自在自线图片| www日本在线高清视频| 国产黄色视频一区二区在线观看| 亚洲五月色婷婷综合| 黑人欧美特级aaaaaa片| 国产精品久久久久久av不卡| www.自偷自拍.com| 波野结衣二区三区在线| 美女国产视频在线观看| 91精品国产国语对白视频| 少妇熟女欧美另类| 久久av网站| 亚洲一区二区三区欧美精品| www.熟女人妻精品国产| 少妇熟女欧美另类| 欧美人与善性xxx| 亚洲一区二区三区欧美精品| 中国国产av一级| 国产黄色视频一区二区在线观看| 国产又爽黄色视频| 满18在线观看网站| 欧美少妇被猛烈插入视频| 免费日韩欧美在线观看| 精品视频人人做人人爽| 日韩av在线免费看完整版不卡| 又粗又硬又长又爽又黄的视频| 人妻人人澡人人爽人人| 极品少妇高潮喷水抽搐| 久久人妻熟女aⅴ| 一区二区av电影网| 嫩草影院入口| tube8黄色片| 波野结衣二区三区在线| 爱豆传媒免费全集在线观看| 中文乱码字字幕精品一区二区三区| 丁香六月天网| 亚洲欧美精品自产自拍| 国产精品 欧美亚洲| 欧美国产精品va在线观看不卡| av线在线观看网站| 肉色欧美久久久久久久蜜桃| 午夜激情久久久久久久| 国产精品免费视频内射| 一区福利在线观看| 日韩av在线免费看完整版不卡| 日本猛色少妇xxxxx猛交久久| 免费在线观看视频国产中文字幕亚洲 | 91精品伊人久久大香线蕉| 国产成人欧美| videosex国产| 少妇的丰满在线观看| 天天躁日日躁夜夜躁夜夜| 高清在线视频一区二区三区| 成年美女黄网站色视频大全免费| 男女边吃奶边做爰视频| 少妇熟女欧美另类| 亚洲成av片中文字幕在线观看 | 中文字幕精品免费在线观看视频| 青春草视频在线免费观看| 天堂中文最新版在线下载| 少妇的丰满在线观看| 欧美人与性动交α欧美软件| 成年动漫av网址| 狠狠婷婷综合久久久久久88av| 日韩一卡2卡3卡4卡2021年| 午夜福利视频精品| tube8黄色片| 日本-黄色视频高清免费观看| 久久久久视频综合| 亚洲五月色婷婷综合| 午夜免费男女啪啪视频观看| 国产精品成人在线| 黄色毛片三级朝国网站| 日本91视频免费播放| 熟女电影av网| 少妇的丰满在线观看| 日本欧美国产在线视频| 一区福利在线观看| 欧美日韩视频精品一区| 久久精品国产综合久久久| 成人二区视频| 国产高清不卡午夜福利| 人人澡人人妻人| 超碰97精品在线观看| 免费在线观看完整版高清| 制服诱惑二区| 超碰成人久久| 尾随美女入室| 色婷婷av一区二区三区视频| 曰老女人黄片| 国产精品久久久av美女十八| 亚洲精品视频女| 国产亚洲最大av| 韩国av在线不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久99热这里只频精品6学生| 亚洲五月色婷婷综合| 热99久久久久精品小说推荐| 亚洲欧洲国产日韩| 最近手机中文字幕大全| 亚洲欧美色中文字幕在线| 久久国产精品大桥未久av| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 男人添女人高潮全过程视频| 久久99精品国语久久久| 色播在线永久视频| 美女午夜性视频免费| 亚洲av中文av极速乱| 久久影院123| 久热久热在线精品观看| 国产成人精品无人区| 成人漫画全彩无遮挡| 晚上一个人看的免费电影| 午夜福利在线免费观看网站| 国产片内射在线| 婷婷成人精品国产| 寂寞人妻少妇视频99o| 