楊 陳,賈小平,胡定祥
(中車南京浦鎮(zhèn)車輛有限公司,江蘇 南京 210031)
當(dāng)輪軌接觸不良或者懸掛參數(shù)設(shè)計不合理時,轉(zhuǎn)向架在運(yùn)行中會出現(xiàn)一種循環(huán)往復(fù)的橫向運(yùn)動,這種現(xiàn)象被稱為蛇行運(yùn)動。蛇行運(yùn)動不僅會降低旅客乘坐的舒適度,還會加快車輪與鋼軌的磨損,惡化輪軌接觸狀態(tài),嚴(yán)重時甚至?xí)l(fā)列車脫軌事故[1],因此保證車輛具有良好的運(yùn)行穩(wěn)定性是車輛安全運(yùn)營的前提。抗蛇行減振器作為動車組車輛二系懸掛的重要元件之一,沿縱向安裝在車體與構(gòu)架之間,用于衰減和抑制構(gòu)架與車體之間的蛇行運(yùn)動。為了提升車輛的運(yùn)行穩(wěn)定性、改善車輛的運(yùn)行狀態(tài),許多學(xué)者針對抗蛇行減振器對臨界速度的影響開展了大量研究[2-3]。吳會超等[4]以CRH3型動車組為例,研究了不同型號的抗蛇行減振器對動車組一次、二次蛇行的抑制效果。曾京等[5]研究了抗蛇行減振器兩端橡膠接頭剛度對臨界速度的影響規(guī)律。侯建文等[6]研究了抗蛇行減振器橫向安裝位置對車輛動力學(xué)性能的影響。目前,關(guān)于抗蛇行減振器阻尼參數(shù)的研究主要基于線性特性,對于卸荷速度、卸荷力這些非線性特性的研究還沒有開展。本文建立了某型動車組的車輛動力學(xué)模型,分析了抗蛇行減振器等效剛度、卸荷速度、卸荷力對全運(yùn)行周期(不同車輛磨耗狀態(tài))車輛臨界速度的影響規(guī)律,并根據(jù)仿真結(jié)果提出抗蛇行減振器參數(shù)設(shè)計方案,使車輛在全運(yùn)行周期都具有足夠的穩(wěn)定性裕量。
首先建立輪對系統(tǒng)運(yùn)動微分方程:
(1)
式中:MW為輪對質(zhì)量;y為輪對橫移量;v為車輛運(yùn)行速度;f為蠕滑系數(shù);ψ為輪對搖頭角;JWZ為輪對搖頭慣性矩;b為輪對滾動圓橫向跨距的一半;λ為車輪踏面等效錐度;r0為車輪名義滾動圓半徑。該方程的建立基于以下假設(shè)條件:僅考慮輪對系統(tǒng)的搖頭和橫移自由度;車輪與鋼軌一直保持接觸狀態(tài),依據(jù)Kalker線性輪軌接觸理論[7],認(rèn)為輪軌間橫向、縱向蠕滑系數(shù)相等;輪對系統(tǒng)與構(gòu)架之間不設(shè)約束。則輪對系統(tǒng)運(yùn)動微分方程的特征方程式為
(2)
根據(jù)式(2)解得的特征根即可判定輪對系統(tǒng)的穩(wěn)定狀態(tài),若特征根為正實數(shù),則該系統(tǒng)的蛇行運(yùn)動是發(fā)散的,一直處于失穩(wěn)狀態(tài);若特征根為負(fù)實數(shù),則該系統(tǒng)的蛇行運(yùn)動是收斂的,會逐漸趨于穩(wěn)定狀態(tài);若特征根為純虛數(shù),則該系統(tǒng)將一直保持恒幅蛇行運(yùn)動。
在SIMPACK中計算車輛臨界速度的具體方法是:在時域中,讓車輛以一定速度通過有激勵的線路,然后讓車輛在光滑線路上運(yùn)行,通過觀察輪對橫移量是否收斂來判斷車輛的臨界速度。圖1為輪對橫移量隨車輛運(yùn)行速度變化的曲線示意圖,當(dāng)輪對橫移量隨車輛速度降低逐漸穩(wěn)定在0.1 mm時,此時車輛的運(yùn)行速度即為臨界速度。
圖1 車輛臨界速度判定標(biāo)準(zhǔn)
