• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Thermal Buoyancy on Ferromagnetic Liquid Stream Over a Radiated Elastic Surface with Non Fourier Heat Flux

    2021-04-26 07:20:38SreelakshmiAbrahamAnnammaChethanKrishnaMurthyandRaju

    T.K.Sreelakshmi,Abraham Annamma,A.S.Chethan,M.Krishna Murthy and C.S.K.Raju

    1Department of Mathematics,BMS Institute of Technology and Management,Bengaluru,560064,India

    2Department of Mathematics,School of Applied Sciences,REVA University,Bengaluru,560064,India

    3Department of Mathematics,GITAM School of Science,GITAM Deemed to be University,Bengaluru,562163,India

    ABSTRACT The current article discusses the heat transfer characteristics of ferromagnetic liquid over an elastic surface with the thermal radiation and non-Fourier heat flux.In most of the existing studies,the heat flux is considered as constant,but whereas we incorporated the non-Fourier flux to get the exact performance of the flow.Also,we excluded the PWT and PHF cases to control the boundary layer of the flow.The governing equations related to our contemplate are changed into non-linear ordinary differential equations(ODE’s)by utilizing appropriate similarity changes,which are at the point enlightened by Runge-Kutta based shooting approach.The equations are broken down concerning boundary conditions and to be explained prescribed wall temperature (PWT)and prescribed heat flux(PHF)cases.The impacts of diverse non-dimensional physical parameters on velocity and temperature profiles are laid out graphically.Also,the assortment of skin friction and local Nusselt number for both PWT and PHF cases for various assessments of non-dimensional parameters have been sorted out.Towards the wrap-up of the examination,we suspect that the friction factor coefficient is higher in the PWT case compared to the PHF case.This result helps to conclude that the flux conditions are useful for cooling applications.

    KEYWORDS Ferromagnetic liquid;nonlinear thermal buoyancy;non-Fourier heat flux;radiated elastic surface

    1 Introduction

    Nowadays,the energy equation with Fourier’s law is parabolic.It demonstrates that the complete system is instantaneously influenced by the initial disruptions.This difficulty has been measured through consideration of thermal relaxation time in Fourier’s law.Environmental hollows and closed vessels with heated walls are the best examples of non-Fourier flux.Additional in the convection flows connected with heat-denunciation structures for a long period of intense sea power divisions where the sea environment is stratified.Flows with non-Fourier flux are of ample significance in several elastic flow configurations including geothermal systems,geological transport,Lake Thermohydraulics,volcanic flows,power plant condensation system,etc.This phenomenon important because of nonlinear thermal differences,which gives upsurge to a density discrepancy in the medium.It has significance in dissimilar normal processes,for example,transportation forms in the marine where non-Fourier flux exists since of salinity deviation.Furthermore,the temperature variance changes from layer to layer and such kinds of movements have wide demands in oceanography,industry and agriculture processes.The boundary layer of non-Newtonian liquids may be a current subject of exploration for the insistent pros since of their various industrial,design and manufacturing significance.Diverse progressed liquids connect paints,zams,toothpaste and slurries.The developments of these liquids essentially look into entirely specific approaches for example,glass blowing,design of aerospace particles and ceaseless casting and so on.The stretching out gives a unidirectional prologue to the extrudate along these lines moving forward its liquid mechanical properties.By the benefit of this many researchers have investigated the flow of non-Newtonian fluid with non-Fourier flux.Few of them are,Zubair et al.[1,2] developed simulation of nonlinear convective thixotropic liquid with Cattaneo-Christov heat flux and Stagnation point flow of third-grade liquid due to variable thickness a useful application to non-Fourier heat flux approach.A Double-diffusion model for viscoelastic nanofluid with activation energy and nonlinear thermal radiation was studied by Muhammad et al.[3].Nadeem et al.[4,5] discovered Roseland analysis for ferromagnetic fluid in presence of gyrotactic microorganisms and magnetic dipole and Darcy-Forchheimer flow under rotating disk and entropy generation with thermal radiation and heat source/sink.Ijaz et al.[6,7]investigated the Simulation of the magnetic dipole on gyrotactic ferromagnetic fluid flow with nonlinear thermal radiation and Arrhenius activation energy and Joule heating for Walter fluid with Cattaneo-Christov double diffusion model.Structure of head-to-head domain wall in cylindrical amorphous ferromagnetic microwire and a method of anisotropy coefficient estimation were founded by Mikhail et al.[8].Misra et al.[9] reported on temperature distribution and entropy generation during Darcy-Forchheimer-Brinkman electrokinetic flow in a microfluidic tube subject to a prescribed heat flux.Ferdows et al.[10] analyzed dual solutions for boundary layer flow and heat transfer of biomagnetic fluid over a stretching/shrinking sheet in presence of a magnetic dipole and a prescribed heat flux.Sankar Giri et al.[11] portrayed homogeneous heterogeneous reaction mechanisms on MHD carbon nanotube flow over a stretching cylinder with prescribed heat flux using differential transform method.Anupam et al.[12] analyzed optimization of heat transfer properties on ferrofluid flow over a stretching sheet in the presence of static magnetic field.Hydrodynamic and heat transfer properties of magnetic fluid in porous medium considering nanoparticle shapes and magnetic field dependent viscosity studied by Izadi et al.[13].Nadeem et al.[14] investigated on a computational model for suspensions of motile micro- organisms in the flow of ferrofluid.Lucas et al.[15] analyzed a numerical study on heat transfer of a ferrofluid flow in a square cavity under simultaneous gravitational and magnetic convection.Some of the researchers are analyzing ferrofluids in different geometric ways [16-21].

