• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Comparative Numerical Study of Parabolic Partial Integro-Differential Equation Arising from Convection-Diffusion

    2021-04-26 07:20:52KamilKhanArshedAliFazalHaqIltafHussainandNudratAmir

    Kamil Khan,Arshed Ali,*,Fazal-i-Haq,Iltaf Hussain and Nudrat Amir

    1Department of Mathematics,Islamia College,Peshawar,25000,Pakistan

    2Department of Mathematics,Statistics and Computer Science,The University of Agriculture,Peshawar,25000,Pakistan

    3Department of Basic Sciences&Islamiat,University of Engineering&Technology,Peshawar,25000,Pakistan

    4Department of Basic Sciences&Humanities,CECOS University of Information Technology and Emerging Sciences,Peshawar,25000,Pakistan

    ABSTRACT This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE toan algebraic tridiagonal system of linear equations.The other method is CTBSbased differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.

    KEYWORDS Partial integro-differential equation;convection-diffusion;collocation method;differential quadrature;cubic trigonometric B-spline functions;weakly singular kernel

    1 Introduction

    Partial integro-differential equations have been applied to model different physical phenomena in science and engineering such as heat conduction [1],reactor dynamics [2],flow in fractured biomaterials [3],electricity swaptions [4],financial option pricing [5],viscoelasticity [6],population dynamics [7],and convection-diffusion [8-11].

    Convection-diffusion integro-differential equation has been used to model several important physical phenomena such as heat and mass transfer,flows in porous media,current density in fluids,and pollutant transport in atmosphere,streams,rivers and oceans (see [8,10,11] and the references therein).

    PIDE models have been rarely solved analytically and their general solution is only obtained under restrictive conditions [12].Due to such restrictive conditions the models become over simplified and also limit their physical relevance.Therefore,alternative approaches have been obtained for the solution of PIDEs including finite difference methods [13,14],finite element method [15],radial basis function collocation methods [16],spectral method [17],quasi-wavelet method [18],and spline methods [19-21].

    This paper is devoted to comparative study of two efficient numerical techniques for solution of convection-diffusion parabolic PIDE [8,10] defined by:

    with initial condition

    boundary conditions

    where the integral term is known as memory term,g(x),g1(t),g2(t) are known functions,andK(q,t)=(t?q)?μ,0<μ<1,is weakly singular kernel.The parameterscanddare positive constants which represent quantities of the convection and diffusion processes respectively.Different numerical techniques are developed to obtain the solution of the PIDE (1).Siddiqi et al.[8]employed cubic b-spline functions to spatial derivatives and Euler backward formula to time derivative to solve the PIDE (1).Ali et al.[9] constructed quartic B-spline collocation technique to obtain the solution of the PIDE (1).Fahim et al.[10] have solved (1) using product trapezoidal integration rule and sinc collocation method.Recently,Al-Humedi et al.[11] have solved (1) using cubic B-spline Galerkin method with quadratic weight function.

    The cubic trigonometric B-spline methods are numerically accurate,computationally fast,consistent,and has ability to get the approximate solution at any point in the domain with more accuracy as compared to the conventional finite difference method which approximates solution at only selected points in the domain.In recent years solution of several partial differential equations have been found using these methods [22-28] due to special geometric features of trigonometric splines [22,29-31].In 1964,Schoenberg [29] introduced piecewise trigonometric spline functions and founded the theory of locally supported trigonometric splines,named as trigonometric B-splines.It was derived that trigonometric spline can be written as linear combination of trigonometric B-splines.Lycche et al.[32] derived a recurrence relation using trigonometric B-splines divided differences for stable computation of trigonometric splines.They also formulated derivatives of trigonometric B-splines and provided an integral representation of trigonometric divided differences with trigonometric B-spline as kernel.Later on several other researchers have enhanced the theory of trigonometric B-splines by further developing many important properties such asC2continuity,nonnegativity,partition of unity,smoothness,curve control and its analysis,and banded interpolation matrix (see [22,30,31] and the references therein).The first application of cubic trigonometric B-spline functions appeared in the literature in 2010 [33] when these functions were used for the solution of Two-point boundary value problem.In 2014,CTBS functions were extended for the solution of initial and boundary-value hyperbolic problems [22].Recently,CBTS functions have been employed for the solution of PIDE problem [19,34].The CTBS functions are also employed for the solution different problems which include Hunter Saxton equation [25],time fractional diffusion-wave equation [26],Fisher’s reaction-diffusion equations [28],non-conservative linear transport problems [27],Nonclassical diffusion problems [35],Hyperbolic telegraph equation [36],Fisher’s equations [37],and coupled Burgers’equations [38].