為了得到抗蛇行減振器參數(shù)對該型動車組車輛臨界速度的影響規(guī)律,依據(jù)其動力學(xué)參數(shù)建立該型車輛的多剛體動力學(xué)模型,如圖2所示。該模型包括1個車體、2個構(gòu)架、4個輪對、8個軸箱以及一系、二系懸掛元件[8]。車輛系統(tǒng)考慮了車體、構(gòu)架和輪對的縱向、橫向、垂向、側(cè)滾、點(diǎn)頭和搖頭6個方向的自由度,還有軸箱的點(diǎn)頭自由度,共計50個自由度。其中抗蛇行減振器阻尼具有非線性特性,即存在卸荷速度Vp和卸荷力Fp,阻尼特性曲線如圖3所示。當(dāng)抗蛇行減振器兩端節(jié)點(diǎn)的速度差小于卸荷速度時,抗蛇行減振器阻尼力保持線性特性;當(dāng)抗蛇行減振器兩端節(jié)點(diǎn)的速度差大于卸荷速度時,減振器內(nèi)卸荷閥開啟,總節(jié)流孔面積迅速增大,致使抗蛇行減振器阻尼力隨著速度的增大而緩慢增加。
圖2 動車組單節(jié)車輛動力學(xué)模型
圖3 抗蛇行減振器非線性阻尼特性
為了準(zhǔn)確地得到抗蛇行減振器剛度和阻尼參數(shù)對車輛臨界速度的影響,采用變化系數(shù)法來進(jìn)行工況仿真??股咝袦p振器的等效剛度設(shè)置為5,10,15,20,25,30 MN/m,卸荷速度設(shè)置為0.005,0.010,0.020,0.030,0.035,0.040 m/s,由于實際制造抗蛇行減振器時有飽和阻尼力的限制,因此卸荷力設(shè)置為7 200 N和9 000 N。本文還考慮全周期的車輪磨耗狀態(tài),分別計算新輪和磨耗輪(等效錐度0.5)兩種踏面工況下,抗蛇行減振器參數(shù)變化對車輛臨界速度的影響,如圖4,5所示。
圖4 抗蛇行減振器等效剛度對臨界速度的影響
圖5 抗蛇行減振器卸荷速度對臨界速度的影響
由圖 4、圖5可以看出,隨著抗蛇行減振器卸荷速度增加,新輪踏面工況下車輛的臨界速度總體呈現(xiàn)降低趨勢;磨耗輪踏面工況下車輛的臨界速度呈現(xiàn)出先增大后保持穩(wěn)定的趨勢。兩種踏面工況下,9 000 N卸荷力工況的臨界速度恒大于7 200 N卸荷力工況的臨界速度;隨著抗蛇行減振器卸荷速度增加,新輪踏面工況下車輛的臨界速度略微下降,磨耗輪踏面工況下車輛的臨界速度下降幅度較大。在卸荷速度為0.01 m/s時,兩種踏面工況所對應(yīng)的臨界速度均為最大,9 000 N卸荷力工況的臨界速度亦恒大于7 200 N卸荷力工況。結(jié)合上述分析,選取抗蛇行減振器的等效剛度為30 MN/m,卸荷速度為0.01 m/s,卸荷力為9 000 N。
為了驗證抗蛇行減振器參數(shù)選取的效果,對比選取不同參數(shù)時,車輪各踏面錐度工況下臨界速度的結(jié)果,如圖6所示??梢钥闯觯魈っ驽F度工況下車輛的臨界速度均得到提升,特別地,當(dāng)踏面錐度為0.5時,車輛運(yùn)行臨界速度較原參數(shù)工況提升96%。可見,選取的抗蛇行減振器參數(shù)顯著提升了車輛全運(yùn)行周期的運(yùn)行穩(wěn)定性,能夠保障車輛的行車安全。
圖6 臨界速度優(yōu)化前后對比
本文介紹了車輛系統(tǒng)穩(wěn)定性的判定方法,建立了某型動車組的車輛動力學(xué)模型,研究了抗蛇行減振器等效剛度和卸荷特性對車輛臨界速度的影響規(guī)律。研究結(jié)果表明,隨著抗蛇行減振器等效剛度增加,新輪工況的臨界速度呈下降趨勢,而磨耗輪的臨界速度呈先增大后保持穩(wěn)定的規(guī)律;隨著抗蛇行減振器卸荷速度增加,車輛臨界速度呈下降趨勢,且車輪磨耗程度大的臨界速度下降更明顯;隨著抗蛇行減振器卸荷力增加,車輛臨界速度也增加。根據(jù)仿真結(jié)果對抗蛇行減振器參數(shù)進(jìn)行選取后,車輛在全運(yùn)行周期(不同車輛磨耗狀態(tài))的臨界速度均得到提升。