    Recently,the nonlinear temperature-density association in which the flow is obsessed by buoyancy may utilize a durable impact on the heat transfer physiognomies.It has numerous practical importance in geothermal,bio-physics,bio-thermal,astrophysics,geophysics and engineering processes;for example,the residual warm water discharged from a geothermal power plant is generally prepared off from shafts over subsurface reinjection.By this many authors started implementing the nonlinear buoyancy forces in the flow.The nonlinear convection with insulating boundaries was initiated by Busse et al.[22].Later on,Shi et al.[23] nonlinear diffusion convection equation is solved by using the Lattice Boltzmann method.Stagnation point flow over shrinking porous surface with nonlinear convection is solved numerically by Kumar et al.[24].Very recently,the authors considered the nonlinear thermal and diffusion buoyancy forces and magnetic field effects on non-Newtonian,micro and nanofluid is investigated by the authors [25-29] and found that the nonlinear convection made significant changes in the flow.

    The prime idea of the current assessment is to explain the centrality of explores the stream and heat transfer of ferromagnetic liquid over an elastic surface with radiation and non-Fourier heat flux.The governing equations identified with our examination are changed into non-linear ODE’s by utilizing fitting likeness transformations,which are at that point fathomed by Runge-Kutta besides shooting procedure.Empower,the impacts of assorted non-dimensional physical parameters on speed and temperature profiles are delineated graphically.The variety of Skin grinding and local Nusselt number for both PWT and PHF cases for distinctive assessment of non-dimensional parameters have been classified.

    2 Mathematical Formulation

    We assess the consistent two-dimensional an incompressible ferromagnetic liquid driven by an emanated flexible surface with non-Fourier heat flux as appeared in Fig.1.Here we have considered the Cartesian arrange framework with settled beginning such that thex-axis is along the direction of the stretched surface and they-axis is taken ordinarily to the sheet.The sheet is extended with a speedu(x)=cxwhich is corresponding to the distance from the origin,slanted at a pointυwith the horizontal.We have moreover expected that the liquids as an ambient temperatureT∞andT=Tw(x)as temperature of the surface.To amplify the heat transfer rate we considered the thermal radiation and Cattaneo-Christov heat flux.The joule heating and viscous dissipation are neglected due to flux conditions at the surface.

    The governing boundary layer equations beneath the over-specified suspicious are as follows:

    The conservation of mass equation,the momentum equation,and the energy equation are:

    Figure 1:Physical model of the problem

    The limit conditions for fathoming the above governing equations for both the Prescribed Wall Temperature (PWT) and Prescribed Heat Flux (PHF) are:

    HereAandDare positive constants,andL=is the characteristic length.The stream of ferrofluid is influenced by the magnetic field due to the magnetic dipole whose magnetic scalar potential is given by

    whereα′is the magnetic field quality of the source.The components of the magnetic fieldHare

    Since the magnetic body drive is proportional to the gradient of the magnitudeH,we get

    Variation of magnetizationMwith temperatureTis approximated by a linear equation

    whereKis the paramagnetic coefficient.

    3 Solution Procedure of the Problem

    We presently present the non-dimensional factors as expected by Anderson [21]

    whereTc?Tw=in PST case,

    Tc?Tw=in the PHF case.

    Radiative heat flux is

    By considering Eq.(13) the energy Eq.(3) takes the form

    The limit conditions are taken from (4) as follows:

    Presenting the stream functionψ(ξ,ζ)=ξf (ζ),that fulfills the conservation of mass equation within the dimensionless frame,we get

    where the prime indicates differentiation concerningζutilizing Eqs.(9)-(13) and (16) in (1),(2),(14),and (4) we get the taking after limit value problem with boundary conditions.

