• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Higher-Order Time Integration Algorithm for Structural Dynamics

    2021-04-26 07:20:26YiJiandYufengXing

    Yi Ji and Yufeng Xing

    1Institute of Solid Mechanics,Beihang University,Beijing,100083,China

    2Shen Yuan Honors College,Beihang University,Beijing,100083,China

    ABSTRACT Based on the weighted residual method,a single-step time integration algorithm with higher-order accuracy and unconditional stability has been proposed,which is superior to the second-order accurate algorithms in tracking long-term dynamics.For improving such a higher-order accurate algorithm,this paper proposes a two sub-step higher-order algorithm with unconditional stability and controllable dissipation.In the proposed algorithm,a time step interval[tk,tk+h]where h stands for the size of a time step is divided into two sub-steps[tk,tk+γ h]and[tk+γ h,tk+h].A non-dissipative fourth-order algorithm is used in the first sub-step to ensure low-frequency accuracy and a dissipative third-order algorithm is employed in the second sub-step to filter out the contribution of high-frequency modes.Besides,two approaches are used to design the algorithm parameter γ.The first approach determines γ by maximizing low-frequency accuracy and the other determines γ for quickly damping out highfrequency modes.The present algorithm uses ρ∞to exactly control the degree of numerical dissipation,and it is third-order accurate when 0≤ρ∞<1 and fourth-order accurate when ρ∞=1.Furthermore,the proposed algorithm is self-starting and easy to implement.Some illustrative linear and nonlinear examples are solved to check the performances of the proposed two sub-step higher-order algorithm.

    KEYWORDS Time integration algorithm;two-sub-step;higher-order accuracy;controllable dissipation;unconditional stability

    1 Introduction

    Time integration algorithms are a powerful tool for solving structural dynamics.The accuracy,efficiency,stability,and numerical dissipation have always been important factors when designing a new algorithm or improving an existing algorithm.Based on different design ideas,researchers have developed many types of time integration algorithms,such as theα-algorithms,the composite algorithms,the conserving energy algorithms,and the higher-order algorithms.

    To introduce algorithmic dissipation as well as maintain second-order accuracy,theα-algorithms [1-3] like the HHT-αalgorithm,the three-parameter algorithm were developed.By introducing additional parameters in motion equations,theα-algorithms can achieve this goal.Algorithmic dissipation is beneficial to filtering out high-frequency modes and improving stability of time integration algorithms in solving nonlinear systems.However,suchα-algorithms with algorithmic dissipation cause more amplitude and phase errors in the low-frequency region compared to non-dissipative algorithms [4],such as the trapezoidal rule and the central difference algorithm.

    To improve low-frequency accuracy of theα-algorithms,multi-sub-step composite algorithms were developed.The composite concepts first appeared in Bank et al.’s work [5],and they developed a two-sub-step algorithm where the trapezoidal rule and the backward difference formula were combined in a time step.Afterwards,this work was extended to the structural dynamics systems by Bathe in 2005 [6].In Bathe’s work,the trapezoidal rule was used in the first-sub-step to maintain low-frequency accuracy as much as possible and the second-sub-step adopted backward difference formula to filter out high-frequency mode contribution.Motivated by these works,some composite algorithms with better numerical properties were proposed in the last two decades,such as the two-sub-step algorithms [7-9],the three-sub-step algorithms [10-15] and the four-sub-step algorithms [13,14].

    To solve nonlinear systems,conserving energy algorithms were developed.Different fromα-algorithms and composite algorithms,the construction of conserving energy algorithms is based on the energy principle [16].Most conserving energy algorithms [17-22] can handle the geometric nonlinearity problems and one [23] can deal with the systems including geometric nonlinearity and damping nonlinearity.

    To satisfy the pursuit for high accurate solutions,higher-order algorithms [24-32] were developed.The series algorithms,such as the Taylor series algorithm and the Lie series algorithm,are classical higher-order algorithms,which cannot be unconditionally stable when the accuracy order is more than two [25].For keeping higher-order accuracy and improving stability,the multi-stages implicit Runge-Kutta algorithm [26],the weighted-residual method-based algorithms [27,28] and the differential quadrature algorithms [29-31] were proposed.Compared to second-order accurate algorithms,higher-order algorithms can use larger time step size and have advantages in long-term tracking.In 2017,the higher-order algorithms based on the weighted residual method proposed by Kim et al.[28] have thenth-order (n=1,2,3,...) accuracy and unconditional stability with controllable algorithmic dissipation,but the algorithms’stability for nonlinear problems needs to be improved.

    As can be seen from above review that (1) there are no multi-sub-step time integration algorithms that have higher-order accuracy,unconditional stability and controllable dissipation;(2) the designs of existing time integration algorithms mainly take accuracy,stability and dissipation into account rather than the properties of dynamic systems.

    In this context,this work is to construct a two sub-step higher-order algorithm based on the Kim’s work [28].In the proposed algorithm,a time step [tk,tk+h] is divided into two sub-steps,[tk,tk+γ h] and [tk+γ h,tk+h].Both sub-steps employ the Kim scheme with two collocation points.To obtain better performance,two approaches are provided for determining the parameterγ.The first one is to maximize low-frequency accuracy,in which the value ofγis determined by?PE(γ)/?γ=0 where PE denotes percentage period elongation [33].The second is for quickly eliminating high-frequency contribution,and the algorithm with suchγcan perform better in the rigid-flexible coupling and wave propagation systems.

