• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MHD Maxwell Fluid with Heat Transfer Analysis under Ramp Velocity and Ramp Temperature Subject to Non-Integer Differentiable Operators

    2021-04-26 07:21:22ThabetAbdeljawadMuhammadBilalRiazSyedTauseefSaeedandNazishIftikhar

    Thabet Abdeljawad,Muhammad Bilal Riaz,Syed Tauseef Saeedand Nazish Iftikhar

    1Department of Mathematics and General Sciences,Prince Sultan University,Riyadh,12435,Saudi Arabia

    2Department of Medical Research,China Medical University,Taichung,404,Taiwan

    3Department of Computer Science and Information Engineering,Asia University,Taichung,41354,Taiwan

    4Department of Mathematics,University of Management and Technology,Lahore,54770,Pakistan

    5Institute for Groundwater Studies(IGS),University of the Free State,Bloemfontein,9301,South Africa

    6Department of Science&Humanities,National University of Computer and Emerging Sciences,Lahore,54000,Pakistan

    ABSTRACT The main focus of this study is to investigate the impact of heat generation/absorption with ramp velocity and ramp temperature on magnetohydrodynamic (MHD) time-dependent Maxwell fluid over an unbounded plate embedded in a permeable medium.Non-dimensional parameters along with Laplace transformation and inversion algorithms are used to find the solution of shear stress,energy,and velocity profile.Recently,new fractional differential operators are used to define ramped temperature and ramped velocity.The obtained analytical solutions are plotted for different values of emerging parameters.Fractional time derivatives are used to analyze the impact of fractional parameters(memory effect)on the dynamics of the fluid.While making a comparison,it is observed that the fractional-order model is best to explain the memory effect as compared to classical models.Our results suggest that the velocity profile decrease by increasing the effective Prandtl number.The existence of an effective Prandtl number may reflect the control of the thickness of momentum and enlargement of thermal conductivity.The incremental value of the M is observed for a decrease in the velocity field,which reflects to control resistive force.Further,it is noted that the Atangana-Baleanu derivative in Caputo sense(ABC)is the best to highlight the dynamics of the fluid.The influence of pertinent parameters is analyzed graphically for velocity and energy profile.Expressions for skin friction and Nusselt number are also derived for fractional differential operators.

    KEYWORDS MHD Maxwell fluid;fractional differential operator;heat generation absorption;thermal effect;non-singular kernels

    1 Introduction

    Viscoelasticity has important implications due to the characterization of viscoelastic parameters (relaxation and retardation phenomenon),elastic shearing strain,thermal relaxation,timedependent an elastic aspect,and other rheological properties [1-3].In such fluid,stress and rate of strain have a nonlinear relationship and enhance their order which makes the flow equation more complicated [4,5].Elastic and memory effect for the flow of rate type fluid discussed by Maxwell.

    Firstly,Maxwell [6] analyzed the visco-elastic attributes of air.Fetecau et al.[7] investigate the closed-form solution of the Maxwell model over an unbounded plate.Moreover,authors [8]discussed the Maxwell model over unbounded plate swing in the plane.Some significant results of the Maxwell model can be studied in [9-12].Aman et al.[13] investigated the heat transfer analysis of Maxwell fluid flow with carbon nanotubes.The analytical solution of a Maxwell fluid with slip effects was investigated by Asif et al.[14].Further,authors [15] discussed the unsteady rotational flow of Maxwell fluid in a Cylinder subject to shear stress.Noor [16] analyzed the impacts of chemical reaction on MHD Maxwell fluid flow for a vertical stretching sheet.In the literature,all the above-mentioned articles dealing with the flow of uniform and constant boundary conditions.There is an insufficient study that deals with flows under ramped wall temperature and ramped wall velocity conditions.Physically,the implementation of ramped wall velocity and temperature in real-life problems has a significant role.The diagnoses of prognosis,establishing treatments,analysis of heart functions,and blood vessel system [17-20] are major applications of ramp velocity.Firstly,the authors [21] discussed the simultaneous use of ramped velocity and temperature.Seth et al.[22-24] investigated heat and mass transfer phenomena with ramp temperature conditions.Recently,Tiwana et al.[25] and Anwar et al.[26] analyzed MHD Oldroyd-B fluid in the presence of thermal radiation under the effect of ramped temperature and ramped velocity.Anwar et al.[27] analyzed the flow of MHD Maxwell fluid under the impact of ramped wall temperature and velocity.Shah et al.[28] analyzed the convection flow of viscous fluids with analytical results by employing the time-fractional Caputo-Fabrizio derivative.