    3.1 Prescribed Wall Temperature(PWT)

    Limit conditions are:

    3.2 Prescribe Heat Flux(PHF)

    Limit conditions are:

    The dimensionless parameters,which show up unequivocally within the transformed problem,are the viscous dissipation parameterλ,the dimensionless Curie temperatureε,the ferrohydrodynamic interaction parameterβ,the nonlinear convention parameterγ,the radiation parameterR,the non-Fourier heat fluxδand the dimensionless distanceαfrom the starting to the center of the attractive shaft,characterized independently as

    Eqs.(17)-(21) and (22)-(26) constitute two sets of nonlinear,two-point boundary esteem issues.Trial valuesf′′(0),θ1′(0),θ2′(0) andφ1′(0),φ2′(0) are balanced iteratively by Newton-Raphson’s strategy to guarantee a quadratic merging of the iterative trial values required in arrange to satisfy the external boundary conditions.

    In this study,the physical parameters of intrigued are skin frictioncfand local Nusselt numberNuxwhich are characterized as follows:

    whereτw=μ(?u/?y)y=0and qw=?k(?T/?y)y=oare shear stress and heat flux at the sheet,respectively.By utilizing non-dimensional similarity changes (16),we get

    Tab.1 is organized to examine the impact of the before said parameters on the skin friction coefficient and Nusselt number.

    Table 1:The variations of friction factor and local Nusselt number for distinct estimations of non-dimensional governing parameters for both the PHF and PWT cases

    4 Method of Solution

    The nonlinear ordinary differential equations and boundary conditions for two cases PWT for (17)-(21) and PHF for (22)-(26) are solved numerically using Runge-Kutta shooting method.Initially,the set of nonlinear ordinary differential equations converted into first order differential equations,by using the following process:

    PWT case:f=y1,f′=y2,f′′=y3,θ1=y4,θ′1=y5,θ2=y6,θ′2=y7

    PHF case:f=y1,f′=y2,f′′=y3,φ1=y4,φ′1=y5,φ2=y6,φ′2=y7

    4.1 Prescribed Wall Temperature(PWT)

    Limit conditions are:

    4.2 Prescribe Heat Flux(PHF)

    Limit conditions are:

    Eqs.(29)-(38) are integrated by taking the help of Runge-Kutta shooting method with the successive iterative step length 0.01.

    5 Results and Discussion

    If we observe the Eqs.(17)-(24) are highly nonlinear with coupling nature.So,it is very difficult to solve by using the analytical technique.Due to this,we used Numerical methods to solve the modelled governing system.The current article is to investigate the nonlinear thermal buoyancy on ferromagnetic liquid over a radiated elastic surface with non-Fourier heat flux.Nondimensional governing Eqs.(17)-(19),(22)-(24) with the limit conditions (20),(21),(25) and(26) were illuminated numerically with R-K shooting method.So as to explore the comes about,numerical calculations are completed by considering various estimations of non-dimensional governing parametersβ=0.5,λ=2,γ=2,R=0.5,Pr=2,Gr=2,ε=0.5,α=0.2 these values are considered as settled all through the barring the assortments within the separate figures and tables.In figures solid line illustrates prescribed heat flux (PHF) case and dashed lines refer to prescribed wall temperature (PWT) case.Figs.2 and 3 outline the influence of radiation on temperature and velocity profiles.It is seen that the impact of radiation is showing mixed behavior in both temperature and velocity profiles for PHF and PWT cases.Physically,as raising values of thermal radiation generate heat molecules in the flow,but,whereas the non-Fourier flux has dominated.This causes to show mixed behavior in the presence of radiation.

    Figure 2:The temperature with impacts of radiation

    Figs.4 and 5 show up the coordinated effort of the ferrohydrodynamic parameterβwhich makes strides temperature profile in PHF case and lessens in PWT case.Asβextends,the nearness of the attractive field actuated by the attractive dipole on the liquid goes roughly as a hindering force,along these lines reducing the axial speed which achieves smoothingf′(ζ).Figs.6 and 7 noted that the temperature and velocity profiles in the presence of the viscous dissipation parameterλ.It is seen that the temperature profile is eternally outspreading with an improvementλin two cases of the flow (PWT and PHF).As bigger valuesλgive rise to more dissipation among the particles,this helps to improve the thermal boundary layer.But interestingly we observed mixed behavior of the flow in two cases.Figs.8 and 9 describe the development of velocity and temperature asGrincrements in both the prescribed wall temperature (PWT)and prescribed heat flux (PHF) cases.Grapproximates the proportion of buoyancy constrains to the viscous force following up on the liquid,it also features the centrality of convection in controlling the axial speed.Grenhances the momentum boundary layer thickness increments endowing the liquid to surface transparently.The advanced buoyancy force tends to the cooling of the slanted broadening sheet acts like an ideal weight slope quickening the liquid inside the boundary layer area.GenuinelyGr>0 suggests heating of the liquid or cooling of the boundary surface.Increment inside the estimation ofGrbrings nearly lessening of the thermal boundary layer related with an augmentation inside the wall temperature gradient and in this way making an extension in the heat move rate.

