• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DC Motor Speed Regulator via Active Damping Injection and Angular Acceleration Estimation Techniques

    2021-04-16 03:56:12SeokKyoonKimandChoonKiAhnSeniorMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2021年3期

    Seok-Kyoon Kim and Choon Ki Ahn, Senior Member, IEEE

    Abstract—This paper suggests a novel model-based nonlinear DC motor speed regulator without the use of a current sensor.The current dynamics, machine parameters and mismatched load variations are considered. The proposed controller is designed to include an active damping term that regulates the motor speed in accordance with the first-order low-pass filter dynamics through the pole-zero cancellation. Meanwhile, the angular acceleration and its reference are obtained from simple first-order estimators using only the speed information. The effectiveness is experimentally verified using hardware comprising the QUBEServo2, myRIO-1900, and LabVIEW.

    I. INTRODUCTION

    SERVO systems driven by a DC motor (DCM) have a wide range of industrial applications, such as in mobile robots and manufacturing machines. High transient performance and robustness are required to meet application specifications in the presence of practical constraints such as machine parameter and load variations. Fortunately, the servo system performance can be greatly improved by implementing a DCM controller with advanced identifiers (as in [1]-[7]),which updates the parameter estimates to make the control error variables vanish exponentially.

    Traditionally, the speed regulation task of industrial motors,including DC and AC types, has been accomplished by a proportional-integral (PI) controller with only speed error feedback, ignoring the transient current behavior; this provided easy implementation but limited performance. The cascade strategy has been suggested for a better performance,which comprises inner-loop current control with a high cut-off frequency and outer-loop speed control with a low cut-off frequency. PI controllers are often adopted for each loop with properly adjusted feedback gains via trial-and-error, Bode,and Nyquist techniques [8], [9]. A novel self-tuning PI controller that minimizes the cost function has been suggested to solve the feedback gain-tuning problem [10]. A nonlinear control technique has been applied to the inner loop with the motor parameter-dependent compensation term and feedback gain, rendering the closed-loop behavior in the form of the first-order low-pass filter (LPF) [11], [12]. Several advanced techniques such as integral back-stepping, neural networks,and feedback linearization, combined with parameter adaptation laws have been devised to attenuate disturbances from parameter and load variations [13]-[20]. A reduction in the number of sensors has been accomplished using the Luenberger observer and Kalman filtering techniques with motor parameter dependency [21]. The parameter dependence of estimators has been alleviated by designing an adaptive observer with a projection algorithm-based estimator for lumped parameters [15] and a sliding-mode observer with a flux estimator using the classical direct adaptive control technique [22].

    This study suggests an advanced speed control technique considering the current dynamics without current feedback,which widens the closed-loop cut-off frequency range without requiring an additional current sensor. This makes two contributions. First, the introduction of an active damping term and a DOB stabilizes the angular velocity and acceleration, which yields the first-order closed-loop transfer function via pole-zero cancellations. Second, the parameterindependent estimator is designed to make the angular acceleration available for feedback. The resultant control and estimators do not require the true value of DCM parameters.The closed-loop analysis results are also provided for an academic contribution through the Lyapunov stability criterion. Using the hardware setup of the QUBE-Servo2,myRIO-1900, and LabVIEW, the experimental study clearly shows a performance improvement compared with recent DOB-based (in [11]) and feedback-linearization (FL)controllers.

    II. PRELIMINARY

    A. DCM Dynamics

    The following second-order differential equations describe the DCM speed and current dynamics [23]:

    with the state variables denoted as ω(t) (speed) and ia(t)(stator current) and the control input given as va(t) (stator voltage). The electrical torque Te(t) and back EMF ea(t)couple the mechanical and electrical dynamics, which are given by Te(t)=kTia(t) and ea(t)=keω(t) with the coefficients kT>0 and ke>0. The load torque TL(t) acts as an unmatched external disturbance that can be abruptly changed in accordance with the load conditions. The remaining DCM coefficients are given as; J : rotor inertia, B : viscous damping, L : stator inductance, and R : stator resistance.

    B. Problem Formulation

    This assumption results in a control law simplification but there is a chance of limiting the closed-loop cut-off frequency for some applications. To solve this problem, the current dynamics (2) must be considered in the controller design task,which causes the increment of the closed-loop system order(leading to undesirable overshoots) and sensor for current feedback (requiring a parameter-dependent observer, such as the Luenberger type). This study handles these two challenges by incorporating the parameter-independent angular acceleration estimator and estimator-based active-damping injection causing the pole-zero cancellation.