    The technique of fractional calculus has been used to formulate mathematical modeling in various technological development,engineering applications,and industrial sciences.Different valuable work has been discussed for modeling fluid dynamics,signal processing,viscoelasticity,electrochemistry,and biological structure through fractional time derivatives.This fractional differential operator found useful conclusions for experts to treat cancer cells with a suitable amount of heat source and have compared the results to see the memory effect of temperature function.As compared to classical models,the memory effect is much stronger in fractional derivatives.From the past to the present,modeling of the different processes is handled through various types of fractional derivatives and fractal-fractional differential operators,such that Caputo (Power law),Atangana-Baleanu (Mittage-Leffler law),Caputo-Fabrizio (exponential law),Riemann-Liouville,modified Riemann-Liouville (Power law with boundaries) and few others [29-36].Recently,Imran et al.[37] studied the comparison approach between Caputo-Fabrizio and Atangana-Baleanu fractional derivative and found that Atangana-Baleanu fractional derivative is excellent in exhibiting the memory effect in fluid flow problems.Convective flow with ramped wall temperature for non-singular kernel analyzed by Riaz et al.[38].Further,Riaz et al.[39] discuss MHD Maxwell fluid with heat effect using local and non-local operators.Moreover,the authors [40] analyze the comparative study of heat transfer of MHD Maxwell fluid in view of fractional operators.Khan et al.[41,42] discussed the heat transfer analysis in a Maxwell fluid using fractional Caputo-Fabrizio derivatives.Some recent studies related to the applications of modern techniques of fractional derivatives can be seen [43-48].

    The main objective of this paper is to investigate the MHD Maxwell model with the definition of fractional order derivative in a Darcy medium.The solution of fluid velocity,energy,and shear stress are obtained by Caputo-Fabrizio (CF)and Atangana-Baleanu derivative in Caputo sense(ABC)fractional derivative models under influence of ramped velocity and temperature.These non-integer order derivatives are good for handling the mathematical calculation.Section 2 helps to derive the governing partial differential equations.The solution of the temperature profile,velocity profile,and shear stress can be achieved throughCFandABCfractional models with help of Laplace transformation and inversion algorithm in Sections 3 and 4 respectively.In Section 5,the influence of physical parameters is discussed graphically by MATHCAD-15 software.Finally,the conclusion of the present article is given at the end.

    2 Development of Governing Equations Based on Problem Statement

    Consider the MHD time-dependent Maxwell model over an unbounded vertical plate immersed in a permeable surface.The plate is along the x-axis,while theξ-axis is perpendicular to the plate.At the wall end,both velocity and temperature have time-dependent conditions up to some certain limit of time known as the characteristic time;after that time,both velocity and temperature attain constant valuesu0andT∞.The physical model expressed in Fig.1.Under these presumptions,the governing equation for MHD Maxwell fluid with appropriate conditions are given below [27,41]:

    Figure 1:Geometrical presentation for MHD Maxwell model

    Eqs.(1)-(3) represent as governing equations of velocity,energy and shear stress distributions respectively subject to imposed conditions as:

    Introduce dimensionless elements to form the problem free from geometric

    After simplification,we have the set of dimensionless governing equations:

    with corresponding conditions

    3 Solution of Temperature Profile

    3.1 Caputo-Fabrizio Fractional Derivative

    Fractional operators are quite flexible for describing the behaviors of energy transfer of MHD Maxwell fluid through the characterization of governing equations.Generating fractional governing equation of temperature (10) via CF-fractional operator (16) by exchanging the partial time derivative with fractional derivative of orderκ,

    where,CFDκtis known as CF fractional operator [32] is defined by

    Solving the uncoupled and fractionalized governing equation of temperature (15) by Laplace transform method.One has to need the following typical property of Caputo-Fabrizio fractional operator defined in Eq.(17)

    employing Laplace transformation on (15) with the help of (17),we explored second order partial differential equation

    More suitable form of temperature field is

    The solution of homogenous part of second order partial differential equation say (19) is,

    with the help of Eqs.(12)-(14),we find out the values of constantsc1andc2for temperature equation

    where

    g1=1+Q?κQ,g2=κQ,g3=1?κ,g4=κ.

    The expression of Nusselt numberNuforCFdifferentiation is given as:

    3.2 Atangana-Baleanu Fractional Derivative

    Generating a fractional governing equation of temperature (15) via ABC-fractional operator (24) by exchanging the partial time derivative with fractional derivative of orderγ,

    whereABCDγtis known as ABC fractional operator [33] is defnied by

    whereM(α)denotes a normalization function obeyingM(0)=M(1)=1.

    Solving governing equation of temperature (23) by Laplace transform method.One has to need the following typical property of ABC-fractional operator defined in Eq.(25)

    employing Laplace transformation on (23) with the help of (25),we explored second order partial differential equation:

    More suitable form of temperature field is,

    The solution of homogenous part of second order partial differential equation say (27),

    with the help of Eqs.(12)-(14),we find out the values of constantsc1andc2for temperature equation:

    where

    h1=1+Q?γ Q,h2=γ Q,h3=1?γ,h4=γ.