免费久久久久久久精品成人欧美视频| 亚洲精品中文字幕在线视频| 亚洲av电影在线进入| 成年女人毛片免费观看观看9 | 一本—道久久a久久精品蜜桃钙片| 久久国内精品自在自线图片| 欧美人与善性xxx| 日韩不卡一区二区三区视频在线| av电影中文网址| 欧美成人午夜精品| 99国产精品免费福利视频| 日本色播在线视频| 亚洲av中文av极速乱| 搡老乐熟女国产| 在线 av 中文字幕| 国产亚洲av片在线观看秒播厂| 亚洲第一区二区三区不卡| 一边亲一边摸免费视频| 蜜桃国产av成人99| 亚洲成人av在线免费| 国产精品亚洲av一区麻豆 | 亚洲美女搞黄在线观看| 亚洲av欧美aⅴ国产| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 久久99精品国语久久久| 一二三四中文在线观看免费高清| 国产淫语在线视频| 又大又黄又爽视频免费| 最近的中文字幕免费完整| 国产探花极品一区二区| 成年女人毛片免费观看观看9 | 自拍欧美九色日韩亚洲蝌蚪91| 丝袜脚勾引网站| 欧美精品高潮呻吟av久久| 久久女婷五月综合色啪小说| 天天躁夜夜躁狠狠久久av| 欧美人与性动交α欧美精品济南到 | 国产成人免费观看mmmm| 久久精品久久精品一区二区三区| 韩国高清视频一区二区三区| 波多野结衣av一区二区av| 91精品三级在线观看| 母亲3免费完整高清在线观看 | 欧美亚洲 丝袜 人妻 在线| av免费观看日本| 多毛熟女@视频| 日韩成人av中文字幕在线观看| 久久精品夜色国产| 三上悠亚av全集在线观看| 少妇被粗大的猛进出69影院| 波野结衣二区三区在线| 18在线观看网站| 久久久久国产一级毛片高清牌| 国产成人a∨麻豆精品| 国产成人欧美| 你懂的网址亚洲精品在线观看| 亚洲内射少妇av| 在线免费观看不下载黄p国产| 99re6热这里在线精品视频| 亚洲伊人久久精品综合| 日韩一区二区三区影片| 亚洲成色77777| 多毛熟女@视频| 国产无遮挡羞羞视频在线观看| 久久久久久久久久人人人人人人| 欧美国产精品一级二级三级| 亚洲国产精品国产精品| 欧美亚洲 丝袜 人妻 在线| 丝袜美足系列| 久久av网站| 亚洲一级一片aⅴ在线观看| 免费黄色在线免费观看| 你懂的网址亚洲精品在线观看| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| 国产精品 国内视频| 日日摸夜夜添夜夜爱| 美女午夜性视频免费| 国产一区二区三区av在线| 婷婷色综合www| 熟女av电影| 99热网站在线观看| 麻豆精品久久久久久蜜桃| 久久精品人人爽人人爽视色| 久久热在线av| 精品国产一区二区三区四区第35| 人人妻人人澡人人看| 97人妻天天添夜夜摸| 国产一区二区三区综合在线观看| 2018国产大陆天天弄谢| 韩国精品一区二区三区| 亚洲av中文av极速乱| 丝袜美足系列| 日本黄色日本黄色录像| 一级毛片电影观看| 国产精品久久久av美女十八| 看非洲黑人一级黄片| 免费日韩欧美在线观看| av有码第一页| 久久ye,这里只有精品| 亚洲欧美日韩另类电影网站| 国产成人精品久久久久久| 两个人看的免费小视频| 成年动漫av网址| 99热国产这里只有精品6| 亚洲国产精品成人久久小说| 亚洲成色77777| 久久影院123| 免费黄频网站在线观看国产| 少妇被粗大猛烈的视频| 国产精品久久久久久精品电影小说| 十八禁网站网址无遮挡| 多毛熟女@视频| 韩国精品一区二区三区| 午夜av观看不卡| av女优亚洲男人天堂| 亚洲中文av在线| www.