    The rest of the paper is organized as follows.Section 2 presents the formulations of the proposed two sub-step algorithm and the determination method of the parameterγ.The numerical properties of the proposed algorithm are discussed in Section 3.Numerical comparisons are provided in Section 4.Finally,the conclusions are drawn in Section 5.

    2 The Two Sub-Step Higher-Order Algorithm

    This section gives the formulations of the proposed algorithm,in which a time step [tk,tk+h]is divided into two sub-steps as [tk,tk+γ h] and [tk+γ h,tk+h] wherehstands for the time step size.

    2.1 The First Sub-Step Formulations

    By using the Lagrange interpolation functionsψit(i=0,1,2),the displacementut,velocityvt,and accelerationatin the first sub-step are expressed as

    wheretk

    The displacement,velocity,and acceleration vectors shown in Eqs.(1)-(3) are independent of each other,so two residuals are introduced to describe the velocity-displacement relationship and the acceleration-velocity relationship.The two residuals have the forms as

    For exact solutions,r1tandr2tare equal to zero.To achieve accurate approximate solutions,here the residualsr1tandr2tare minimized with the following weighted equations as

    whereτ=t?tk wτis the weighting function.Substituting Eqs.(1)-(3) into Eqs.(7) and (8) leads to the velocity-displacement and the acceleration-velocity relationships in matrix form as

    whereαij(i,j=1,2),βi(i=1,2),andηi(i=1,2) are all the functions ofθ11andθ12which are

    where the superscript ‘1’represents the first sub-step,andθ11andθ12can be determined by maximizing the order of accuracy.For this end,consider a single degree-of-freedom system as follows

    whereξandωdenote the physical damping ratio and natural frequency respectively.In terms of the Eqs.(9) and (10) and for this simple system (12),one can obtain a recursive formulation for first sub-step as

    whereAis the transfer matrix.The order of accuracy can be designed with the help of local truncation errorσ[33],of which the definition is

    whereA1=tr(A)andA2=det(A),which are the functions ofθ11andθ12.Ifσ=wherel>0,the method islth-order accurate.Through the Taylor series expansion of displacement att=tk,the explicit expressions ofσcan be obtained as

    It follows that the first sub-step method is at least second-order accurate and is fourth-order accurate ifθ11=1/2 andFortunately,the spectral radiusρ(A)is equal to 1 whenθ11=1/2 andθ12=1/3.With the relations between (θ11,θ12) and (αij,βi,ηi),one can have

    For obtaining the unknown vectorsutk+γh,vtk+γh,andatk+γhin the first-sub-step,we consider the following equilibrium equations at the time nodes oftk+γ h/2 andtk+γ h,which have the forms as

    whereM,CandKare the mass,damping and stiffness matrices;Ris the external load vector.Substituting Eqs.(9) and (10) into Eq.(17) yieldsutk+γhas

    The above effective stiffness matrixand the effective external load vectorhave the forms as

    where

    Then the unknown vectorsutk+γh/2can be obtained as

    Then,by substitutingutk+γh/2andutk+γhinto Eqs.(9) and (10),one can arrive atvtk+γh,andatk+γh.Andutk+γh,vtk+γh,andatk+γhare the initial conditions of the second sub-step.It is noteworthy that the weighted residual method is a common way in the construction of time integration algorithms.It can be seen from Eqs.(5)-(7) that in the present algorithm,the inherent relations between displacement,velocity,and acceleration are only satisfied in a weak form,but the equilibrium equations are satisfied strictly at discrete points,as shown in Eq.(17).

    2.2 The Second-Sub-Step Formulations

    As in the first sub-step,ut,vtandatwithintk+γ h

    where

    The velocity-displacement and acceleration-velocity relationships have the matrix forms as

    where,,(i,j=1,2) are the functions ofθ12andθ22.For the system (12),one can also obtain a recursive formulation like Eq.(13),as

    whereBis the transfer matrix.Also,according to local truncation error analysis,we can find a relationship ofθ21andθ22as

    which makes the second sub-step method third-order accurate.In terms of the spectral radius ofB,the following relation can be achieved as

    Then the parameterρ∞is introduced to control the damping of the present algorithm.By using Eqs.(29) and (30),all free parameters in the second sub-step can be explicitly expressed in terms ofρ∞as

    With these parameters,the method for the second sub-step is unconditionally stable.To calculate the results attk+h,we take the equilibrium equations attk+(1+γ)h/2 andtk+hinto account as

    Substituting Eqs.(26) and (27) into Eq.(32) leads to the displacementutk+has

    The effective stiffness matrix ?K2and the effective external load vector ?R2are

    where

    and the displacementutk+(1+γ)h/2can be obtained by

    By insertingutk+(1+γ)h/2andutk+hinto Eqs.(26) and (27),we can achievevtk+h,andatk+h.

    2.3 Determination of the Parameter γ

    This sub-section aims to present two approaches for determining the last free parameterγ,the ratio of the first sub-step size and the entire step size.

    2.3.1 Approach 1

    The first approach is to preserve low-frequency mode contribution as much as possible.To reach this end,the value ofγis determined by minimizing percentage period error.Since the explicit relation amongγ,ρ∞and the phase elongation is complex,the optimalγfor someρ∞are listed in Tab.1.For clearer showing whether or not these values ofγmake the phase error minimum,Figs.1 and 2 show the percentage amplitude decay and the period elongationvs.γforρ∞=0,and Figs.3 and 4 display the results forρ∞=0.5.It can be seen that these values ofγcan really minimize period elongations,noting that at the minimum point the amplitude decay is also close to the minimum.To simply obtain the optimalγfor anyρ∞,a fitting algebraic relationship betweenρ∞and the optimalγis provided as

    Table 1:The relationships between the optimal γ and ρ∞

    Fig.5 shows the fitted and true values ofγ.The proposed algorithm using theγin Eq.(37),denoted by ‘Present 1’in this paper,is recommended for most dynamics problems.