    The expression of Nusselt numberNuforABCdifferentiation is given as:

    4 Solution of Velocity Profile

    4.1 Caputo-Fabrizio Fractional Derivative

    Generating a fractional governing equation of velocity Eq.(9) via CF-fractional operator say equation Eq.(16) by exchanging the partial time derivative with fractional derivative of orderκthen solving the governing equation Eq.(9) by Laplace transform method,we get

    The required homogeneous part of the Eq.(31) is given as:

    and particular solution can be give as follow after making use of Eq.(18),

    and solution of Eq.(31) can be given as follow:

    using conditions given in Eqs.(12)-(14) for velocity in order to find constants,we have

    The suitable and simplified form for inversion algorithm,we have

    and

    where,letting parameters are described as

    Differentiate Eq.(37) with respect toζ,we have

    where

    Plugging Eq.(38) into Eq.(11) gives the resultant solution of shear stress

    The expression of skin frictionSfforCFdifferentiation is given as:

    4.2 Atangana-Baleanu Fractional Derivative

    Generating a fractional governing equation of velocity Eq.(9) via ABC-fractional operator say equation Eq.(24) by exchanging the partial time derivative with fractional derivative of orderγthen solving the governing equation Eq.(9) by Laplace transform method,we get

    The homogeneous part of the Eq.(43) is given as:

    and particular solution can be give as follow after making use of Eq.(29) for the values(ζ,s),

    using conditions given in Eqs.(9)-(11) for velocity in order to find constants,we have

    The suitable and simplified form for inversion algorithm,we have

    and

    where,letting parameters are described as

    Differentiate Eq.(47) with respect toζ,we have

    where

    Plugging Eq.(50) into Eq.(11) gives the resultant solution of shear stress:

    The expression of skin frictionSfforABCdifferentiation is given as:

    In our flow models we use classical computational technique (Laplace transform) to solve the given models using different definitions of fractional derivatives.There are many algorithms for the numerical calculation of the inverse Laplace transform.The Stehfest’s formula,which approximates the inverse Laplace transform is simple,easy to use compared with other algorithms.In this paper we use Stehfest’s algorithm and also give comparison with other in tabular form.Tzou’s calculation for approval of our numerical inverse Laplace

    where Re(.) is the real part,i is the imaginary unit andN1is a natural number [49,50].

    5 Results and Discussion

    This section is dedicated to present physical interpretation of the obtained results via CF and AB differential operators under heat generation,ramp velocity,and ramp temperature on the MHD Maxwell model.Results are investigated via Laplace transformation with an inversion algorithm for velocity,energy,and shear stress based on singular verses non-singular and local versus non-local kernels.The graphical representations are depicted for showing the influences of different physical parameters such as effective Prandtl numberPreff,thermal Grashof numberGr,fractional parametersγand magnetic effectMon velocity and energy profile using the package of MATHCAD-15.Additionally,we focus our depicted graphs for the comparison of ramped temperature with constant temperature using a fractional operator.

    Figure 2:Plot via CF and AB-approaches for temperature with variation of Preff and time

    Figure 3:Plot via CF and AB-approaches for temperature with different values of time effect

    Fig.2 is plotted for the impact ofPreffon the energy profile.It is seen that the thermal layer and temperature decrease by a large value ofPreff.AsPreffincreases,the temperature profile reduces more rapidly on theABCmodel as compared to theCFmodel.Physically,for a small value ofPreffthermal conductivity enhances which allows heat to diffuse away rapidly for a higher value ofPreff.For the isothermal case,the energy solution has a higher profile.The influence of time on the temperature field can be analyzed in Fig.3.ForCFandABCmodels,as an increase in time effect the resultant energy profile reduces for both ramped and isothermal wall conditions.

    Figure 4:Plot via CF and AB-approaches for velocity with variation of time and M

    Figure 5:Plot via CF and AB-approaches for velocity with variation of time and Preff

    Fig.4 investigates the influence ofMon velocity components.This graphical representation indicates that an increase in the magnetic field,the velocity reduce due to Lorentz force.It behaves as a drag force.By increasing the parameter of the magnetic field,the Lorentz force also increases.Fluid flow on the boundary layer is slow down due to this force.Fig.5 investigates the behavior ofPreff.Specific heat and conductivity depend onPreff.The thickness of the momentum and boundary layer is control by an effective Prandtl number.It is seen from the graph,decreasing the velocity,observed by increase the value ofPreff.The lower effective Prandtl number enhances thermal conductivity and increase the boundary layer.