    Figure 3:Impacts of radiation on velocity

    Figure 4:Impacts of ferrohydrodynamic interaction on temperature

    Figure 5:Impacts of Ferrohydrodynamic interaction on speed

    Figure 6:Impacts of viscous dissipation on temperature

    Figs.10 and 11 appears the impacts of nonlinear convention parameterγon the profiles of temperature and velocity respectively.It is seen that nonlinear convention parameter improves the momentum boundary,whereas temperature has shown mixed behavior.As,we expected raising values of nonlinear convection parameter improves the nonlinearity near the surface,after some time due to the dominance of non-Fourier flux we saw an enhancement in the thermal boundary layer.Figs.12 and 13 portray the impact of non-Fourier heat fluxδwhich depreciates both the velocity and temperature profiles in PHF case and increments in PWT case.This happens due to dominance of flux and nonlinear convection in the flow,but wall temperature conditions have not created much flux at the surface due to this we saw an increment in profiles of the flow.Figs.14 and 15 highlights the affect of dimensionless curie parameter which grows temperature and velocity profiles for both PWT and PHF cases.This diminishes the thermal boundary layer thickness near the surface,afterward in the thermal layer is enhanced in PWT case.But,a similar opposite trend is observed in the momentum boundary due to the dominance of flux at the surface mixed performance observed in the flow.

    Figure 7:Impacts of viscous dissipation on speed

    Figure 8:The temperature with impacts of Grashof number

    Figure 9:Impacts of Grashof number on speed

    Figure 10:Impacts of nonlinear convection parameters on temperature

    Tab.1 displays the impact of the skin friction coefficient and Nusselt number for both the prescribed wall temperature and prescribed heat flux cases of the flow.From this,it is clear that the skin friction coefficient is enhanced with the improved values ofβ,Gr,γandδand interestingly found that the friction at the surface is very high in prescribed wall temperature case compared to prescribed heat flux.Similarly,the local Nusselt number is encouraged with improving valuesR,β,λ,Gr,γandε.From this study,we found that the flux and wall temperature conditions are useful in automated heating and cooling applications.Tab.2 is presented to validate my work compared with already existing work under limited situations and the present results are correlated with existing work.It helps me to do a further continuation of the present model.

    Figure 11:Impacts of nonlinear convection parameter on velocity

    Figure 12:Impacts of thermal relaxation on temperature

    Figure 13:The velocity with impacts of thermal relaxation

    Figure 14:Impacts of the dimensionless Curie temperature on temperature

    Figure 15:Impacts of the dimensionless Curie temperature on velocity

    Table 2:The validation of present results with already available literature under limited case ε=R=δ=β=λ=γ=Gr=0

    6 Conclusion

    In the current examination,we considered Radiative elastic surface with non-Fourier heat flux on ferromagnetic liquid.Existing PDE’s is changed to ODE’s with the bolster of normal related changes.Subsequently,the higher nonlinear ordinary differential equations are unraveled numerically through R-K and shooting strategy.The computational outcomes for Non-dimensional temperature and speed distributions are offered through outlines.Besides,the numerical estimations of friction factor and Nusselt number are sorted out numerically for distinct physical parameters are acquired.The features of this examination are

    1.The friction factor coefficient is higher in PWT case compared to PHF case.This result helps to conclude that the flux conditions are useful for cooling applications.

    2.The ferromagnet to the hydrodynamic parameterβcan be viably utilized to have a perfect temperature that moves forward the properties of the elastic surface.Since it increases both the friction factor and Nusselt number of the flow.

    3.The thermal relaxation parameter improves the velocity in PWT case and reduces the PHF case.This happens due to flux conditions at the surface,this condition dominates the profiles of the flow.

    4.The nonlinear convection parameter shows mixed performance in velocity and temperature