    In 1937,Frazer et al.[39] initiated the use of collocation method.This method is a special variant of the method of weighted residuals which uses dirac delta functions as weighting functions to minimize the residual.The main advantage of the collocation method is that as the number of collocation points increases,more points from the domain satisfy the functional equation.As a result approximate solution obtained by this method approaches to exact solution.Another advantage of this method is that using the dirac delta function makes computation of residual easy.The method is coupled with other methods such as Galerkin method,least squares method,Newton’s method,and finite difference method for the solution of various problems(see [22,40,41] and the references therein).In this paper,the first technique is developed by coupling CTBS functions with collocation procedure (CTBS-CT) for the solution of problem (1).The main advantage of this technique is that it reduces (1) to a tridiagonal system of linear equations which can be solved by an efficient tridiagonal solver.

    The differential quadrature (DQ) method was projected as strong alternative of conventional methods i.e.,finite difference and finite element methods.This method produces accurate numerical results with little computational effort as it uses smaller set of grid points while the conventional methods need relatively larger sets [42,43].The DQ method was first introduced by Bellman et al.[44] in 1971,for approximating derivative of a sufficiently smooth function.The basic structure of DQ method is that it uses a weighted linear sum of functional values to approximate the function derivatives.The weighting coefficients play a key role since accuracy of the approximation depends on the accuracy of these coefficients.Initially Bellman and his co-researchers have developed two methods for determination of weighting coefficients [45].However,the methods lead to ill-conditioned algebraic system for larger set of grid points.Shu [46]presented a systematic theoretical analysis and applications of earlier work about this method,and introduced two explicit approaches (i) a recurrence formula,and (ii) matrix multiplication,for computing the weighting coefficients of higher order derivatives to avoid the ill-conditioned system.The selection of grid points also effects accuracy of the DQ method and better accuracy was achieved using non-uniform and scattered grid points,and ghost points [34,43,47,48].The DQ method is extended for the solution of various problems including Fisher’s reaction-diffusion equations [28],coupled viscous Burgers’equations [38],space-dependent inverse heat problems [48],Kawahara equation [49],and shock wave simulations [50].

    Recently,Korkmaz et al.[27] pioneered DQ method along with CTBS functions for the solution of second order advection-diffusion equation.Tasmir et al.[28] presented modified CTBS functions based DQ method for second order nonlinear Fisher’s reaction-diffusion equations.Kumar Singh et al.[38] extended the method for the solution of one and two dimensional coupled viscous Burgers’equations.Arora et al.[51] developed a hybrid CTBS based DQ method for the solution of nonlinear Burgers’equations.In this paper,the other technique is developed by coupling CTBS functions with differential quadrature (CTBS-DQ) approach.The key feature of this approach is that it reduces (1) to a system of ODEs which can be solved by any ODE solver.

    Upto the best of our knowledge a comparative study of PIDE (1) using the proposed techniques has not been done.Moreover,solving PIDEs of the form (1) numerically have two major challenges in addition to discretization of temporal and spatial derivatives:the singular kernel and approximation of the memory term which also affect stability and accuracy of a numerical method.

    Remaining work of the paper is arranged as follows:Section 2 shows development of the proposed methods through combination of CTBS functions with collocation and differential quadrature procedures.Section 3 analyzes stability of the present schemes.Section 4 shows numerical results of both methods including error norms,computational efficiency,conditioning,spectral radii,convergence and comparison with an existing method in order to establish the current approaches.Section 5 concludes the findings and outcomes of the paper.

    2 The Proposed Methods

    In order to develop,the proposed methods,consider the problem (1)-(3).The spatial domainΓis divided intoNsub-intervalsΓn=[xn?1,xn],n=1,2,...,N,of equal lengthby the nodes xn,n∈I={0,1,...,N}with a=x0and b=xN.Let tl=lδt,l=0,1,2,...,M,whereδt is temporal step.

    2.1 CTBS-CT

    Taking t=tl+1in Eq.(1) and the temporal derivative is approximated by Euler backward formula which reduces Eq.(1) to the following form:

    The integral part of Eq.(4) is approximated as below ([9]):

    whereuldenotesu(x,tl+1) andandbs→0 ass→∞.

    Putting Eq.(5) in Eq.(4),we get

    wherefl+1=f(x,tl+1).

    Simplifying Eq.(6),we get

    Now collocating Eq.(7) at x=xr,r∈I,we obtain

    where=u(xr,tl+1).Next using CTBS functions Sr(x),given in [22,23] to approximateu(xr,t).

    Let

    where

    Lemma[22,33]:The values of Sr(x),S′r(x) and S′′r(x) at the node xsare obtained as:

    and

    Then using Eq.(9),the functionuand its derivatives at therth node (x=xr,r∈I)can be expressed as

    Thus by using (10) in (8) and combining like terms,we get

    whereα1=[(1?b0δt)δ1+cδtδ3?dδtδ5],α2=[(1?b0δt)δ2?dδtδ6],α3=[(1?b0δt)δ1+cδtδ4?dδtδ5],and

    Forr=0 andN,Eq.(11) reduces torespectively.After eliminating the parametersandusing (10) and the boundary conditions (3),we get the linear system ofN+1 equations inN+1 unknowns whose matrix form is as follows:

    where

    Cl+1=and

    Eq.(12) can be re-written as

    where D=A?1B and K=A?1F.The system Eq.(12) is solved using the efficient tridiagonal solver“Thomas Algorithm.”