    Figure 6:Plot via CF and AB-approaches for velocity with variation of time and Gr

    Figure 7:Plot via CF and AB-approaches for velocity with variation of time and λ1

    Fig.6 shows that the impact onGrfor the velocity field versus time.It is the ratio of the buoyancy to a viscous force acting on the fluid.It can be seen in the velocity field enhance by increasing inGr.In a physical sense,as expected,when the Grashof number is increased,then fluid flow rises due to the thermal buoyancy effects.The velocity for theABCmodel is good as compare toCFmodels.It is observed that velocity for the isothermal condition is always larger than ramped conditions.Fig.7 analyzes the unique role ofλ1for ramped wall and isothermal wall conditions.The value ofλ1enhances leads to reduce in velocity.In the physical sense,relaxation describes the return of a perturbed system to a state of equilibrium.

    Figure 8:Plot via CF and AB-approaches for velocity with variation of time and γ

    Figure 9:Comparison via Stehfest’s and Tzou’s algorithm

    The influence ofαon the velocity field can be analyzed in Fig.8.The velocity field reduces by increasing the value ofαfor bothABCandCFmodels.The flow behavior for isothermal and ramped conditions are the same in all cases.To validate our solutions obtained by means of numerical inversion Laplace transform namely,Stehfest’s and Tzou’s algorithm.We represent the equivalence relation between those techniques in Fig.9.

    Fig.10 is plotted to see the validity of our obtained results.We have compared our temperature results with the results from the studies by [26,27].In Fig.11,our obtained results are compared with the results of [22,26].

    Figure 10:Temperature profile of our models compared with [26,27]

    Figure 11:Velocity profile of our models compared with [26,27]

    Tabs.1 and 2 represent a comparison of the temperature profile betweenCFandABCusing Stehfest’s and Tzou’s algorithms with a variation ofPreff.It is observed that the temperature profile reduces with large values ofPreff.It is noted that the temperature is maximum in theABCmodel as compared toCF.Tabs.3 and 4 represent a comparison of the fluid velocity between CF and ABC for increasing values ofζby using inversion algorithms.Velocity increases for all models.The velocity obtained via the ABC approach is greater than the velocity computed with the help of the CF approach.Some numerical calculations for the Nusselt number forPreffhave been carried out by Stehfest’s and Tzou’s algorithms in Tabs.5 and 6.It can be seen that the rate of heat transfer rate is high for the ABC model as compare to other models.

    Table 1:Numerical inversion Laplace transform for temperature by Stehfest’s and Tzou’s

    Table 2:Numerical inversion Laplace transform for temperature by Stehfest’s and Tzou’s

    Table 3:Numerical inversion Laplace transform for velocity by Stehfest’s and Tzou’s

    Table 4:Numerical inversion Laplace transform for velocity by Stehfest’s and Tzou’s

    Table 5:Numerical inversion Laplace transform for Nusselt number by Stehfest’s and Tzou’s

    Table 6:Numerical inversion Laplace transform for Nusselt number by Stehfest’s and Tzou’s

    6 Conclusion

    The basic purpose of this article was to investigate the effect of the simultaneous use of ramped velocity and ramped temperature conditions on MHD Maxwell fluid.It is difficult to calculate the solutions of MHD Maxwell fluid using both ramp conditions.Fractional differential operators are used to finding solutions using Laplace transformation and inversion algorithm.Some comparisons have been drawn and they are in good agreement with the results published in [22,26,27].The important finding of this investigation are:

    ? The velocity decreases by magnifying the value of the magnetic profile.

    ? The velocity increases with increasing values ofGr.

    ? The Nusselt number describes that the heat transfer rate enhances with increasing thermal diffusivity.

    ? The velocity decreases by magnifying the value of thePreff.

    ?ABCfractional derivative is more considerable as compared to the classical model and other fractional models.

    Acknowledgement:The authors are highly thankful and grateful for generous support and facilities of this research work.