    profiles of the PHF case,whereas improvement in PWT case.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    免费看日本二区| 国产男女超爽视频在线观看| 男男h啪啪无遮挡| 日韩制服骚丝袜av| 肉色欧美久久久久久久蜜桃 | 亚洲第一区二区三区不卡| 国产大屁股一区二区在线视频| 91久久精品国产一区二区成人| 国产成人福利小说| av天堂中文字幕网| 国产免费又黄又爽又色| 亚洲欧美一区二区三区国产| 一级片'在线观看视频| 国产黄色免费在线视频| 国产成人午夜福利电影在线观看| 亚洲av免费高清在线观看| 色吧在线观看| 午夜福利高清视频| 搞女人的毛片| 日本三级黄在线观看| 女人十人毛片免费观看3o分钟| 国内少妇人妻偷人精品xxx网站| 精品酒店卫生间| 国产成人a区在线观看| 搡老乐熟女国产| 婷婷色麻豆天堂久久| 看十八女毛片水多多多| 亚洲国产精品999| 日韩欧美一区视频在线观看 | av网站免费在线观看视频| 亚洲国产高清在线一区二区三| 夫妻性生交免费视频一级片| 免费人成在线观看视频色| 色婷婷久久久亚洲欧美| 五月玫瑰六月丁香| 免费播放大片免费观看视频在线观看| 亚洲欧美一区二区三区国产| 国产精品久久久久久av不卡| 嫩草影院入口| 91在线精品国自产拍蜜月| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产女主播在线喷水免费视频网站| 日日啪夜夜爽| 一级av片app| 性色avwww在线观看| 国产成人a∨麻豆精品| 看非洲黑人一级黄片| 99久久九九国产精品国产免费| 国产成人午夜福利电影在线观看| 欧美老熟妇乱子伦牲交| 国产又色又爽无遮挡免| 亚洲精品第二区| 免费观看性生交大片5| 日日撸夜夜添| 日韩欧美精品v在线| 在线看a的网站| 白带黄色成豆腐渣| 亚洲欧美成人精品一区二区| 日本一本二区三区精品| 99热6这里只有精品| 国产老妇伦熟女老妇高清| 午夜激情久久久久久久| 亚洲欧美精品自产自拍| 亚洲,欧美,日韩| 国产日韩欧美亚洲二区| 人妻系列 视频| 大片免费播放器 马上看| 久久久久久伊人网av| 欧美+日韩+精品| 久久久久久久大尺度免费视频| 亚洲欧洲国产日韩| 白带黄色成豆腐渣| 高清在线视频一区二区三区| 极品教师在线视频| 国产在视频线精品| 男插女下体视频免费在线播放| 简卡轻食公司| 国精品久久久久久国模美| 欧美国产精品一级二级三级 | 精品久久久精品久久久| 成人国产av品久久久| 99re6热这里在线精品视频| 嘟嘟电影网在线观看| 男人狂女人下面高潮的视频| 狠狠精品人妻久久久久久综合| 在线 av 中文字幕| 97在线视频观看| 免费观看a级毛片全部| 男女边摸边吃奶| 婷婷色麻豆天堂久久| 久久久午夜欧美精品| 插逼视频在线观看| 白带黄色成豆腐渣| 人体艺术视频欧美日本| 亚洲精华国产精华液的使用体验| 久久久久久久久久久丰满| 熟妇人妻不卡中文字幕| 热re99久久精品国产66热6| 少妇熟女欧美另类| 亚洲自偷自拍三级| 国产黄片美女视频| 人妻制服诱惑在线中文字幕| 黄色配什么色好看| 国产日韩欧美在线精品| 午夜激情福利司机影院| 91久久精品国产一区二区成人| 综合色丁香网| 免费大片18禁| av一本久久久久| 少妇的逼好多水| 大片电影免费在线观看免费| 一区二区av电影网| 又大又黄又爽视频免费| 搡女人真爽免费视频火全软件| 欧美日韩综合久久久久久| 亚洲av中文字字幕乱码综合| 亚洲av在线观看美女高潮| 国产精品久久久久久久久免| 在线免费观看不下载黄p国产| 久久久久久国产a免费观看| 欧美bdsm另类| 国产黄色免费在线视频| 亚洲国产高清在线一区二区三| 九草在线视频观看| 91精品一卡2卡3卡4卡| 大又大粗又爽又黄少妇毛片口| 国产久久久一区二区三区| 欧美成人精品欧美一级黄| 国产中年淑女户外野战色| 美女cb高潮喷水在线观看| 日韩亚洲欧美综合| 下体分泌物呈黄色| 午夜福利视频精品| 欧美成人一区二区免费高清观看| 一本久久精品| 能在线免费看毛片的网站| 欧美少妇被猛烈插入视频| 一区二区av电影网| 日韩av不卡免费在线播放| av在线观看视频网站免费| 精华霜和精华液先用哪个| 菩萨蛮人人尽说江南好唐韦庄| 亚洲天堂av无毛| 国产精品国产三级专区第一集| 国产极品天堂在线| 婷婷色综合大香蕉| 国产成人免费观看mmmm| 久久久久久伊人网av| 一区二区三区精品91| 色网站视频免费| 