    Figure 1:Percentage amplitude decay vs.γ (ρ∞=0,ξ=0)

    Figure 2:Percentage period elongation vs.γ (ρ∞=0,ξ=0)

    Figure 3:Percentage amplitude decay vs.γ (ρ∞=0.5,ξ=0)

    Figure 4:Percentage period elongation vs.γ (ρ∞=0.5,ξ=0)

    Figure 5:The comparisons between the fitted values and the true values

    2.3.2 Approach 2

    For rigid-flexible coupling and wave propagation problems,time integration algorithms that can quickly damp out high-frequency effects are expected.To achieve such a capability,the parameterγcan be determined by the following second approach.

    Fig.6 shows the variations of the percentage amplitude decay of the proposed algorithm withγandωhfor the case ofρ∞=0,and the result ofρ∞=0.5 is provided in Fig.7.It can be seen that the percentage amplitude decay curves are symmetric aboutγ=1 for any values ofωh.Fig.8 shows the spectral radiusvs.ωhfor several givenγ,indicating that the larger amount of numerical dissipation can be obtained in the low-frequency range with a larger |γ|.

    Figure 6:The variations of percentage amplitude decay with γ and ωh (ρ∞=0)

    As is well known,most time integration algorithms with controllable dissipation possess the biggest amount of dissipation whenρ∞=0.It can be seen from Figs.6-8 that the amount of dissipation can be improved further by adjusting the values ofγfor the proposed algorithm.For ensuring the accuracy of low-frequency response,the value ofγsatisfyingρ=0.7~0.8 is suggested,refer to Fig.8.The proposed algorithm using the value ofγdetermined by this approach is denoted by ‘Present 2’in the numerical comparisons in Section 4.

    Figure 7:The variations of percentage amplitude decay with γ and ωh (ρ∞=0.5)

    Figure 8:Spectral radius vs.ωh and γ (ρ∞=0):(a) ωh ∈ [0.1,100];(b) ωh=0.1,0.2,0.4,0.6,1,4,10,100

    After determiningγ,the construction of the present algorithm is completed,and its flowchart and step-by-step implementing procedure are presented in Fig.9 and Tab.2 respectively.Using the Newton iteration method,the proposed algorithm is also applicable to the general nonlinear dynamics as

    whereN(vt,ut) is the nonlinear resilience force.

    Figure 9:Flowchart of the proposed algorithm for linear systems

    Table 2:Step-by-step implementing procedure of the proposed algorithm for linear systems

    Table 2(continued).

    3 Properties Analysis

    This section is to discuss the proposed algorithm’s properties,including efficiency,stability,dissipation,accuracy,and convergence rates.In this work,the present algorithm is compared with the single-step fourth-order Kim method [28],the single-step fourth-order IHOA-4 [32],and the two-sub-step second-orderρ∞-Bathe method [7].The accuracy of different types of algorithms should be compared under the same computational cost.In terms of the number of times the equilibrium equation is used in a time step,the time step sizes of these algorithms should satisfy 4h(IHOA?4)=2h(ρ∞?Bathe)=2h(Kim)=h(Present) (indicating that the step size of IHOA-4 is a quarter of the step size of the present method,for example) to ensure that the accuracy comparison is conducted under roughly equal computational costs.

    3.1 Stability,Dissipation and Accuracy

    In general,a SDOF system like (12) is used to examine the properties of a time integration algorithm for linear systems.The spectral analysis of Present 2 have been presented Section 2.3.2,so this section mainly discusses the numerical properties of the ‘Present 1’.Figs.10-12 show the spectral radiusvs.ωhand Figs.13 and 14 show the percentage amplitude decay and period elongationvs.δ(ωh) whereδ(ωh)= (ωh)/n(nstands for the number of times the equilibrium equation is used in a time element),keeping same computational costs.It can be seen from Figs.10-12 that the present algorithm is unconditionally stable for undamped and damped systems,and its numerical dissipation can be exactly and smoothly controlled byρ∞.Figs.13 and 14 illustrate that (1) ifρ∞=1,Present 1 almost has the same amplitude and phase accuracy as the Kim algorithm;(2) ifρ∞/=1,Present 1 is more accurate than the Kim algorithm.Since the amplitude errors of them are all zero whenρ∞=1,the relevant results are not plotted in Fig.13.

    Figure 10:Spectral radius vs.ωh for Present 1 (ξ=0)

    Figure 11:Spectral radius vs.ωh for Present 1 (ξ=0.1)

    Figure 12:Spectral radius vs.ωh for Present 1 (ξ=0.2)

    Figure 13:Percentage amplitude decay vs.δ(ωh) (ξ=0)

    Figure 14:Percentage period elongation vs.δ(ωh) (ξ=0)

    3.2 Convergence Rates

    The convergence rates of the proposed algorithm are checked in this section.Consider a SDOF system as

    whereω=2,r(t)=sint,and the initial displacement and velocity are zero.The decrease rates of absolute errors as the step size decreases are defined as the convergence rates,and displacement,velocity and acceleration may have different convergence rates.Theρ∞-Bathe algorithm [7] is second-order accurate,so its results are plotted here as a reference.The value of the parameterγhas no effect on algorithmic order,refer to Eq.(15),so only the results of Present 1 are shown here.