    Funding Statement:Self supported by the authors.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品嫩草影院av在线观看| 欧美高清成人免费视频www| kizo精华| 久久热精品热| 精品久久久久久久久亚洲| 又粗又硬又长又爽又黄的视频| 亚洲,一卡二卡三卡| 亚洲人与动物交配视频| 国产在线男女| 成年美女黄网站色视频大全免费 | 人妻 亚洲 视频| 色网站视频免费| 26uuu在线亚洲综合色| 国产亚洲最大av| av不卡在线播放| 亚洲精品一区蜜桃| 性高湖久久久久久久久免费观看| 日本午夜av视频| 国产精品女同一区二区软件| 干丝袜人妻中文字幕| av视频免费观看在线观看| 精品熟女少妇av免费看| av又黄又爽大尺度在线免费看| 嫩草影院入口| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放| 男女下面进入的视频免费午夜| 国产综合精华液| 亚洲欧美日韩另类电影网站 | www.色视频.com| 国产高清有码在线观看视频| 国产v大片淫在线免费观看| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| 欧美另类一区| 久久久久性生活片| 国产成人freesex在线| 汤姆久久久久久久影院中文字幕| 美女xxoo啪啪120秒动态图| 久久精品夜色国产| 亚洲国产精品999| 亚洲精品自拍成人| 少妇裸体淫交视频免费看高清| 久久久久性生活片| 国产成人午夜福利电影在线观看| 国产黄色免费在线视频| 国产高清国产精品国产三级 | 人体艺术视频欧美日本| 日日撸夜夜添| 中国三级夫妇交换| 亚洲aⅴ乱码一区二区在线播放| 狂野欧美激情性bbbbbb| 黄色欧美视频在线观看| av.在线天堂| 国产精品秋霞免费鲁丝片| 国产精品久久久久久av不卡| 国产 一区 欧美 日韩| 精品国产一区二区三区久久久樱花 | 日本vs欧美在线观看视频 | 亚洲国产精品国产精品| 日本黄大片高清| 99热网站在线观看| 91在线精品国自产拍蜜月| 日本猛色少妇xxxxx猛交久久| 欧美成人一区二区免费高清观看| 久久精品国产鲁丝片午夜精品| 久久久欧美国产精品| 国产成人一区二区在线| 亚洲熟女精品中文字幕| 亚州av有码| 欧美成人a在线观看| 成年av动漫网址| 大香蕉久久网| 一本—道久久a久久精品蜜桃钙片| 好男人视频免费观看在线| 内地一区二区视频在线| 亚洲av二区三区四区| 搡女人真爽免费视频火全软件| 午夜福利视频精品| 亚洲av成人精品一区久久| 亚洲中文av在线| 日日啪夜夜撸| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网| 国产淫语在线视频| 午夜福利高清视频| 一级毛片久久久久久久久女| 亚洲精品国产av蜜桃| 国产精品.久久久| 欧美bdsm另类| 国产在视频线精品| av专区在线播放| 纵有疾风起免费观看全集完整版| 搡老乐熟女国产| a级毛色黄片| 国产成人一区二区在线| 久久久成人免费电影| 能在线免费看毛片的网站| 极品少妇高潮喷水抽搐| 午夜福利网站1000一区二区三区| 亚洲av电影在线观看一区二区三区| 国产精品一二三区在线看| 欧美人与善性xxx| 美女主播在线视频| 午夜老司机福利剧场| 亚洲国产精品国产精品| 欧美精品一区二区大全| 久久人人爽av亚洲精品天堂 | 精华霜和精华液先用哪个| 欧美日韩视频高清一区二区三区二| 麻豆精品久久久久久蜜桃| 国产av一区二区精品久久 | av国产久精品久网站免费入址| av黄色大香蕉| 久久热精品热| 亚洲欧美日韩卡通动漫| 国产大屁股一区二区在线视频| 成年美女黄网站色视频大全免费 | 九九久久精品国产亚洲av麻豆| 国产在视频线精品| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 在线 av 中文字幕| 国产成人一区二区在线| 我的女老师完整版在线观看| 久久人人爽人人片av| 久久精品国产亚洲av涩爱| 精品国产乱码久久久久久小说| 91精品伊人久久大香线蕉| 新久久久久国产一级毛片| 亚洲国产高清在线一区二区三| 国产成人精品婷婷| 极品教师在线视频| 一级毛片黄色毛片免费观看视频| 国产亚洲最大av| 蜜桃亚洲精品一区二区三区| 国产精品一区二区在线观看99| 久久久久久伊人网av| 国产精品久久久久成人av| 成人一区二区视频在线观看| 免费人妻精品一区二区三区视频| 六月丁香七月| 国产在线男女| 精品国产三级普通话版| 亚洲国产精品成人久久小说| 亚洲欧美日韩东京热| 精品久久久久久电影网| 亚洲精品成人av观看孕妇| 高清视频免费观看一区二区| 