成人亚洲精品一区在线观看 | 国产精品麻豆人妻色哟哟久久| 亚洲人成网站高清观看| 成年av动漫网址| 日日啪夜夜爽| 久久亚洲国产成人精品v| 欧美激情国产日韩精品一区| 国产成人一区二区在线| 亚洲,欧美,日韩| av在线亚洲专区| 国产精品不卡视频一区二区| 国产白丝娇喘喷水9色精品| 亚洲精品自拍成人| 亚洲国产精品专区欧美| 亚洲内射少妇av| 少妇的逼好多水| 国产精品久久久久久精品电影| 亚洲综合色惰| 日韩大片免费观看网站| 青春草亚洲视频在线观看| 听说在线观看完整版免费高清| 日本猛色少妇xxxxx猛交久久| 国产男人的电影天堂91| 高清日韩中文字幕在线| 一本色道久久久久久精品综合| 在线观看三级黄色| 一级片'在线观看视频| 亚洲精品国产成人久久av| 中国国产av一级| 欧美激情在线99| 婷婷色综合www| 麻豆乱淫一区二区| 热99国产精品久久久久久7| 18禁裸乳无遮挡免费网站照片| 最近中文字幕高清免费大全6| 午夜免费鲁丝| 免费观看性生交大片5| 国产成人免费无遮挡视频| 亚洲国产精品成人综合色| 久久韩国三级中文字幕| 91精品伊人久久大香线蕉| 亚洲精品日本国产第一区| 久久精品夜色国产| 少妇人妻精品综合一区二区| 干丝袜人妻中文字幕| 亚洲美女搞黄在线观看| 三级国产精品片| 国产淫片久久久久久久久| 国产老妇伦熟女老妇高清| 国产精品久久久久久精品古装| 免费人成在线观看视频色| www.av在线官网国产| 亚洲精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 亚洲av欧美aⅴ国产| 只有这里有精品99| 国产一区亚洲一区在线观看| 免费观看无遮挡的男女| 在现免费观看毛片| av女优亚洲男人天堂| 亚洲av电影在线观看一区二区三区 | 神马国产精品三级电影在线观看| 少妇人妻 视频| 超碰av人人做人人爽久久| 天天躁日日操中文字幕| 一区二区三区四区激情视频| 国产成人免费无遮挡视频| 亚洲精品456在线播放app| 伦精品一区二区三区| 在线播放无遮挡| 成年版毛片免费区| 亚洲精品,欧美精品| 黑人高潮一二区| 亚洲高清免费不卡视频| 中文乱码字字幕精品一区二区三区| 色播亚洲综合网| 美女cb高潮喷水在线观看| 亚洲av在线观看美女高潮| www.av在线官网国产| 亚洲一区二区三区欧美精品 | 色视频在线一区二区三区| 国产精品女同一区二区软件| 一级黄片播放器| 免费av观看视频| 99视频精品全部免费 在线| 最近的中文字幕免费完整| 精品久久久久久久人妻蜜臀av| 国产免费福利视频在线观看| 亚洲av电影在线观看一区二区三区 | 欧美丝袜亚洲另类| 亚洲丝袜综合中文字幕| 国产极品天堂在线| 97在线视频观看| 亚洲一级一片aⅴ在线观看| 国产精品一区www在线观看| 老女人水多毛片| 肉色欧美久久久久久久蜜桃 | 日本一二三区视频观看| 国产v大片淫在线免费观看| 亚洲国产精品国产精品| 成人漫画全彩无遮挡| 成人无遮挡网站| 在线免费观看不下载黄p国产| 九九爱精品视频在线观看| 国产在线男女| 在线a可以看的网站| 91aial.com中文字幕在线观看| 2018国产大陆天天弄谢| 天美传媒精品一区二区| 久久久色成人| 51国产日韩欧美| 51国产日韩欧美| 香蕉精品网在线| 欧美+日韩+精品| 2022亚洲国产成人精品| 欧美bdsm另类| 亚洲av免费在线观看| 一级毛片久久久久久久久女| 亚洲综合精品二区| 三级国产精品片| 美女被艹到高潮喷水动态| 欧美日韩综合久久久久久| 国产精品成人在线| 久久久久久国产a免费观看| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久v下载方式| 日韩国内少妇激情av| 欧美日韩一区二区视频在线观看视频在线 | 中文字幕制服av| 欧美97在线视频| 亚洲电影在线观看av| 亚洲美女视频黄频| 亚洲国产精品成人综合色| 最近2019中文字幕mv第一页| 中文字幕人妻熟人妻熟丝袜美| 国产伦理片在线播放av一区| av在线观看视频网站免费| 日韩强制内射视频| 久久人人爽人人片av| 日日啪夜夜爽| 国产成人一区二区在线| 肉色欧美久久久久久久蜜桃 | 六月丁香七月| 女人被狂操c到高潮| 亚洲精品一二三| 国产精品成人在线| 日本av手机在线免费观看| 中文乱码字字幕精品一区二区三区| 女的被弄到高潮叫床怎么办| 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看| 久久久国产一区二区| 久久韩国三级中文字幕| 三级国产精品片| 