    The undamped case is considered first.Fig.15 shows the absolute errors of displacement,velocity,and acceleration.It can be seen that the proposed algorithm and the Kim algorithm are both fourth-order accurate whenρ∞=1,and they are both third-order accurate otherwise;the present algorithm is more accurate than the Kim algorithm when 0≤ρ∞<1.

    Figure 15:Convergence rates of the undamped system (ξ=0)

    For the damped case,ξ=0.1 is used.It can be seen from Fig.16 that the proposed algorithm is still fourth-order accurate whenρ∞=1 and third-order accurate when 0≤ρ∞<1.

    Figure 16:Percentage period elongation vs.δ(ωh) (ξ=0.1)

    4 Numerical Experiments

    To verify the performance of the proposed algorithm,some numerical experiments are conducted here.The proposed algorithm is compared with the Kim algorithm [28],the IHOA-4 [32],and theρ∞-Bathe algorithm [7].In all simulations,the time step size of the IHOA-4 is provided and the sizes of other algorithms can be determined by the relations of 4h(IHOA?4)=2h(ρ∞?Bathe)=2h(Kim)=h(Present).

    4.1 Bi-Material Bar Problem

    In this example,consider a linear bi-material bar subjected to a harmonic displacement excitation at the left end [28],as shown in Fig.17.The motion equation of the bi-material bar is

    with the initial and boundary conditions of

    The dimensionless mass density,sectional area and length are assumed asρ=1,A=1 andL=1 respectively,and the elasticity modulus isE(x)=E1for 0≤x≤L/2 andE(x)=E2forL/2

    Figure 17:A bi-material bar with a harmonic displacement excitation at the left end

    4.1.1 The First Case(E1=10and E2=1)

    This case is used to test the performance of the higher-order accurate algorithms for long-term tracking.The step sizeh=0.005 ≈Tmin/6 whereTmin≈0.0344138,and the reference solutions are achieved via the mode superposition method.For long-term simulations,numerical dissipation is not expected,soρ∞=1 is employed in all algorithms.Figs.18-20 illustrate the results of the middle point of the bar for the time interval [498,500],where one can see that the second-order accurateρ∞-Bathe algorithm have obvious errors and other fourth-order accurate algorithms’results agree well with the reference solution.

    Figure 18:The displacement of the middle point for the first case

    Figure 19:The velocity of the middle point for the first case

    Figure 20:The acceleration of the middle point for the first case

    4.1.2 The Second Case(E1=5000and E2=1)

    The second case is designed to show the better performance of numerical dissipation of the proposed algorithm over other higher-order algorithms.The time step sizeh=0.005 is used,andρ∞=0 is employed.To better handle the present rigid-flexible coupling problem,the parameterγof the proposed algorithm is determined byApproach 2.It can be seen from Figs.21-23 that:(1) the proposed algorithm can eliminate high-frequency effects without introducing excessive errors;(2) the Kim algorithm has obvious numerical oscillations;(3) the IHOA-4 loses stability due to its conditional stability.To make the figure clearer,the acceleration results of the IHOA-4 are omitted in Fig.22.

    Figure 21:The displacement of the middle point for the second case

    Figure 22:The velocity of the middle point for the second case

    Figure 23:The acceleration of the middle point for the second case

    Moreover,the CPU time required by different algorithms in this example are presented in Tab.3 where one can observe that the computational costs of different algorithms are almost equal when the step sizes satisfy the relation 4h(IHOA?4)=2h(ρ∞?Bathe)=2h(Kim)=h(Present).

    Table 3:CPUs of different time integration algorithms in Example 1

    4.2 Rigid Pendulum System

    Consider a nonlinear pendulum system [17] pinned at the top and free at the bottom,as shown in Fig.24.The material parametersEA=1010N,ρA=6.57 kg/m and the lengthl0=3.0443 m are adopted,and the rotation of the pendulum is started by an initial tangential velocity ofv0=7.72 m/s at the free end.Since the axial stiffness is huge,the motion of the pendulum is like a rigid rotation.A linear truss element is used to model the pendulum,so the system has two DOFs.

    Figure 24:Truss model of the rigid pendulum

    The step sizeh=0.05 s,andρ∞=0 is used.The results of theρ∞-Bathe algorithm with an extremely small time step size serve as the reference solutions.Figs.25-27 show the results of the free end in thexdirection within [0,10 s].It can be seen that the IHOA-4 and the Kim algorithm fail.In fact,this simple problem has also defeated some other famous algorithms,such as the trapezoidal rule.Also,we can find that theρ∞-Bathe algorithm exhibits phase lag.

    Figure 25:Displacement of the free end in the horizontal direction

    Figure 26:Velocity of the free end in the horizontal direction

    Figure 27:Acceleration of the free end in the horizontal direction

    4.3 The Two-Story Shear Building

    As shown in Fig.28,in this example a two-story shear building is considered,which has two degrees of freedom.The lumped masses of the bottom and the top floors aremb=103kg andmt=104kg,respectively.The nonlinear stiffness for each story is

    wherek0is the initial stiffness and Δurepresents the story drift.For the bottom story,k0=108N/m,and thek0=105N/m is for the top story.Two stores are subjected to the same the external forcef1=f2=10sin(t).The coefficientsα=100 andα=?0.1 are used for the bottom and top stories respectively.The step sizeh=0.0625 s,andρ∞=0 is used.The reference solution is achieved through theρ∞-Bathe algorithm with a much smaller step size.Figs.29-31 provide the results of the top story.One can see that:(1) The non-dissipative IHOA-4 loses stability;(2)Theρ∞-Bathe algorithm and the Kim algorithm have larger errors than the present method.