高清日韩中文字幕在线| 欧美丝袜亚洲另类| 人人妻人人澡人人爽人人夜夜| 亚洲av男天堂| 麻豆精品久久久久久蜜桃| 亚洲中文av在线| 久久久久视频综合| 成人二区视频| 精品国产露脸久久av麻豆| 国产亚洲欧美精品永久| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 又大又黄又爽视频免费| 日韩 亚洲 欧美在线| 久久精品国产亚洲av涩爱| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| av视频免费观看在线观看| 婷婷色麻豆天堂久久| 久久久久久久精品精品| 国产爽快片一区二区三区| 你懂的网址亚洲精品在线观看| 国产精品三级大全| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 精品少妇久久久久久888优播| 伊人久久国产一区二区| 久久99蜜桃精品久久| 啦啦啦视频在线资源免费观看| 亚洲图色成人| 日本-黄色视频高清免费观看| 少妇的逼好多水| 我的女老师完整版在线观看| 国产精品嫩草影院av在线观看| 国产伦精品一区二区三区四那| 中文欧美无线码| 91精品国产国语对白视频| 中文在线观看免费www的网站| 22中文网久久字幕| 丰满少妇做爰视频| 大又大粗又爽又黄少妇毛片口| 久久热精品热| 18禁裸乳无遮挡免费网站照片| 成年女人在线观看亚洲视频| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色综合www| 人人妻人人看人人澡| 国产精品秋霞免费鲁丝片| 欧美精品亚洲一区二区| 99精国产麻豆久久婷婷| 精品少妇久久久久久888优播| tube8黄色片| 亚洲真实伦在线观看| 嫩草影院入口| 高清视频免费观看一区二区| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| 国产真实伦视频高清在线观看| 亚洲综合精品二区| 欧美老熟妇乱子伦牲交| 777米奇影视久久| 欧美丝袜亚洲另类| 久久人妻熟女aⅴ| 国产精品精品国产色婷婷| 高清毛片免费看| 精品人妻偷拍中文字幕| 性色avwww在线观看| 午夜免费男女啪啪视频观看| 亚洲国产欧美在线一区| 熟妇人妻不卡中文字幕| 蜜臀久久99精品久久宅男| 97热精品久久久久久| 亚洲精品一二三| 久久99热这里只有精品18| 少妇人妻精品综合一区二区| 免费av不卡在线播放| 国国产精品蜜臀av免费| tube8黄色片| 日本av免费视频播放| 亚洲va在线va天堂va国产| 欧美日本视频| 九色成人免费人妻av| 欧美 日韩 精品 国产| 亚洲精品aⅴ在线观看| 日日摸夜夜添夜夜爱| 一级毛片aaaaaa免费看小| 国产一区二区在线观看日韩| 亚洲精品第二区| 大陆偷拍与自拍| 亚洲国产精品一区三区| 青春草视频在线免费观看| 日本午夜av视频| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美成人精品一区二区| 又粗又硬又长又爽又黄的视频| 久久久久久久国产电影| 国产精品成人在线| 久久精品夜色国产| 我的老师免费观看完整版| 久久 成人 亚洲| 国产在线一区二区三区精| 大陆偷拍与自拍| 汤姆久久久久久久影院中文字幕| 丝袜脚勾引网站| 成人美女网站在线观看视频| 国产免费福利视频在线观看| 噜噜噜噜噜久久久久久91| 久久精品夜色国产| 18+在线观看网站| 免费观看在线日韩| 精品久久久久久久久av| 久久精品国产亚洲网站| 午夜视频国产福利| 午夜福利在线观看免费完整高清在| 九九久久精品国产亚洲av麻豆| 卡戴珊不雅视频在线播放| 乱系列少妇在线播放| 99热这里只有是精品50| 交换朋友夫妻互换小说| 日韩强制内射视频| 超碰97精品在线观看| 亚洲国产日韩一区二区| 国产男人的电影天堂91| 一本一本综合久久| 国产免费又黄又爽又色| 免费观看av网站的网址| 欧美bdsm另类| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| 国产午夜精品一二区理论片| 这个男人来自地球电影免费观看 | 亚洲aⅴ乱码一区二区在线播放| 又爽又黄a免费视频| 永久网站在线| 国产成人免费观看mmmm| 国产片特级美女逼逼视频| 久久久精品免费免费高清| 亚洲成人中文字幕在线播放| 久久 成人 亚洲| 免费黄频网站在线观看国产| 日韩欧美 国产精品| 91久久精品国产一区二区三区| 2021少妇久久久久久久久久久| 黄色怎么调成土黄色| 午夜视频国产福利| 国产精品一二三区在线看| 国产综合精华液| 黑人高潮一二区| av又黄又爽大尺度在线免费看| 国产极品天堂在线| 纵有疾风起免费观看全集完整版| av天堂中文字幕网| 亚洲第一区二区三区不卡| 久久久久久久久久人人人人人人| 五月开心婷婷网| 女性生殖器流出的白浆| 亚洲经典国产精华液单| 伦理电影大哥的女人| 亚洲色图av天堂| 久久久久久久久久人人人人人人| 国产精品一区二区在线观看99| 人人妻人人澡人人爽人人夜夜| 国产男女超爽视频在线观看| 精品视频人人做人人爽| 国产白丝娇喘喷水9色精品| 黄色一级大片看看| 日韩国内少妇激情av| h日本视频在线播放| 高清午夜精品一区二区三区| 国产在线免费精品| h日本视频在线播放| av.