熟女人妻精品国产| 国产色婷婷99| 日韩制服骚丝袜av| 美女视频免费永久观看网站| 国产av码专区亚洲av| 成年女人毛片免费观看观看9 | 永久免费av网站大全| 爱豆传媒免费全集在线观看| 亚洲欧美中文字幕日韩二区| 国产成人午夜福利电影在线观看| 国产精品 国内视频| 久久久精品94久久精品| 我的亚洲天堂| 麻豆乱淫一区二区| 国产不卡av网站在线观看| 欧美精品人与动牲交sv欧美| 亚洲精品国产一区二区精华液| 免费日韩欧美在线观看| 精品视频人人做人人爽| 欧美精品人与动牲交sv欧美| 欧美中文综合在线视频| 少妇人妻精品综合一区二区| 欧美老熟妇乱子伦牲交| 久久99精品国语久久久| 精品少妇久久久久久888优播| 国产精品蜜桃在线观看| 美女高潮到喷水免费观看| 精品一区二区免费观看| 一本大道久久a久久精品| 99久久中文字幕三级久久日本| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看| 亚洲精品久久午夜乱码| 亚洲欧美成人精品一区二区| √禁漫天堂资源中文www| av在线app专区| 欧美日韩精品成人综合77777| 9热在线视频观看99| 久久国产精品大桥未久av| 欧美日韩视频高清一区二区三区二| 国产又爽黄色视频| 中国三级夫妇交换| 欧美日韩精品网址| 成年美女黄网站色视频大全免费| 一级毛片我不卡| 亚洲久久久国产精品| www.精华液| 午夜福利视频在线观看免费| 精品久久久久久电影网| 999久久久国产精品视频| 亚洲av中文av极速乱| 免费在线观看视频国产中文字幕亚洲 | 久久这里只有精品19| 热re99久久精品国产66热6| 纵有疾风起免费观看全集完整版| 99久国产av精品国产电影| 久久精品人人爽人人爽视色| 日日爽夜夜爽网站| 欧美日本中文国产一区发布| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区| 成人18禁高潮啪啪吃奶动态图| 美女中出高潮动态图| 极品人妻少妇av视频| 香蕉精品网在线| 午夜日本视频在线| 最近的中文字幕免费完整| 寂寞人妻少妇视频99o| 国产免费一区二区三区四区乱码| videosex国产| 国产免费视频播放在线视频| 成年人免费黄色播放视频| 中国国产av一级| 午夜福利一区二区在线看| 中文字幕色久视频| 亚洲伊人色综图| 日韩中字成人| 久久精品久久久久久久性| 黄片无遮挡物在线观看| 老司机影院成人| 欧美日韩综合久久久久久| 免费观看性生交大片5| 亚洲人成网站在线观看播放| www.精华液| 亚洲三级黄色毛片| 少妇人妻久久综合中文| 丝瓜视频免费看黄片| 五月伊人婷婷丁香| 女人被躁到高潮嗷嗷叫费观| 欧美人与性动交α欧美精品济南到 | 午夜福利一区二区在线看| 国产男人的电影天堂91| 久久国产精品男人的天堂亚洲| 桃花免费在线播放| 欧美精品高潮呻吟av久久| 久久久久久伊人网av| 中文字幕亚洲精品专区| 少妇被粗大猛烈的视频| 欧美成人午夜免费资源| 亚洲国产av新网站| 亚洲精品一区蜜桃| 99热网站在线观看| 国产亚洲av片在线观看秒播厂| 亚洲国产av影院在线观看| 女的被弄到高潮叫床怎么办| 精品国产乱码久久久久久小说| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 久久精品aⅴ一区二区三区四区 | 