    III. CONTROLLER DESIGN

    A. Angular Acceleration Estimator

    The proposed controller needs to feed back the angular acceleration of a(t):= ω˙(t) which can be obtained through the direct differentiation involved in high-frequency noisy component magnification. To avoid this operation, this section suggests the estimation algorithm for angular acceleration a(t)

    where the design parameter la>0 determines the disturbance convergence rate.

    Note that the proposed estimator (6) and (7) makes both the acceleration error feedback and active damping injection available online without DCM true parameter dependence,which corresponds to the advantage from the conventional Luenberger-type observer using the speed dynamics (1).Section III-C analyzes the exponential convergent behaviors of the estimation variable a ?(t).

    B. Control Law

    The additional differentiation (4) and substitution of (5)with (4) results in the angular acceleration dynamics

    with the gain lω>0. Fig.1 shows the control system structure.Note that, except for the design constants of la(the estimator),Bd, ωsc(the controller), and lω(the DOB), all other symbols are treated as variables in Section III-C.

    C. Analysis

    This section begins with the angular acceleration and its reference estimation behavior analysis in Theorem 1.

    Lemma 1: The proposed estimator (6) and (7) behaves according to the first-order LPF dynamics:

    Fig.3. Speed-tracking performance variations for various cut-off frequencies: fsc=0.08,0.1,0.3 Hz.

    Fig.4. Current behavior comparison in speed-tracking task.

    Fig.5. DOB behavior comparison in speed-tracking task.

    2) Regulation Task: This section presents the performance comparison results for the speed regulation task in the 1 000 rpm operation mode. For this, a pulse-type load torque of TL=0.001 Nm was abruptly applied and the three cut-off frequencies used in the previous experiment were assigned to the closed-loop system. A considerable speed recovery performance improvement can be observed in Fig.6 for several operating modes. Fig.7 shows the current responses with over/undershoot reduction by the proposed controller.

    B. Comparison With Cascade-Type FL Controller

    1) Tracking Task: This subsection presents another speedtracking performance comparison result with the FL controller in the same experimental scenario as Section IV-A. Fig.8 shows that the proposed controller without the current sensor still improved the closed-loop robustness compared with the cascade-type FL controller for several cut-off frequencies.Similar to the previous comparison, Fig.9 reveals the rapid current responses by the proposed controller with reduced over/undershoots.

    Fig.7. Current behavior comparison in speed regulation task for pulse-type load torque of T L=0.001 Nm.

    Fig.8. Speed-tracking performance comparison with cascade-type FL controller for several cut-off frequencies: fsc=0.08,0.1,0.3 Hz.

    Fig.9. Current behavior comparison with cascade-type FL controller in speed regulation task.

    Fig.10. Speed regulation performance variation comparison with cascadetype FL controller for pulse-type load torque of T L=0.001 Nm.

    2) Regulation Task: Fig.10 presents another speed regulation performance comparison result with the cascadetype FL controller. This shows the significant superiority of the proposed controller due to reduced over/undershoots with consistent closed-loop performance for different cut-off frequencies, compared with the FL controller. Similar to the previous comparison, Fig.11 displays rapid current responses by the proposed controller with reduced over/undershoots.

    Fig.11. Current behavior comparison with cascade-type FL controller in speed regulation task for pulse-type load torque of T L=0.001 Nm.

    V. CONCLUSION

    This paper has suggested a novel DOB-based speed control technique for industrial servomotor applications considering load and parameter uncertainties. The proposed estimators have been constructed to make the angular acceleration and its reference admissible for feedback. The controller has been devised with the active damping injection technique to stabilize the angular acceleration dynamics robustly by incorporating the resultant estimators and DOBs. The experimental study has verified the effectiveness of the proposed scheme in realistic scenarios. A future study will extend the proposed technique to large-scale motor systems with systematic control system-tuning guidelines.