在线天堂| 边亲边吃奶的免费视频| 亚洲精品aⅴ在线观看| 国产免费一级a男人的天堂| 亚洲av日韩在线播放| 亚洲精品乱码久久久久久按摩| 男人舔奶头视频| 日韩人妻高清精品专区| 天天躁夜夜躁狠狠久久av| 在线观看av片永久免费下载| 亚洲精品亚洲一区二区| 亚洲av国产av综合av卡| av在线观看视频网站免费| 久久99精品国语久久久| 午夜日本视频在线| 男女下面进入的视频免费午夜| 精品国产乱码久久久久久小说| 精品久久久久久久久亚洲| 久久精品久久久久久噜噜老黄| 国产精品av视频在线免费观看| 日本wwww免费看| xxx大片免费视频| 精品一区在线观看国产| 在线观看美女被高潮喷水网站| 一级二级三级毛片免费看| 校园人妻丝袜中文字幕| 99久久精品国产国产毛片| 在现免费观看毛片| 韩国av在线不卡| 国产无遮挡羞羞视频在线观看| 麻豆乱淫一区二区| 蜜桃久久精品国产亚洲av| 观看免费一级毛片| 亚洲精品色激情综合| xxx大片免费视频| 丰满乱子伦码专区| 美女xxoo啪啪120秒动态图| 亚洲色图综合在线观看| 女性被躁到高潮视频| 美女高潮的动态| 亚洲国产成人一精品久久久| 欧美精品亚洲一区二区| av在线app专区| 日韩一区二区三区影片| 午夜免费鲁丝| 亚洲精品乱久久久久久| 久久久成人免费电影| 日韩中字成人| 免费黄网站久久成人精品| 国精品久久久久久国模美| 狂野欧美激情性bbbbbb| 一本一本综合久久| 国产一区亚洲一区在线观看| 国产成人免费观看mmmm| 少妇人妻 视频| 一本—道久久a久久精品蜜桃钙片| 久久久久视频综合| 伦理电影免费视频| 一级片'在线观看视频| 午夜激情久久久久久久| 国产精品三级大全| 久久久久久久精品精品| 亚洲婷婷狠狠爱综合网| 卡戴珊不雅视频在线播放| 毛片女人毛片| 免费观看的影片在线观看| 国产免费一区二区三区四区乱码| 国产亚洲精品久久久com| 久久久久性生活片| 九九爱精品视频在线观看| 日韩视频在线欧美| 99国产精品免费福利视频| 网址你懂的国产日韩在线| 国产日韩欧美在线精品| 国产精品国产av在线观看| 国产精品国产av在线观看| 中国美白少妇内射xxxbb| 国产成人精品一,二区| av在线app专区| 青春草视频在线免费观看| 成年女人在线观看亚洲视频| 另类亚洲欧美激情| 亚洲在久久综合| 人人妻人人澡人人爽人人夜夜| av在线观看视频网站免费| 十分钟在线观看高清视频www | 国产精品精品国产色婷婷| 久久久国产一区二区| 丰满乱子伦码专区| 男男h啪啪无遮挡| 欧美xxxx性猛交bbbb| 日韩视频在线欧美| 亚洲电影在线观看av| 国产精品秋霞免费鲁丝片| 18禁在线播放成人免费| 天天躁日日操中文字幕| 少妇熟女欧美另类| 成年女人在线观看亚洲视频| 久久国产精品大桥未久av | 久久婷婷青草| 大陆偷拍与自拍| 精品国产三级普通话版| 成人影院久久| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 日本黄色日本黄色录像| 婷婷色麻豆天堂久久| 又粗又硬又长又爽又黄的视频| 亚洲精品久久午夜乱码| 人妻少妇偷人精品九色| 免费黄网站久久成人精品| www.av在线官网国产| 欧美亚洲 丝袜 人妻 在线| 啦啦啦在线观看免费高清www| 亚洲av免费高清在线观看| 欧美丝袜亚洲另类| 新久久久久国产一级毛片| 尾随美女入室| 亚洲精品视频女| 91久久精品国产一区二区三区| 国产人妻一区二区三区在| 精品人妻一区二区三区麻豆| 色综合色国产| 久久精品国产自在天天线| 视频中文字幕在线观看| 最近的中文字幕免费完整| 涩涩av久久男人的天堂| 波野结衣二区三区在线| 国内揄拍国产精品人妻在线| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产成人久久av| 欧美精品亚洲一区二区| 熟女人妻精品中文字幕| 在线 av 中文字幕| 干丝袜人妻中文字幕| 一级爰片在线观看| 精品熟女少妇av免费看| 一区二区三区精品91| av播播在线观看一区| 啦啦啦在线观看免费高清www| 日韩强制内射视频| 国产中年淑女户外野战色| 中国美白少妇内射xxxbb| 亚洲熟女精品中文字幕| 