    2.2 CTBS-DQ

    The DQ approach provideskth order derivative of the functionu(x,t) from the values ofu(x,t) at xr,r∈I1={1,2,...,N},as

    where,k=1,2,...arekth order weighting coefficients (WCs) which are determined by test functions.Different basis functions have been employed as test functions for determination of the WCs such as CTBS functions [27,38],polynomials [42],radial basis functions [48],cubic B-spline functions [49],and sinc functions [50].In CTBS-DQ method we take the following test functions which are defined as modified CTBS functions [51]:

    which form a basis in regionΓ.

    Thus for each basis function?l(xr),Eq.(14) gives

    which leads to the following matrix form:

    The weighting coefficients,r,s∈I1,are obtained by solving the system (15) through the well known efficient tridiagonal solver “Thomas algorithm.” Now using (14) in (1) and taking x=xrto obtain the differential quadrature based technique,

    The explicit time marching process for Eq.(16) is obtained as follows:

    where ul=[ulr:r∈I1]T.Using Eq.(5) in Eq.(17) and combining the like terms,we get

    Eq.(18) leads to the following matrix form:

    where

    3 Stability Analysis

    In this section we assess stability of the present schemes (13) and (19).Leten,unandrepresent error,exact solution and approximate solution atnth time level respectively,thenen=un?.The error equation for the methods (13) and (19) is given by

    where D is the amplification matrix.The schemes (13) and (19) will be stable if ‖D‖≤1 (see [52]and Lax-Richtmyer condition for stability).This condition is equivalent toρ(D)≤1,whereρ(D)represents spectral radius of the matrix D [53] and is defined asρ(D)=max1≤i≤N|λi|andλiis an eigenvalue of D.The values ofλidepend onN,δt,c,dandμ.Computational values ofρ(D) for different values of the parametersN,δt,c,dandμare provided in the next section which show that the schemes (13) and (19) satisfy the condition of stability.

    4 Test Problems

    In this section three examples are taken from the literature [8] to validate the present approaches (13) and (19) for the solution of the problem (1)-(3) and comparison is also made with results obtained by cubic B-spline collocation method (CBSC) [8].The methods are examined viaE∞,E2error norms [8].The schemes are also tested for convection and diffusion dominated problems via the Peclet numberHigh values ofPlead to convection dominated problem while lower values ofPlead to diffusion dominated problem [8].Computations are carried out with Corei3,2.4 GHz processor,4 GB Ram,Matlab7.5 and computer run time (RT) is provided in seconds.

    4.1 Problem 1

    We take Eqs.(1)-(3) with convection-diffusion coefficientsc=0.1,d=0.1 andelsewhere mentioned,and choosef(x,t) such that the exact solution is given by [8]

    Table 1:Error norms for different values of convection and diffusion coefficients using δt=10?4,M=100,N=100

    Table 2:Error norms vs.N using δt=10?4,M=100

    Table 3:Error norms at various time levels M using δt=10?4 and N=100

    Table 4:Convergence in space using δt=10?5 and M=100

    Table 5:Convergence in time using N=100 and t=0.1

    Table 6:Error norms vs. the parameter μ using δt=10?4,N=100 and M=100

    Table 7:Comparison of error norms with CBSC method [8],δt=10?5

    Figure 1:Numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT,using N=50,δt=10?4,M=1000,c=0.1,d=0.1,μ=1/4

    Figure 2:Error in numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT,using N=50,δt=10?4,M=1000,c=0.1,d=0.1,μ=1/4

    Figure 3:Numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT,over the time interval[0,1] using N=50,δt=10?4,c=0.1,d=0.1,μ=1/4

    The conditionsg,g1,g2are found from Eq.(21).The error normsE∞,E2are obtained using the present methods (13) and (19) along with different values of the parameters number of nodesN,time stepδt,time levelM,convection and diffusion coefficientsc,d,andμwhich are reported in Tabs.1-6.The effect of the convection and diffusion coefficient parametersc,don the accuracy of both the methods are shown in Tab.1.Computational efficiency RT of the methods are given in Tabs.2 and 3 which shows that both the proposed methods are highly efficient.Numerical rate of convergence with respect toNandδt are provided in Tabs.4 and 5,and it can be seen that the CTBS-CT has higher rate of convergence than the CTBS-DQ.However,the rate of convergence of CTBS-DQ becomes higher than that of CTBS-CT for larger values of spatial nodesN.From Tabs.4-6,it can be noted that numerical values ofρ(D) for both methods satisfy the stability condition given in Section 3,whereasκ(A) regarding CTBS-CT remains reasonably small.From Tab.6,it can be noted that as the parameterμdecreases accuracy of the CTBS-DQ slightly increases as compared to the CTBS-CT.Furthermore,better accuracy of CTBS-CT than CBSC method [8] is evident from Tab.7.The solution of (1) for cases of convection dominant and diffusion dominant problems are also provided in this table.It can also be seen from these tables that the CTBS-CT gives better results than the CTBS-DQ.Fig.1 represents solutions obtained using CTBS-DQ and CTBS-CT atM=1000.Fig.2 displays errors in approximation obtained by the present methods.Fig.3 shows the CTBS based solutions at different time levels.Fig.4 represents condition numbers of system matrices of the methods.Fig.5 compares convergence in space for the proposed methods.