中文字幕精品免费在线观看视频| 国产探花极品一区二区| 亚洲综合色网址| 乱人伦中国视频| 亚洲精品久久久久久婷婷小说| 91精品国产国语对白视频| 国产毛片在线视频| 91久久精品国产一区二区三区| 亚洲人成网站在线观看播放| 中文字幕最新亚洲高清| 国产午夜精品一二区理论片| 免费av中文字幕在线| 久久这里有精品视频免费| 欧美日韩亚洲国产一区二区在线观看 | 日本vs欧美在线观看视频| 欧美成人午夜免费资源| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产鲁丝片午夜精品| 人人妻人人澡人人看| 男人舔女人的私密视频| 亚洲国产精品一区二区三区在线| 中文字幕精品免费在线观看视频| 亚洲av日韩在线播放| 夜夜骑夜夜射夜夜干| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久成人av| 美女脱内裤让男人舔精品视频| 精品国产国语对白av| 成人免费观看视频高清| 99九九在线精品视频| 亚洲经典国产精华液单| 欧美日韩国产mv在线观看视频| 久久女婷五月综合色啪小说| 午夜老司机福利剧场| 国产av精品麻豆| 天天躁日日躁夜夜躁夜夜| 人体艺术视频欧美日本| 国产麻豆69| 国产精品av久久久久免费| 亚洲一级一片aⅴ在线观看| 色婷婷久久久亚洲欧美| 99国产精品免费福利视频| 精品一区二区三区四区五区乱码 | 精品少妇久久久久久888优播| 亚洲,欧美精品.| 国产一区二区在线观看av| 国产精品国产三级国产专区5o| 国产高清不卡午夜福利| 精品国产乱码久久久久久小说| 丝袜美足系列| 久热这里只有精品99| 美女国产视频在线观看| 精品亚洲乱码少妇综合久久| 国产一区二区三区av在线| 亚洲精品第二区| 美女大奶头黄色视频| 在现免费观看毛片| 精品酒店卫生间| 激情五月婷婷亚洲| 国产成人精品一,二区| 观看av在线不卡| 亚洲欧美日韩另类电影网站| 丝袜喷水一区| 亚洲国产看品久久| 波多野结衣一区麻豆| 免费黄色在线免费观看| 国产精品一区二区在线观看99| 黄片播放在线免费| 免费少妇av软件| 欧美bdsm另类| 婷婷色av中文字幕| 一区二区三区精品91| 最近的中文字幕免费完整| 男的添女的下面高潮视频| 啦啦啦视频在线资源免费观看| 最近2019中文字幕mv第一页| 18禁国产床啪视频网站| 欧美另类一区| 午夜福利一区二区在线看| 欧美少妇被猛烈插入视频| 少妇被粗大的猛进出69影院| 国产亚洲最大av| 1024香蕉在线观看| 国产日韩一区二区三区精品不卡| 欧美老熟妇乱子伦牲交| 国产视频首页在线观看| 亚洲视频免费观看视频| 青春草亚洲视频在线观看| 黄片小视频在线播放| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 两个人看的免费小视频| 伦精品一区二区三区| 久久久久久久精品精品| 在线天堂中文资源库| av国产精品久久久久影院| 国产精品二区激情视频| www.