    Figure 28:Two-story shear building

    Figure 29:Displacement of the top story

    Figure 30:Velocity of the top story

    Figure 31:Acceleration of the top story

    5 Conclusions

    Based on the single-step Kim algorithm,this work proposed a two sub-step higher-order time integration algorithm with unconditional stability and controllable dissipation.A non-dissipative fourth-order accurate scheme is used in the first sub-step,and a third-order accurate scheme with controllable dissipation is used in the second-sub-step.

    As to the determination of the parameterγ,the ratio between the first-sub-step size and the entire step size,this work provided two approaches for achieving different goals.One approach maximizes low-frequency accuracy and the other can quickly damp out high-frequency mode effects.

    The numerical properties and simulations showed that the present two sub-step algorithm has accuracy,dissipation,and stability advantages over the Kim algorithm and theρ∞-Bathe algorithm.

    Funding Statement:This work was supported by the National Natural Science Foundation of China (Grant Numbers 11872090,11672019 and 11472035).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    精品一区二区三卡| 人妻 亚洲 视频| 99国产精品一区二区三区| 午夜老司机福利片| 啦啦啦 在线观看视频| 日韩一区二区三区影片| 最新美女视频免费是黄的| 国产精品成人在线| www.999成人在线观看| 欧美 日韩 精品 国产| 一级毛片女人18水好多| 中文字幕人妻熟女乱码| 成年人免费黄色播放视频| 国产高清视频在线播放一区| 欧美av亚洲av综合av国产av| 91九色精品人成在线观看| 亚洲熟女精品中文字幕| 日韩精品免费视频一区二区三区| 国产一区二区 视频在线| 久久精品91无色码中文字幕| 午夜福利一区二区在线看| 久热爱精品视频在线9| 亚洲欧洲精品一区二区精品久久久| 免费看十八禁软件| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡动漫免费视频| 最新在线观看一区二区三区| 国产91精品成人一区二区三区 | 成人国产一区最新在线观看| 热re99久久国产66热| 99久久国产精品久久久| 捣出白浆h1v1| 午夜精品国产一区二区电影| 日日摸夜夜添夜夜添小说| 久久天躁狠狠躁夜夜2o2o| 黑人巨大精品欧美一区二区蜜桃| 久久午夜综合久久蜜桃| 久久久国产成人免费| 一个人免费在线观看的高清视频| 动漫黄色视频在线观看| 国产亚洲午夜精品一区二区久久| 国产福利在线免费观看视频| av在线播放免费不卡| 精品少妇一区二区三区视频日本电影| 制服人妻中文乱码| 久久中文字幕一级| 久久久精品区二区三区| 免费久久久久久久精品成人欧美视频| 又大又爽又粗| 51午夜福利影视在线观看| av电影中文网址| 欧美日韩一级在线毛片| 久久av网站| 亚洲欧美精品综合一区二区三区| 色婷婷av一区二区三区视频| 男女之事视频高清在线观看| 午夜福利视频在线观看免费| 老司机在亚洲福利影院| 精品久久蜜臀av无| 中国美女看黄片| 日本黄色日本黄色录像| 精品少妇一区二区三区视频日本电影| 在线观看免费午夜福利视频| 欧美日韩亚洲综合一区二区三区_| 啦啦啦免费观看视频1| 成人精品一区二区免费| 国产av精品麻豆| 欧美午夜高清在线| 欧美日韩亚洲高清精品| 成人三级做爰电影| 免费观看人在逋| 精品国产一区二区三区四区第35| 黄网站色视频无遮挡免费观看| av又黄又爽大尺度在线免费看| 欧美日韩亚洲综合一区二区三区_| 蜜桃在线观看..