    Figure 4:Condition numbers of system matrix A and interpolation matrix G corresponding to the methods (12) and (18) respectively,vs. the number of grid points N,for δt=10?4,c=0.1,d=0.1,μ=1/4

    4.2 Problem 2

    We take the Eqs.(1)-(3) with the convection-diffusion coefficientsc=0.5,d=0.005,andμ=1/3.f(x,t) is chosen so that the exact solution of (1)-(3) is given by [8]

    Figure 5:Convergence of the approximate solution in space using δt=10?4,c=0.1,d=0.1,μ=1/4

    Table 8:Error norms using M=100,μ=1/3

    Table 9:Comparison of error norms with CBSC method [8] for N=100,P=1

    The conditionsg,g1,g2are found from Eq.(22).The error norms for different values ofN,δt andMare computed which are reported in Tabs.8,9 alongwith the results of CBSC method [8].It can be noted from Tab.8 that errors produced by both the proposed methods decrease as number of nodesNincreases.Also both the methods provide considerably better accuracy than the method [8].Fig.6 represents solutions obtained using CTBS-DQ and CTBS-CT atM=1000.Fig.7 depicts the solution at different time levels.

    Figure 6:Numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT,using N=50,δt=10?4,M=1000,c=0.5,d=0.005,μ=1/3

    Figure 7:Numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT,over time interval [0,0.1]using N=50,δt=10?4,c=0.5,d=0.005,μ=1/3

    4.3 Problem 3

    For this example we take the convection-diffusion coefficientsc=0.5,d=0.001 andμ=1/4 for the problem (1)-(3) andf(x,t) is chosen so that the exact solution is given by [8]

    Table 10:Error norms using M=100

    Table 11:Comparison of error norms with CBSC method [8] using N=100,δt=10?5,P=5

    Figure 8:Numerical solutions obtained by CTBS-CT,using N=50,δt=10?4,c=0.5,d=0.001,μ=1/4 at t=0,0.1

    The conditionsg,g1,g2are found from Eq.(23).The error norms for different values ofN,δt andMare computed which are provided in Tabs.10 and 11.It can be noted from Tabs.10 and 11 that CTBS-CT provided better results than CTBS-DQ.The results in Tab.11 correspond to convection dominated problem forP=5.Moreover,the results of the present methods are also compared with the method CBSC [8].Fig.8 shows solutions obtained using CTBS-CT at t=0,0.1.Fig.9 shows the solution obtained by CTBS-DQ at various time levels.

    Figure 9:Numerical solutions obtained by CTBS-DQ at different times in the interval [0,0.1]using N=50,δt=10?4,c=0.5,d=0.001,μ=1/4

    5 Conclusion

    Two cubic trigonometric B-spline functions based methods are constructed for comparative study of approximate solution of a parabolic type partial integro-differential equation with a weakly singular kernel.The methods are validated using three test problems and the results are compared via error norms.The methods are computationally efficient and improved accuracy is obtained for relatively larger number of spatial nodes.Stability of the methods is shown via spectral radius.It is also observed that condition numbers of the system matrix obtained from cubic trigonometric B-spline collocation method does not increase with increase in the number of spatial nodes and hence the computation remained stable.Both methods do not require much smaller time step to attain high accuracy.In most cases,it is found that cubic trigonometric B-spline collocation method provides better accuracy as compared to cubic trigonometric B-spline differential quadrature.Also,in two examples the cubic trigonometric B-spline collocation technique provided better accuracy than cubic B-spline collocation method.Both techniques have the ability to solve convection dominated and diffusion dominated problems.Due to excellent agreement of these methods with the exact solution,the proposed techniques are efficient in employing to get approximate solution of PIDEs.