亚洲aⅴ乱码一区二区在线播放| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av涩爱| 精品久久久久久久久亚洲| 少妇 在线观看| 99视频精品全部免费 在线| av国产精品久久久久影院| 国产在线男女| 国产精品无大码| 99久久综合免费| 亚洲欧美成人精品一区二区| 男女下面进入的视频免费午夜| 婷婷色综合www| 亚洲,欧美,日韩| 丰满乱子伦码专区| 成人美女网站在线观看视频| 少妇人妻久久综合中文| 国产v大片淫在线免费观看| 亚洲精品自拍成人| 国产精品熟女久久久久浪| 少妇高潮的动态图| 99九九线精品视频在线观看视频| 国产色爽女视频免费观看| 亚洲欧美成人综合另类久久久| 简卡轻食公司| 一级毛片黄色毛片免费观看视频| 久久6这里有精品| 亚洲精品一二三| 国产亚洲欧美精品永久| av线在线观看网站| 亚洲欧美日韩无卡精品| 国产精品99久久99久久久不卡 | 久久国产乱子免费精品| 99热全是精品| 国产女主播在线喷水免费视频网站| 午夜福利视频精品| 国产一区二区三区综合在线观看 | 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 亚洲av福利一区| 亚洲av在线观看美女高潮| 看非洲黑人一级黄片| 国产亚洲一区二区精品| 国产av精品麻豆| 97热精品久久久久久| 国产精品99久久久久久久久| 欧美国产精品一级二级三级 | 99久久人妻综合| 欧美日韩视频精品一区| 最近2019中文字幕mv第一页| 亚洲av日韩在线播放| 国语对白做爰xxxⅹ性视频网站| 尾随美女入室| 激情五月婷婷亚洲| 内地一区二区视频在线| 亚洲欧美日韩无卡精品| 在线免费观看不下载黄p国产| 我的老师免费观看完整版| 高清欧美精品videossex| 国产一区二区三区综合在线观看 | 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 一边亲一边摸免费视频| 一级爰片在线观看| 国产精品一及| 亚洲av综合色区一区| 国产精品成人在线| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩东京热| 观看美女的网站| 日韩在线高清观看一区二区三区| 激情五月婷婷亚洲| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片| av黄色大香蕉| 国产精品av视频在线免费观看| 亚洲国产成人一精品久久久| 黄片无遮挡物在线观看| 久久精品夜色国产| 男女边摸边吃奶| 亚洲人与动物交配视频| 我的老师免费观看完整版| 夜夜骑夜夜射夜夜干| 成年美女黄网站色视频大全免费 | 亚洲国产高清在线一区二区三| 91精品国产国语对白视频| 国产探花极品一区二区| 久久99热这里只频精品6学生| 国产伦在线观看视频一区| 欧美性感艳星| 80岁老熟妇乱子伦牲交| 97在线视频观看| 国产免费又黄又爽又色| 十分钟在线观看高清视频www | 亚洲国产精品一区三区| 在线精品无人区一区二区三 | 日韩视频在线欧美| 欧美国产精品一级二级三级 | 久久毛片免费看一区二区三区| 精品久久久久久久久av| 美女中出高潮动态图| 日本猛色少妇xxxxx猛交久久| 国产色婷婷99| 2018国产大陆天天弄谢| 亚洲av成人精品一区久久| 日韩中文字幕视频在线看片 | 日韩制服骚丝袜av| 婷婷色av中文字幕| av播播在线观看一区| 亚洲精品456在线播放app| 日本与韩国留学比较| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 少妇人妻精品综合一区二区| 99精国产麻豆久久婷婷| 久久av网站| 国产黄片视频在线免费观看| 亚洲最大成人中文| 一二三四中文在线观看免费高清| 五月开心婷婷网| 亚洲国产最新在线播放| 人妻夜夜爽99麻豆av| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| 啦啦啦啦在线视频资源| 街头女战士在线观看网站| 国产无遮挡羞羞视频在线观看| 2022亚洲国产成人精品| 超碰97精品在线观看| 最新中文字幕久久久久| 又爽又黄a免费视频| 亚洲伊人久久精品综合| 老师上课跳d突然被开到最大视频| 精品久久久久久电影网| 尤物成人国产欧美一区二区三区| 99久久精品热视频| 老女人水多毛片| 亚洲精品色激情综合| 成人午夜精彩视频在线观看| 黑人高潮一二区| 免费少妇av软件| 国国产精品蜜臀av免费| 亚洲av中文字字幕乱码综合| 美女xxoo啪啪120秒动态图| 免费看光身美女| 91久久精品国产一区二区成人| 黄色日韩在线| 国产在视频线精品| 高清黄色对白视频在线免费看 | a 毛片基地| 只有这里有精品99|