| 亚洲自偷自拍图片 自拍| 青草久久国产| 精品免费久久久久久久清纯 | 777久久人妻少妇嫩草av网站| 丰满迷人的少妇在线观看| 超色免费av| 国产一区二区激情短视频| 天天躁夜夜躁狠狠躁躁| 免费一级毛片在线播放高清视频 | 精品国产亚洲在线| 大片免费播放器 马上看| 亚洲成国产人片在线观看| 人妻一区二区av| 97在线人人人人妻| av片东京热男人的天堂| 国产精品久久久久久人妻精品电影 | 老汉色∧v一级毛片| 热99国产精品久久久久久7| 法律面前人人平等表现在哪些方面| 操出白浆在线播放| 亚洲精品一二三| 少妇粗大呻吟视频| 亚洲色图av天堂| 国产精品一区二区在线不卡| 亚洲国产av新网站| 视频区欧美日本亚洲| 中文字幕人妻丝袜一区二区| 精品国产一区二区三区四区第35| 国产日韩欧美视频二区| 搡老乐熟女国产| 日本av免费视频播放| 欧美激情高清一区二区三区| 日韩欧美一区视频在线观看| 亚洲 国产 在线| av又黄又爽大尺度在线免费看| 亚洲一码二码三码区别大吗| 悠悠久久av| 一区二区三区乱码不卡18| 国产成人av教育| 91成年电影在线观看| 久久久久久免费高清国产稀缺| 我的亚洲天堂| bbb黄色大片| 免费观看av网站的网址| av有码第一页| 丝瓜视频免费看黄片| 一本大道久久a久久精品| 久久人人爽av亚洲精品天堂| av又黄又爽大尺度在线免费看| 久久人妻福利社区极品人妻图片| 99re6热这里在线精品视频| 久久久精品区二区三区| 啦啦啦在线免费观看视频4| 欧美精品av麻豆av| 成年人黄色毛片网站| cao死你这个sao货| 久久国产精品大桥未久av| 老熟妇仑乱视频hdxx| 一二三四在线观看免费中文在| 99久久精品国产亚洲精品| 成人手机av| 电影成人av| 黄频高清免费视频| 90打野战视频偷拍视频| 男女床上黄色一级片免费看| 国产主播在线观看一区二区| 一个人免费看片子| 大型黄色视频在线免费观看| 曰老女人黄片| 热re99久久国产66热| 50天的宝宝边吃奶边哭怎么回事| 久久精品91无色码中文字幕| 十八禁网站免费在线| 午夜两性在线视频| 精品第一国产精品| 国产熟女午夜一区二区三区| 又大又爽又粗| 亚洲av国产av综合av卡| 99在线人妻在线中文字幕 | 久久久精品免费免费高清| 老司机靠b影院| 又黄又粗又硬又大视频| 最近最新中文字幕大全电影3 | 国产高清激情床上av| 丰满饥渴人妻一区二区三| 久久午夜综合久久蜜桃| 首页视频小说图片口味搜索| 亚洲熟女精品中文字幕| 久久天堂一区二区三区四区| 久热这里只有精品99| 免费少妇av软件| 大型黄色视频在线免费观看| 国产精品久久久久久精品电影小说| 我要看黄色一级片免费的| 老司机福利观看| 成人国产av品久久久| 国产av国产精品国产| 国产精品成人在线| 成年人黄色毛片网站| 亚洲伊人久久精品综合| 人人妻人人爽人人添夜夜欢视频| 亚洲少妇的诱惑av| 欧美日韩av久久| 色视频在线一区二区三区| 色尼玛亚洲综合影院| 精品一区二区三区四区五区乱码| av网站免费在线观看视频| 久久天堂一区二区三区四区| 久久久久久久大尺度免费视频| 丰满少妇做爰视频| 无限看片的www在线观看| 精品少妇久久久久久888优播| 两个人看的免费小视频| 亚洲精品乱久久久久久| 亚洲国产精品一区二区三区在线| 国产伦人伦偷精品视频| 蜜桃在线观看..| 国产精品麻豆人妻色哟哟久久| 国产真人三级小视频在线观看| 国产精品久久久av美女十八| 妹子高潮喷水视频| 国产老妇伦熟女老妇高清| 欧美日韩精品网址| 免费日韩欧美在线观看| 成人永久免费在线观看视频 | 久久性视频一级片| 99在线人妻在线中文字幕 | 精品国产乱码久久久久久小说| 亚洲精品自拍成人| 久久久久久久精品吃奶| 岛国毛片在线播放| 99精国产麻豆久久婷婷| 亚洲精品一二三| av国产精品久久久久影院| 一本一本久久a久久精品综合妖精| 日本一区二区免费在线视频| 欧美人与性动交α欧美精品济南到| 亚洲av国产av综合av卡| 日本五十路高清| 国产无遮挡羞羞视频在线观看| 十八禁网站网址无遮挡| 国产区一区二久久| 亚洲精品国产一区二区精华液| 在线看a的网站| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人影院久久av| 国产在线视频一区二区| 成人国产一区最新在线观看| 三上悠亚av全集在线观看| 女人高潮潮喷娇喘18禁视频| 曰老女人黄片| 热re99久久国产66热| 国产aⅴ精品一区二区三区波| 最近最新免费中文字幕在线| 在线看a的网站| 久久精品国产亚洲av高清一级| 久久天躁狠狠躁夜夜2o2o| 天堂中文最新版在线下载| 他把我摸到了高潮在线观看 | 岛国在线观看网站| 麻豆乱淫一区二区| 久久久久久免费高清国产稀缺| 三上悠亚av全集在线观看| 亚洲国产欧美日韩在线播放| 亚洲少妇的诱惑av| 国产高清激情床上av| 国产午夜精品久久久久久| 亚洲国产看品久久| 人人妻人人爽人人添夜夜欢视频| 99精品欧美一区二区三区四区| 男女无遮挡免费网站观看| 亚洲av美国av| 曰老女人黄片| 一级a爱视频在线免费观看| 侵犯人妻中文字幕一二三四区| 12—13女人毛片做爰片一| 久久婷婷成人综合色麻豆| 成人国产一区最新在线观看| 精品高清国产在线一区| 嫁个100分男人电影在线观看| 