    Acknowledgement:The authors are thankful to the reviewers for their helpful comments which improved the work of this paper.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久久精品免费免费高清| 99久国产av精品国产电影| 亚洲av欧美aⅴ国产| 免费少妇av软件| 下体分泌物呈黄色| 激情五月婷婷亚洲| 亚洲精品,欧美精品| 欧美激情国产日韩精品一区| 99热全是精品| 午夜91福利影院| 精品久久久久久电影网| 国产极品天堂在线| 日韩,欧美,国产一区二区三区| 少妇 在线观看| 免费av中文字幕在线| 久久久精品区二区三区| 能在线免费看毛片的网站| 久久久久视频综合| 最新的欧美精品一区二区| 少妇高潮的动态图| 亚洲av在线观看美女高潮| 99热6这里只有精品| 高清不卡的av网站| 啦啦啦在线观看免费高清www| 一区二区三区精品91| 美女脱内裤让男人舔精品视频| 人妻一区二区av| 国产日韩欧美在线精品| 亚洲成人一二三区av| 一本一本综合久久| 一二三四中文在线观看免费高清| 国国产精品蜜臀av免费| 日韩三级伦理在线观看| 免费播放大片免费观看视频在线观看| 国产av精品麻豆| 中国美白少妇内射xxxbb| 久久精品国产鲁丝片午夜精品| 少妇 在线观看| 亚洲综合精品二区| 久久人人爽av亚洲精品天堂| 日韩中字成人| 欧美精品一区二区大全| 91精品三级在线观看| 久久国产精品男人的天堂亚洲 | 内地一区二区视频在线| 曰老女人黄片| 亚洲精品av麻豆狂野| 97超视频在线观看视频| 久久99蜜桃精品久久| 亚洲精品aⅴ在线观看| 亚洲中文av在线| 人妻 亚洲 视频| 97在线人人人人妻| 久久久久久久大尺度免费视频| 人妻人人澡人人爽人人| 国精品久久久久久国模美| 一级a做视频免费观看| 亚洲av男天堂| 街头女战士在线观看网站| 高清黄色对白视频在线免费看| 少妇高潮的动态图| 少妇高潮的动态图| 精品国产乱码久久久久久小说| 国产成人精品久久久久久| 久久国产精品大桥未久av| 亚洲精品aⅴ在线观看| 91午夜精品亚洲一区二区三区| 永久网站在线| 免费黄网站久久成人精品| 下体分泌物呈黄色| 大香蕉97超碰在线| 免费观看无遮挡的男女| 激情五月婷婷亚洲| 精品久久国产蜜桃| 国产精品国产三级国产av玫瑰| 亚洲av成人精品一二三区| 只有这里有精品99| 22中文网久久字幕| 一级毛片黄色毛片免费观看视频| 色5月婷婷丁香| 熟女av电影| 考比视频在线观看| 欧美97在线视频| 亚洲国产毛片av蜜桃av| 亚洲人成网站在线播| 国产69精品久久久久777片| 在线免费观看不下载黄p国产| 最近手机中文字幕大全| 一二三四中文在线观看免费高清| 最近最新中文字幕免费大全7| 久久精品久久久久久噜噜老黄| 久久免费观看电影| 欧美激情国产日韩精品一区| 欧美精品高潮呻吟av久久| 一级毛片aaaaaa免费看小| 一级黄片播放器| 在线观看美女被高潮喷水网站| 亚洲精品国产色婷婷电影| 各种免费的搞黄视频| 亚洲国产av新网站| 亚洲国产精品专区欧美| 国产伦精品一区二区三区视频9| 国产一区二区在线观看日韩| 视频区图区小说| 91aial.com中文字幕在线观看| 亚洲精品视频女| 高清午夜精品一区二区三区| 久久精品人人爽人人爽视色| .国产精品久久| 亚洲中文av在线| 黄色一级大片看看| 一个人看视频在线观看www免费| 秋霞伦理黄片| 久久精品国产a三级三级三级| 国产欧美日韩一区二区三区在线 | 久久精品夜色国产| 国产高清有码在线观看视频| 天堂8中文在线网| 多毛熟女@视频| 搡老乐熟女国产| 91久久精品国产一区二区三区| 精品久久国产蜜桃| 有码 亚洲区| 精品午夜福利在线看| 色吧在线观看| 久久久久精品久久久久真实原创| 日产精品乱码卡一卡2卡三| 精品人妻偷拍中文字幕| 亚洲av国产av综合av卡| 交换朋友夫妻互换小说| 高清午夜精品一区二区三区| 欧美三级亚洲精品| 夜夜看夜夜爽夜夜摸| 99国产综合亚洲精品| 中文字幕久久专区| 久久久a久久爽久久v久久| 久久久久久久亚洲中文字幕| 精品亚洲成国产av| 乱码一卡2卡4卡精品| 欧美一级a爱片免费观看看| av黄色大香蕉| 乱码一卡2卡4卡精品| 亚洲国产毛片av蜜桃av| 一级爰片在线观看| 涩涩av久久男人的天堂| 青春草国产在线视频| 妹子高潮喷水视频| 