熟女人妻精品国产| 老熟女久久久| 日韩不卡一区二区三区视频在线| 侵犯人妻中文字幕一二三四区| 日产精品乱码卡一卡2卡三| 精品国产国语对白av| 99国产精品免费福利视频| 黑人猛操日本美女一级片| 巨乳人妻的诱惑在线观看| 精品国产一区二区久久| 欧美成人午夜精品| 亚洲精品aⅴ在线观看| 午夜福利影视在线免费观看| 亚洲av电影在线进入| 亚洲国产欧美网| 91精品三级在线观看| 国产激情久久老熟女| 久久久久久久国产电影| 男的添女的下面高潮视频| 久久精品国产综合久久久| 亚洲精品美女久久久久99蜜臀 | 秋霞在线观看毛片| 亚洲欧美精品自产自拍| 国产免费一区二区三区四区乱码| 欧美老熟妇乱子伦牲交| 高清av免费在线| 欧美av亚洲av综合av国产av | 永久网站在线| 午夜日韩欧美国产| 亚洲av欧美aⅴ国产| 欧美成人午夜精品| 国产麻豆69| 成年动漫av网址| xxxhd国产人妻xxx| 狠狠婷婷综合久久久久久88av| 97精品久久久久久久久久精品| 婷婷色综合大香蕉| 国产xxxxx性猛交| 国产精品女同一区二区软件| 最近中文字幕2019免费版| 777久久人妻少妇嫩草av网站| 亚洲美女黄色视频免费看| 精品亚洲成a人片在线观看| www.熟女人妻精品国产| 久久久国产精品麻豆| 亚洲欧美中文字幕日韩二区| 国产熟女午夜一区二区三区| 在线观看一区二区三区激情| 国产日韩一区二区三区精品不卡| 国产av精品麻豆| 免费黄色在线免费观看| 精品国产一区二区久久| 80岁老熟妇乱子伦牲交| av卡一久久| 天天躁夜夜躁狠狠久久av| 在线亚洲精品国产二区图片欧美| 国产男人的电影天堂91| 十八禁网站网址无遮挡| 欧美国产精品va在线观看不卡| 中文欧美无线码| 日本91视频免费播放| 亚洲av电影在线观看一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲国产色片| 99热国产这里只有精品6| 精品视频人人做人人爽| 日日爽夜夜爽网站| 亚洲av欧美aⅴ国产| 三上悠亚av全集在线观看| 久久久国产一区二区| 在线天堂中文资源库| 男人爽女人下面视频在线观看| 观看av在线不卡| 美女午夜性视频免费| 看免费av毛片| 永久免费av网站大全| 中文字幕亚洲精品专区| 午夜久久久在线观看| 女人久久www免费人成看片| 午夜激情av网站| 亚洲欧洲国产日韩| 成人午夜精彩视频在线观看| 99久久综合免费| 这个男人来自地球电影免费观看 | 欧美精品亚洲一区二区| 日韩伦理黄色片| 日韩一区二区视频免费看| 黄色毛片三级朝国网站| av网站免费在线观看视频| 亚洲精品国产av蜜桃| 亚洲欧洲日产国产| 午夜福利在线免费观看网站| 少妇熟女欧美另类| 亚洲一级一片aⅴ在线观看| 国产精品二区激情视频| 在线 av 中文字幕| 99热国产这里只有精品6| 80岁老熟妇乱子伦牲交| 亚洲国产最新在线播放| 免费人妻精品一区二区三区视频| av在线老鸭窝| 看免费av毛片| 精品人妻偷拍中文字幕| 日韩制服丝袜自拍偷拍| 中国国产av一级| 免费女性裸体啪啪无遮挡网站| 亚洲精品中文字幕在线视频| 熟女少妇亚洲综合色aaa.| 久久精品人人爽人人爽视色| 一边摸一边做爽爽视频免费| 亚洲精品乱久久久久久| 在线天堂中文资源库| 国产成人aa在线观看| 亚洲综合色惰| 99re6热这里在线精品视频| 成年人午夜在线观看视频| 国产极品粉嫩免费观看在线| 午夜免费观看性视频| 久久午夜福利片| 大香蕉久久成人网| 国产免费又黄又爽又色| 美女福利国产在线| 欧美亚洲 丝袜 人妻 在线| 一级爰片在线观看| av国产精品久久久久影院| a级毛片在线看网站| 涩涩av久久男人的天堂| 我的亚洲天堂| 欧美精品人与动牲交sv欧美| 国产乱人偷精品视频| 亚洲av电影在线观看一区二区三区| 捣出白浆h1v1| 水蜜桃什么品种好| 七月丁香在线播放| 日韩,欧美,国产一区二区三区|