亚洲黑人精品在线| 精品国产乱码久久久久久小说| 高清黄色对白视频在线免费看| 久久精品国产亚洲av香蕉五月 | svipshipincom国产片| 脱女人内裤的视频| 激情在线观看视频在线高清 | 精品人妻在线不人妻| 欧美激情极品国产一区二区三区| 久久久水蜜桃国产精品网| 日本a在线网址| 亚洲天堂av无毛| 大码成人一级视频| 美女扒开内裤让男人捅视频| 成人国产av品久久久| 人妻久久中文字幕网| xxxhd国产人妻xxx| 久久国产精品人妻蜜桃| 午夜91福利影院| 宅男免费午夜| 在线观看免费高清a一片| 欧美精品一区二区大全| 久久精品国产亚洲av高清一级| 欧美黑人欧美精品刺激| 成人亚洲精品一区在线观看| 大型av网站在线播放| 99香蕉大伊视频| 中亚洲国语对白在线视频| 一进一出抽搐动态| 久久久精品94久久精品| 一区二区三区国产精品乱码| 国产成+人综合+亚洲专区| 国产99久久九九免费精品| 成年人午夜在线观看视频| 飞空精品影院首页| 久久久国产欧美日韩av| 一区二区日韩欧美中文字幕| 国产精品一区二区精品视频观看| 大片电影免费在线观看免费| 大码成人一级视频| 99热网站在线观看| 黄片小视频在线播放| 美女高潮到喷水免费观看| 久久这里只有精品19| 国产亚洲av高清不卡| 男男h啪啪无遮挡| 9色porny在线观看| 91大片在线观看| 成人影院久久| 美女福利国产在线| 国产成+人综合+亚洲专区| av国产精品久久久久影院| 成人精品一区二区免费| 美女福利国产在线| 精品久久久精品久久久| 九色亚洲精品在线播放| 人人妻,人人澡人人爽秒播| 日韩视频在线欧美| 国产成人精品在线电影| 久久人妻福利社区极品人妻图片| 欧美激情高清一区二区三区| 一个人免费在线观看的高清视频| 电影成人av| 久久午夜亚洲精品久久| 亚洲免费av在线视频| 一级毛片精品| 欧美一级毛片孕妇| 亚洲欧洲日产国产| 黄片播放在线免费| 久久精品国产综合久久久| 国产精品免费视频内射| 亚洲欧美激情在线| 午夜91福利影院| 亚洲精品一卡2卡三卡4卡5卡| 老熟女久久久| 久久亚洲精品不卡| av有码第一页| 大香蕉久久成人网| 欧美精品一区二区免费开放| 夜夜骑夜夜射夜夜干| 精品久久久久久久毛片微露脸| 亚洲国产欧美日韩在线播放| 亚洲精品久久成人aⅴ小说| 欧美激情久久久久久爽电影 | 99riav亚洲国产免费| 大香蕉久久成人网| 久久久久精品国产欧美久久久| 9热在线视频观看99| 亚洲精品国产区一区二| 少妇粗大呻吟视频| 国产一卡二卡三卡精品| 少妇被粗大的猛进出69影院| 日韩视频一区二区在线观看| 欧美日韩一级在线毛片| 纵有疾风起免费观看全集完整版| 久久久久国内视频| 99精品久久久久人妻精品| 色尼玛亚洲综合影院| 久久国产亚洲av麻豆专区| 9热在线视频观看99| 在线观看人妻少妇| 国产免费av片在线观看野外av| 亚洲av电影在线进入| 亚洲成人国产一区在线观看| 亚洲av电影在线进入| 亚洲欧美一区二区三区黑人| 99香蕉大伊视频| 黄色丝袜av网址大全| 午夜免费鲁丝| 久久久久网色| 在线亚洲精品国产二区图片欧美| 午夜福利,免费看| 午夜福利,免费看| 久久精品国产亚洲av香蕉五月 | 成人免费观看视频高清| 精品少妇黑人巨大在线播放| 黄色视频不卡| 日韩欧美免费精品| 黄片小视频在线播放| 啦啦啦 在线观看视频| a在线观看视频网站| 99国产精品免费福利视频| 久久久欧美国产精品| 欧美在线一区亚洲| 亚洲天堂av无毛| 精品熟女少妇八av免费久了| 老司机午夜福利在线观看视频 | 久久久久国内视频| 亚洲国产精品一区二区三区在线| aaaaa片日本免费| 香蕉久久夜色| 丝袜美足系列| 欧美精品av麻豆av| 国产成人免费无遮挡视频| 五月天丁香电影| 99国产精品99久久久久| 天天躁夜夜躁狠狠躁躁| 涩涩av久久男人的天堂| 国产精品一区二区在线观看99| 久久久久国内视频| 国产日韩一区二区三区精品不卡| 免费在线观看日本一区| 悠悠久久av| 黄片小视频在线播放| 国产在线视频一区二区| 嫁个100分男人电影在线观看| 免费久久久久久久精品成人欧美视频| 啦啦啦在线免费观看视频4| 精品少妇一区二区三区视频日本电影| kizo精华| 天天操日日干夜夜撸| 亚洲人成伊人成综合网2020| 香蕉久久夜色| av天堂在线播放| 欧美精品高潮呻吟av久久| 欧美国产精品va在线观看不卡| www.自偷自拍.com| 视频区欧美日本亚洲| 久久香蕉激情| 一级毛片电影观看| av免费在线观看网站| av视频免费观看在线观看| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 国精品久久久久久国模美| 亚洲伊人久久精品综合| 久久午夜综合久久蜜桃| 一本大道久久a久久精品| 亚洲av成人一区二区三| 999久久久国产精品视频| 天天影视国产精品| 老鸭窝网址在线观看| 亚洲情色 制服丝袜| 一本色道久久久久久精品综合| 久久久久久久久免费视频了| 蜜桃国产av成人99| 女人久久www免费人成看片| 久久狼人影院| 欧美日韩成人在线一区二区| 亚洲欧洲日产国产| 亚洲色图综合在线观看| 亚洲伊人久久精品综合| 欧美性长视频在线观看| 亚洲av电影在线进入| 