内地一区二区视频在线| 熟妇人妻不卡中文字幕| 亚洲国产欧美日韩在线播放| 建设人人有责人人尽责人人享有的| 一边摸一边做爽爽视频免费| 水蜜桃什么品种好| 国产老妇伦熟女老妇高清| 色婷婷久久久亚洲欧美| 亚洲综合精品二区| 最近手机中文字幕大全| 国产成人a∨麻豆精品| 中文字幕最新亚洲高清| 91久久精品国产一区二区三区| 午夜久久久在线观看| 欧美精品国产亚洲| 97超视频在线观看视频| 多毛熟女@视频| 男女高潮啪啪啪动态图| 国产精品一区二区在线不卡| 2018国产大陆天天弄谢| 69精品国产乱码久久久| 亚洲精品久久久久久婷婷小说| 三级国产精品欧美在线观看| 国产免费福利视频在线观看| 亚洲成人av在线免费| 人体艺术视频欧美日本| 国产男女超爽视频在线观看| 高清午夜精品一区二区三区| 亚洲第一区二区三区不卡| 美女脱内裤让男人舔精品视频| 国产一区二区三区综合在线观看 | 水蜜桃什么品种好| 成年人午夜在线观看视频| 最近手机中文字幕大全| 国产在视频线精品| 久久久久精品性色| 最近的中文字幕免费完整| 麻豆乱淫一区二区| 成人二区视频| 亚洲国产成人一精品久久久| 乱码一卡2卡4卡精品| 国产男女内射视频| 亚洲一级一片aⅴ在线观看| 亚洲欧美成人综合另类久久久| 99热网站在线观看| 在线观看三级黄色| 伦理电影免费视频| 亚洲欧美日韩卡通动漫| av又黄又爽大尺度在线免费看| 97在线视频观看| 男女高潮啪啪啪动态图| 观看美女的网站| 久久99热这里只频精品6学生| 卡戴珊不雅视频在线播放| 国模一区二区三区四区视频| 大香蕉97超碰在线| 久久精品夜色国产| 国产高清有码在线观看视频| 亚洲综合精品二区| 久久久久网色| 毛片一级片免费看久久久久| 亚洲色图综合在线观看| 精品卡一卡二卡四卡免费| 午夜福利影视在线免费观看| 日韩 亚洲 欧美在线| 亚洲欧美日韩另类电影网站| 嘟嘟电影网在线观看| 国产精品一区www在线观看| 亚洲四区av| 最近2019中文字幕mv第一页| 久久影院123| 亚洲精品日韩在线中文字幕| 汤姆久久久久久久影院中文字幕| 精品人妻偷拍中文字幕| 蜜臀久久99精品久久宅男| 日产精品乱码卡一卡2卡三| 少妇人妻 视频| 国产精品秋霞免费鲁丝片| 亚洲美女视频黄频| 日韩大片免费观看网站| 日本猛色少妇xxxxx猛交久久| 久久青草综合色| 欧美 亚洲 国产 日韩一| 99久久综合免费| 人妻少妇偷人精品九色| 亚洲精品中文字幕在线视频| 亚洲少妇的诱惑av| 日韩电影二区| 亚洲精品美女久久av网站| 九九在线视频观看精品| 国产精品一区二区在线观看99| av.在线天堂| 国产精品国产三级专区第一集| 国产国语露脸激情在线看| 日韩三级伦理在线观看| av一本久久久久| 丰满少妇做爰视频| 五月天丁香电影| 中文字幕制服av| 丝袜喷水一区| 久热这里只有精品99| 女人久久www免费人成看片| 日本黄大片高清| 中文欧美无线码| 成人国语在线视频| 亚洲情色 制服丝袜| 精品久久久精品久久久| 九色亚洲精品在线播放| 美女视频免费永久观看网站| 丝瓜视频免费看黄片| 亚洲丝袜综合中文字幕| 一个人看视频在线观看www免费| 国产av码专区亚洲av| 国产午夜精品久久久久久一区二区三区| 视频区图区小说| 国产国拍精品亚洲av在线观看| 亚洲av电影在线观看一区二区三区| 午夜免费鲁丝| 亚洲av免费高清在线观看| 嘟嘟电影网在线观看| 精品亚洲成a人片在线观看| 热99久久久久精品小说推荐| 欧美老熟妇乱子伦牲交| 色94色欧美一区二区| 国产免费福利视频在线观看| 国产午夜精品久久久久久一区二区三区| 视频区图区小说| 日本猛色少妇xxxxx猛交久久| 久久午夜福利片| 秋霞在线观看毛片| 欧美精品高潮呻吟av久久| 国产在线免费精品| 高清午夜精品一区二区三区| 中文欧美无线码| 九色成人免费人妻av| 日日摸夜夜添夜夜爱| 免费日韩欧美在线观看| 如何舔出高潮| 久久久久久久亚洲中文字幕| 国产成人freesex在线| 国产av码专区亚洲av| 久久99精品国语久久久| 国产一区二区在线观看av| 成人国语在线视频| 9色porny在线观看| 精品亚洲成a人片在线观看| 国产亚洲精品第一综合不卡 | 亚洲精品中文字幕在线视频| 欧美激情 高清一区二区三区| 91国产中文字幕| 最近中文字幕高清免费大全6| 久久久久国产精品人妻一区二区| 日韩在线高清观看一区二区三区| 国产极品天堂在线| 人人妻人人添人人爽欧美一区卜| 亚洲精品456在线播放app| 久久久久国产网址| 