特级一级黄色大片| 久久国产乱子免费精品| 国产黄片视频在线免费观看| 欧美 日韩 精品 国产| 日日摸夜夜添夜夜添av毛片| 亚洲在久久综合| 国产有黄有色有爽视频| 亚洲欧美成人综合另类久久久| 少妇猛男粗大的猛烈进出视频 | freevideosex欧美| 精华霜和精华液先用哪个| 精品久久久久久久久av| 在现免费观看毛片| 精品人妻一区二区三区麻豆| 国产成人精品福利久久| av播播在线观看一区| 一级二级三级毛片免费看| 一级黄片播放器| 99久久精品一区二区三区| 日本免费在线观看一区| 日韩精品有码人妻一区| 久久久国产一区二区| 久久午夜福利片| 国产色婷婷99| 肉色欧美久久久久久久蜜桃 | 免费观看性生交大片5| 日本欧美国产在线视频| 如何舔出高潮| 国产成人一区二区在线| 亚洲精品自拍成人| 2018国产大陆天天弄谢| 春色校园在线视频观看| av线在线观看网站| www.av在线官网国产| 国产精品无大码| 嫩草影院精品99| 少妇 在线观看| 国产欧美日韩精品一区二区| 欧美xxⅹ黑人| 99热网站在线观看| 国产免费视频播放在线视频| 直男gayav资源| 成人高潮视频无遮挡免费网站| eeuss影院久久| 卡戴珊不雅视频在线播放| 国产 一区 欧美 日韩| 国产高潮美女av| 欧美性感艳星| 成人二区视频| kizo精华| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 国产免费一区二区三区四区乱码| 亚洲av在线观看美女高潮| 边亲边吃奶的免费视频| 欧美日韩视频高清一区二区三区二| 国产久久久一区二区三区| 国产免费一级a男人的天堂| 亚洲精品乱久久久久久| 五月天丁香电影| 午夜免费男女啪啪视频观看| 国产一区二区三区av在线| 国产精品精品国产色婷婷| 欧美成人精品欧美一级黄| 人体艺术视频欧美日本| 日本色播在线视频| 深爱激情五月婷婷| 韩国高清视频一区二区三区| 人妻一区二区av| freevideosex欧美| 国产黄片视频在线免费观看| 久久精品国产鲁丝片午夜精品| 1000部很黄的大片| 久久人人爽av亚洲精品天堂 | 久久久久网色| 国产成人一区二区在线| 亚洲怡红院男人天堂| 男插女下体视频免费在线播放| 成年女人在线观看亚洲视频 | 国产精品嫩草影院av在线观看| 夜夜爽夜夜爽视频| 日韩av在线免费看完整版不卡| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| 欧美+日韩+精品| 国产亚洲5aaaaa淫片| 午夜亚洲福利在线播放| 国产69精品久久久久777片| 国产精品一区二区三区四区免费观看| 七月丁香在线播放| 国产中年淑女户外野战色| 五月开心婷婷网| 少妇的逼好多水| 最近2019中文字幕mv第一页| 久久久欧美国产精品| 精品人妻偷拍中文字幕| 在线观看国产h片| 蜜桃亚洲精品一区二区三区| 成人亚洲精品一区在线观看 | 免费看光身美女| 免费播放大片免费观看视频在线观看| 六月丁香七月| 极品少妇高潮喷水抽搐| 国内精品美女久久久久久| 少妇的逼好多水| 欧美极品一区二区三区四区| 国产有黄有色有爽视频| 自拍欧美九色日韩亚洲蝌蚪91 | 黄色配什么色好看| 久久久成人免费电影| 美女cb高潮喷水在线观看| 精品一区二区三卡| 男人舔奶头视频| 天美传媒精品一区二区| 高清毛片免费看| 亚洲电影在线观看av| 一级片'在线观看视频| 国产淫片久久久久久久久| 国产伦精品一区二区三区四那| 男女边摸边吃奶| 久久人人爽av亚洲精品天堂 | 久久人人爽人人片av| 国产伦在线观看视频一区| 99热国产这里只有精品6| 日韩免费高清中文字幕av| 可以在线观看毛片的网站| 2021天堂中文幕一二区在线观| 欧美激情在线99| 涩涩av久久男人的天堂| 国产乱人视频| 91久久精品国产一区二区成人| 国产探花在线观看一区二区| 在线看a的网站| 国产高清有码在线观看视频| 国产又色又爽无遮挡免| 久久久成人免费电影| 简卡轻食公司| 不卡视频在线观看欧美| 日日撸夜夜添| 国产精品99久久99久久久不卡 | 亚洲精品一二三| 少妇人妻久久综合中文| 国产成人aa在线观看| 人妻制服诱惑在线中文字幕| 精品午夜福利在线看| 免费黄网站久久成人精品| 国产永久视频网站| 亚洲色图综合在线观看| 国产色婷婷99| 免费看a级黄色片| 日韩免费高清中文字幕av| 欧美激情国产日韩精品一区| 最近最新中文字幕免费大全7| 欧美 日韩 精品 国产| 国内少妇人妻偷人精品xxx网站| 午夜福利视频精品| 久久精品熟女亚洲av麻豆精品| 