男女无遮挡免费网站观看| 国产av精品麻豆| 高清视频免费观看一区二区| 亚洲人成电影观看| 成人国产av品久久久| 精品国产乱码久久久久久男人| 国产色视频综合| 在线播放国产精品三级| 水蜜桃什么品种好| 成年版毛片免费区| av欧美777| 亚洲黑人精品在线| 日韩有码中文字幕| 我要看黄色一级片免费的| 波多野结衣av一区二区av| 免费女性裸体啪啪无遮挡网站| 日本wwww免费看| 曰老女人黄片| 免费黄频网站在线观看国产| 99国产综合亚洲精品| 91大片在线观看| 在线观看66精品国产| 一级a爱视频在线免费观看| 国产av国产精品国产| 久久人人爽av亚洲精品天堂| 日韩欧美国产一区二区入口| kizo精华| 久久av网站| 99国产精品一区二区蜜桃av | 在线观看免费高清a一片| 三上悠亚av全集在线观看| 国产成人精品在线电影| 高清在线国产一区| 韩国精品一区二区三区| 国产有黄有色有爽视频| 成年女人毛片免费观看观看9 | 亚洲精品中文字幕一二三四区 | 美女高潮喷水抽搐中文字幕| 中文欧美无线码| xxxhd国产人妻xxx| 亚洲 国产 在线| 精品久久久久久久毛片微露脸| 久久影院123| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情高清一区二区三区| 欧美精品一区二区大全| 国产精品电影一区二区三区 | 中文字幕人妻熟女乱码| 午夜福利视频精品| 无限看片的www在线观看| av视频免费观看在线观看| 久久午夜亚洲精品久久| 汤姆久久久久久久影院中文字幕| 日本vs欧美在线观看视频| 免费人妻精品一区二区三区视频| 婷婷丁香在线五月| 色播在线永久视频| 久久午夜综合久久蜜桃| 色综合欧美亚洲国产小说| 成人黄色视频免费在线看| 久久久精品94久久精品| 国产免费视频播放在线视频| 在线亚洲精品国产二区图片欧美| 中文字幕av电影在线播放| 欧美激情久久久久久爽电影 | 极品少妇高潮喷水抽搐| 在线观看www视频免费| 91精品三级在线观看| 日韩三级视频一区二区三区| 日韩人妻精品一区2区三区| 最近最新中文字幕大全电影3 | av福利片在线| av一本久久久久| 91老司机精品| 国产成人精品久久二区二区免费| 真人做人爱边吃奶动态| 精品国产乱子伦一区二区三区| 青青草视频在线视频观看| 欧美在线黄色| 免费看十八禁软件| 青草久久国产| 亚洲一码二码三码区别大吗| 黄色丝袜av网址大全| 97人妻天天添夜夜摸| 国产又爽黄色视频| 色94色欧美一区二区| 视频在线观看一区二区三区| 亚洲精品国产色婷婷电影| 岛国在线观看网站| 免费少妇av软件| 亚洲久久久国产精品| 一级片'在线观看视频| 麻豆国产av国片精品| 两性夫妻黄色片| 国产精品电影一区二区三区 | 又大又爽又粗| 精品少妇久久久久久888优播| 亚洲精品在线观看二区| 美女高潮喷水抽搐中文字幕| 国产成人一区二区三区免费视频网站| 热99re8久久精品国产| 亚洲第一欧美日韩一区二区三区 | 国产不卡av网站在线观看| 在线av久久热| 一本久久精品| 少妇被粗大的猛进出69影院| 中文字幕人妻熟女乱码| 青青草视频在线视频观看| 老熟妇乱子伦视频在线观看| 12—13女人毛片做爰片一| 91精品三级在线观看| 老司机午夜十八禁免费视频| 丝袜美足系列| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 国产成人精品久久二区二区免费| 欧美成人午夜精品| 一个人免费在线观看的高清视频| 一级,二级,三级黄色视频| 两性夫妻黄色片| 亚洲熟女毛片儿| 国产在线视频一区二区| 国产区一区二久久| 热re99久久精品国产66热6| 欧美日韩亚洲综合一区二区三区_| 久久热在线av| 午夜视频精品福利| 性色av乱码一区二区三区2| 成人18禁在线播放| 国产欧美日韩一区二区三区在线| 国产不卡一卡二| 国产av精品麻豆| 日本一区二区免费在线视频| 国产日韩欧美视频二区| www.自偷自拍.com| 久久久国产成人免费| 亚洲色图综合在线观看| 亚洲五月色婷婷综合| 亚洲av成人不卡在线观看播放网| 久久毛片免费看一区二区三区| 午夜福利在线观看吧| 可以免费在线观看a视频的电影网站| 夫妻午夜视频| 国产亚洲精品一区二区www | 午夜视频精品福利| 久久免费观看电影| 国产国语露脸激情在线看| 人人妻人人澡人人看| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 成人影院久久| 国产又爽黄色视频| 国产男女内射视频| 蜜桃在线观看..| 怎么达到女性高潮| 亚洲人成77777在线视频| 欧美精品啪啪一区二区三区| 亚洲av国产av综合av卡| 999精品在线视频| 国产成人欧美在线观看 | 窝窝影院91人妻| 久久精品aⅴ一区二区三区四区| 精品久久蜜臀av无| 美女午夜性视频免费| av网站在线播放免费| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 欧美在线黄色| 亚洲精品国产一区二区精华液| 欧美黑人精品巨大| 国产精品 欧美亚洲| 他把我摸到了高潮在线观看 | 国产在线观看jvid| 成人三级做爰电影| 精品人妻在线不人妻|