少妇丰满av| av国产久精品久网站免费入址| 蜜桃国产av成人99| 色94色欧美一区二区| 国产成人91sexporn| av又黄又爽大尺度在线免费看| 91久久精品国产一区二区成人| 狂野欧美激情性bbbbbb| 国产色爽女视频免费观看| 人妻制服诱惑在线中文字幕| 日韩人妻高清精品专区| 亚洲av.av天堂| 亚洲色图综合在线观看| 亚洲人与动物交配视频| 精品一区二区三区视频在线| 亚洲不卡免费看| 精品一品国产午夜福利视频| av视频免费观看在线观看| 夜夜看夜夜爽夜夜摸| 国产在视频线精品| 午夜福利在线观看免费完整高清在| 国产一级毛片在线| 国产精品不卡视频一区二区| 亚洲国产成人一精品久久久| av视频免费观看在线观看| 大香蕉久久网| 成人手机av| 在线观看免费日韩欧美大片 | 美女大奶头黄色视频| 这个男人来自地球电影免费观看 | 蜜桃在线观看..| 亚洲经典国产精华液单| 欧美三级亚洲精品| 精品一区二区免费观看| 久久久久久久精品精品| 亚洲精品成人av观看孕妇| 成人综合一区亚洲| 色94色欧美一区二区| 亚洲精品日韩av片在线观看| 亚洲精品视频女| 自拍欧美九色日韩亚洲蝌蚪91| 国模一区二区三区四区视频| 在线亚洲精品国产二区图片欧美 | 欧美成人午夜免费资源| 十八禁网站网址无遮挡| 国产黄频视频在线观看| 国产亚洲午夜精品一区二区久久| 国产精品熟女久久久久浪| 久久精品国产鲁丝片午夜精品| 久热这里只有精品99| 国产探花极品一区二区| 蜜臀久久99精品久久宅男| 国产亚洲最大av| 精品人妻熟女av久视频| 一级毛片aaaaaa免费看小| 熟女电影av网| 亚洲怡红院男人天堂| 一区二区三区四区激情视频| 欧美 日韩 精品 国产| 一个人免费看片子| 人人妻人人澡人人爽人人夜夜| 国产国语露脸激情在线看| 久久青草综合色| 韩国高清视频一区二区三区| 午夜免费男女啪啪视频观看| 久久99一区二区三区| 中文字幕人妻丝袜制服| 亚洲一区二区三区欧美精品| 2018国产大陆天天弄谢| 人妻人人澡人人爽人人| 欧美日韩国产mv在线观看视频| 丝袜在线中文字幕| 十八禁网站网址无遮挡| 哪个播放器可以免费观看大片| 一级二级三级毛片免费看| 国产精品熟女久久久久浪| 亚洲av成人精品一区久久| 中文字幕人妻丝袜制服| 国产一区二区在线观看av| 嫩草影院入口| 久久精品国产a三级三级三级| 欧美人与善性xxx| 亚洲天堂av无毛| 在线观看美女被高潮喷水网站| 免费黄色在线免费观看| 精品一品国产午夜福利视频| 22中文网久久字幕| 一级片'在线观看视频| 简卡轻食公司| 如何舔出高潮| 亚洲国产日韩一区二区| 亚洲精品,欧美精品| 日本vs欧美在线观看视频| 丝袜美足系列| 18禁动态无遮挡网站| 在线精品无人区一区二区三| 亚洲精品aⅴ在线观看| 国产精品人妻久久久影院| av国产久精品久网站免费入址| 亚洲不卡免费看| 欧美日本中文国产一区发布| 亚洲天堂av无毛| 黑人欧美特级aaaaaa片| 最近2019中文字幕mv第一页| 国产乱人偷精品视频| .国产精品久久| 菩萨蛮人人尽说江南好唐韦庄| 日日摸夜夜添夜夜爱| 欧美成人精品欧美一级黄| 99国产精品免费福利视频| 日本色播在线视频| 天美传媒精品一区二区| 少妇熟女欧美另类| 91成人精品电影| 国产一区二区三区综合在线观看 | 国产精品国产三级国产专区5o| 男人添女人高潮全过程视频| 精品国产一区二区三区久久久樱花| 欧美精品一区二区大全| 97在线视频观看| 国产精品99久久99久久久不卡 | 高清午夜精品一区二区三区| 欧美日韩视频高清一区二区三区二| 国产精品无大码| 久久久久久久久大av| 亚洲av综合色区一区| 亚洲第一区二区三区不卡| 亚洲精品久久午夜乱码| 日韩视频在线欧美| 国产国语露脸激情在线看| 亚洲欧美日韩另类电影网站| 欧美三级亚洲精品| 国产av国产精品国产| 久久精品熟女亚洲av麻豆精品| 少妇人妻久久综合中文| 在线观看www视频免费| 天堂中文最新版在线下载| 久久影院123| 久久久国产欧美日韩av| 日本av免费视频播放| 国产老妇伦熟女老妇高清| videosex国产| 丰满迷人的少妇在线观看| 国产色婷婷99| 亚洲av成人精品一二三区| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 男女高潮啪啪啪动态图| 国产日韩欧美在线精品| 又大又黄又爽视频免费| a级毛色黄片| 人妻夜夜爽99麻豆av| 一区二区三区免费毛片| 人妻一区二区av| 国产精品免费大片| 