中文字幕av成人在线电影| 777米奇影视久久| 亚洲美女搞黄在线观看| 亚洲av欧美aⅴ国产| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 国产亚洲午夜精品一区二区久久 | 寂寞人妻少妇视频99o| 丰满乱子伦码专区| 久久精品国产a三级三级三级| 91久久精品电影网| 国产av国产精品国产| 日韩欧美一区视频在线观看 | 国产视频内射| 99视频精品全部免费 在线| 美女xxoo啪啪120秒动态图| 久久久久久久久久久丰满| 亚洲精品日韩在线中文字幕| 国产成人a∨麻豆精品| 精品久久久久久久人妻蜜臀av| 日韩伦理黄色片| 久久久久精品性色| 精品酒店卫生间| 国国产精品蜜臀av免费| 18禁动态无遮挡网站| 纵有疾风起免费观看全集完整版| 国产精品女同一区二区软件| 新久久久久国产一级毛片| av在线观看视频网站免费| 国语对白做爰xxxⅹ性视频网站| 国产精品不卡视频一区二区| 久久精品久久久久久噜噜老黄| 在线 av 中文字幕| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 国产91av在线免费观看| 欧美精品人与动牲交sv欧美| 女人十人毛片免费观看3o分钟| 亚洲丝袜综合中文字幕| 草草在线视频免费看| 人妻少妇偷人精品九色| 免费av不卡在线播放| 欧美性猛交╳xxx乱大交人| 国产日韩欧美亚洲二区| 亚洲欧美日韩无卡精品| 五月天丁香电影| av福利片在线观看| 国产高清有码在线观看视频| 秋霞伦理黄片| 一区二区av电影网| 亚洲精品成人av观看孕妇| 国产老妇女一区| 综合色丁香网| 欧美97在线视频| 草草在线视频免费看| 一级黄片播放器| 日本-黄色视频高清免费观看| 最近中文字幕高清免费大全6| 亚洲人成网站在线观看播放| 久久久久久伊人网av| 国产精品久久久久久久久免| 日日啪夜夜撸| 少妇 在线观看| 国产高潮美女av| 精品一区二区三区视频在线| 亚洲电影在线观看av| 亚洲国产最新在线播放| 高清视频免费观看一区二区| 欧美精品国产亚洲| 国产欧美日韩一区二区三区在线 | 肉色欧美久久久久久久蜜桃 | 搞女人的毛片| 亚洲精品国产成人久久av| 男女无遮挡免费网站观看| 精品久久久久久电影网| 欧美3d第一页| 久久热精品热| 日韩 亚洲 欧美在线| 国产高潮美女av| 老司机影院成人| 国产精品久久久久久久电影| 一区二区三区乱码不卡18| 波野结衣二区三区在线| 啦啦啦中文免费视频观看日本| 小蜜桃在线观看免费完整版高清| 黑人高潮一二区| 18禁动态无遮挡网站| 日韩欧美 国产精品| 一二三四中文在线观看免费高清| 国产日韩欧美在线精品| 免费av毛片视频| 如何舔出高潮| 黄片wwwwww| 99热全是精品| 日日啪夜夜撸| 麻豆精品久久久久久蜜桃| 日产精品乱码卡一卡2卡三| 午夜激情福利司机影院| 国产女主播在线喷水免费视频网站| 六月丁香七月| 精品酒店卫生间| 亚洲aⅴ乱码一区二区在线播放| 成人免费观看视频高清| 最近中文字幕高清免费大全6| 中文资源天堂在线| 日韩三级伦理在线观看| 免费黄频网站在线观看国产| 99久久中文字幕三级久久日本| 极品少妇高潮喷水抽搐| 婷婷色综合大香蕉| 成年av动漫网址| 久久99热这里只有精品18| 尤物成人国产欧美一区二区三区| 久久精品久久久久久噜噜老黄| 国产成人aa在线观看| 三级国产精品欧美在线观看| 天天躁日日操中文字幕| 黄色日韩在线| 最近中文字幕高清免费大全6| 不卡视频在线观看欧美| 色视频在线一区二区三区| 免费看光身美女| 最近中文字幕高清免费大全6| 特级一级黄色大片| 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 亚洲国产欧美在线一区| 亚洲三级黄色毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 少妇人妻 视频| 日日啪夜夜爽| 日日撸夜夜添| 一级爰片在线观看| 五月玫瑰六月丁香| 可以在线观看毛片的网站| 精品久久国产蜜桃| 久久久欧美国产精品| av一本久久久久| 熟女av电影| 欧美一区二区亚洲| 免费看光身美女| 亚洲aⅴ乱码一区二区在线播放| 欧美最新免费一区二区三区| videossex国产| 免费观看av网站的网址| 日本黄色片子视频| 在线观看av片永久免费下载| 欧美xxxx性猛交bbbb| 日韩av不卡免费在线播放| 免费黄色在线免费观看| 男人舔奶头视频| 久久99热6这里只有精品| 免费看a级黄色片| 又爽又黄无遮挡网站|