高清在线视频一区二区三区| 日本色播在线视频| 亚洲精品成人av观看孕妇| 国产免费一级a男人的天堂| 欧美日韩一区二区视频在线观看视频在线| 女人精品久久久久毛片| 丝袜在线中文字幕| 久久久亚洲精品成人影院| 我要看黄色一级片免费的| 女人久久www免费人成看片| 欧美性感艳星| 久热这里只有精品99| 一本色道久久久久久精品综合| 欧美 日韩 精品 国产| 亚洲精品自拍成人| 能在线免费看毛片的网站| 看十八女毛片水多多多| 天堂8中文在线网| 在线播放无遮挡| xxx大片免费视频| 三上悠亚av全集在线观看| 亚洲一区二区三区欧美精品| 女性被躁到高潮视频| 亚洲人成77777在线视频| 黄色怎么调成土黄色| 人妻一区二区av| 国产视频首页在线观看| 精品久久久噜噜| 桃花免费在线播放| 乱人伦中国视频| 最黄视频免费看| 久久精品久久久久久久性| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 久久人妻熟女aⅴ| 能在线免费看毛片的网站| 国产在线视频一区二区| 国产高清国产精品国产三级| 青春草视频在线免费观看| 亚洲国产av新网站| 久久久久久人妻| 日本午夜av视频| 日本黄色片子视频| 日韩一本色道免费dvd| 亚洲精品日本国产第一区| 高清午夜精品一区二区三区| 一区二区三区四区激情视频| 国产精品不卡视频一区二区| 中国三级夫妇交换| 蜜桃久久精品国产亚洲av| 亚洲av二区三区四区| 精品一区在线观看国产| 亚洲精品乱码久久久v下载方式| 日本av免费视频播放| 欧美精品亚洲一区二区| av国产精品久久久久影院| 久久久久久久久久成人| 国产精品免费大片| videos熟女内射| 这个男人来自地球电影免费观看 | 99久久精品一区二区三区| 少妇精品久久久久久久| 国产精品久久久久久久久免| 2021少妇久久久久久久久久久| 美女福利国产在线| 成人午夜精彩视频在线观看| 视频区图区小说| 中文乱码字字幕精品一区二区三区| 免费看光身美女| 久久人人爽人人爽人人片va| 久久久a久久爽久久v久久| 亚洲欧洲国产日韩| 国产无遮挡羞羞视频在线观看| 久久热精品热| 婷婷色综合www| 久久久国产精品麻豆| 日韩成人av中文字幕在线观看| 免费人成在线观看视频色| 日本wwww免费看| 在线免费观看不下载黄p国产| 国产精品久久久久久久电影| 国产成人a∨麻豆精品| 久久国产精品大桥未久av| 一级毛片我不卡| 人体艺术视频欧美日本| 插阴视频在线观看视频| 免费av不卡在线播放| 黄色毛片三级朝国网站| 国产成人精品福利久久| 日本爱情动作片www.在线观看| 国产毛片在线视频| 国产视频首页在线观看| 国产精品人妻久久久久久| 日本猛色少妇xxxxx猛交久久| 成年女人在线观看亚洲视频| 欧美国产精品一级二级三级| 久久狼人影院| 在线观看三级黄色| 国产成人精品一,二区| 亚洲精品色激情综合| 成年女人在线观看亚洲视频| a级毛片免费高清观看在线播放| 免费看不卡的av| 成人漫画全彩无遮挡| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 亚洲国产日韩一区二区| 日日爽夜夜爽网站| 免费大片黄手机在线观看| 久久青草综合色| 女人久久www免费人成看片| 久久午夜福利片| 久久鲁丝午夜福利片| 男女高潮啪啪啪动态图| 日韩在线高清观看一区二区三区| 丰满迷人的少妇在线观看| 亚洲在久久综合| 亚洲色图综合在线观看| 日本黄色日本黄色录像| 国产黄片视频在线免费观看| 亚洲中文av在线| 一区二区三区免费毛片| 日本免费在线观看一区| 精品一区二区三区视频在线| 欧美精品人与动牲交sv欧美| 久久人人爽人人片av| 男人操女人黄网站| av线在线观看网站| 日韩中文字幕视频在线看片| 久久狼人影院| 青春草亚洲视频在线观看| 日韩,欧美,国产一区二区三区| 久久久久久久精品精品| 五月开心婷婷网| 黄色毛片三级朝国网站| 99国产综合亚洲精品| 国产片特级美女逼逼视频| 交换朋友夫妻互换小说| av电影中文网址| videosex国产| 热99国产精品久久久久久7| 亚洲精品视频女| 国产一级毛片在线| 菩萨蛮人人尽说江南好唐韦庄| 天天影视国产精品| 成人影院久久| 伦精品一区二区三区| 黄色毛片三级朝国网站| 日韩熟女老妇一区二区性免费视频| 婷婷色综合www| 亚洲精品乱码久久久久久按摩| 少妇熟女欧美另类| 26uuu在线亚洲综合色| 高清在线视频一区二区三区| xxx大片免费视频| 91精品一卡2卡3卡4卡|