    中亚洲国语对白在线视频| 久久精品91无色码中文字幕| 美女视频免费永久观看网站| av电影中文网址| 天堂中文最新版在线下载| 久久中文字幕人妻熟女| 国产精品二区激情视频| 欧美在线黄色| 婷婷精品国产亚洲av在线 | 两人在一起打扑克的视频| 亚洲欧美一区二区三区黑人| 在线永久观看黄色视频| 亚洲三区欧美一区| 久久香蕉精品热| 不卡av一区二区三区| 成人精品一区二区免费| 美女福利国产在线| 久久国产亚洲av麻豆专区| 一级片'在线观看视频| 国产欧美日韩一区二区精品| 香蕉国产在线看| 一级片免费观看大全| 女人久久www免费人成看片| 美女高潮喷水抽搐中文字幕| 日韩免费av在线播放| 亚洲专区国产一区二区| 法律面前人人平等表现在哪些方面| 18禁裸乳无遮挡动漫免费视频| 欧美一级毛片孕妇| 大陆偷拍与自拍| 夜夜夜夜夜久久久久| 日韩人妻精品一区2区三区| 99国产精品一区二区蜜桃av | 午夜福利乱码中文字幕| 国产野战对白在线观看| 午夜福利视频在线观看免费| 国产在线观看jvid| 好男人电影高清在线观看| 99国产极品粉嫩在线观看| 麻豆成人av在线观看| 国产亚洲一区二区精品| 欧美性长视频在线观看| 啦啦啦在线免费观看视频4| 两个人看的免费小视频| 久久人人爽av亚洲精品天堂| av一本久久久久| 亚洲精品乱久久久久久| 操美女的视频在线观看| 免费在线观看黄色视频的| 日本wwww免费看| 久久这里只有精品19| 亚洲人成电影免费在线| 亚洲av日韩在线播放| 建设人人有责人人尽责人人享有的| 好看av亚洲va欧美ⅴa在| 国产成人欧美在线观看 | 黄色视频不卡| 久久人人97超碰香蕉20202| 激情视频va一区二区三区| 欧美乱色亚洲激情| 亚洲av片天天在线观看| 亚洲国产欧美一区二区综合| 狠狠婷婷综合久久久久久88av| 捣出白浆h1v1| 久久久国产精品麻豆| 午夜福利免费观看在线| 国产亚洲精品久久久久5区| 亚洲欧美一区二区三区黑人| 中亚洲国语对白在线视频| 久久精品91无色码中文字幕| 夜夜爽天天搞| 这个男人来自地球电影免费观看| 久久天躁狠狠躁夜夜2o2o| 后天国语完整版免费观看| 国产欧美日韩一区二区精品| a级毛片在线看网站| 国产精品美女特级片免费视频播放器 | 国产精品亚洲av一区麻豆| 69精品国产乱码久久久| 电影成人av| 亚洲人成电影观看| 国产成人精品无人区| 亚洲aⅴ乱码一区二区在线播放 | 美女高潮喷水抽搐中文字幕| 国产不卡一卡二| 亚洲精品久久成人aⅴ小说| 日韩欧美一区视频在线观看| 久久亚洲精品不卡| 免费在线观看影片大全网站| 国产精品免费视频内射| 一边摸一边做爽爽视频免费| 女同久久另类99精品国产91| 免费在线观看视频国产中文字幕亚洲| 欧美性长视频在线观看| 久久久久国产精品人妻aⅴ院 | 亚洲成av片中文字幕在线观看| 人人妻人人爽人人添夜夜欢视频| 一a级毛片在线观看| 18禁国产床啪视频网站| 18禁国产床啪视频网站| 久久久水蜜桃国产精品网| 日韩欧美三级三区| 日韩制服丝袜自拍偷拍| 亚洲一区高清亚洲精品| 一区二区三区激情视频| 国产精品久久电影中文字幕 | 女人高潮潮喷娇喘18禁视频| 岛国在线观看网站| 久久香蕉精品热| av不卡在线播放| 757午夜福利合集在线观看| 国产精品98久久久久久宅男小说| 女人爽到高潮嗷嗷叫在线视频| 在线观看舔阴道视频| www日本在线高清视频| 国产精品一区二区精品视频观看| 久久久久国产精品人妻aⅴ院 | av视频免费观看在线观看| 久久狼人影院| 美女高潮喷水抽搐中文字幕| 国产成人精品在线电影| 国产男女超爽视频在线观看| 亚洲熟妇熟女久久| 久久久国产精品麻豆| 亚洲精品国产精品久久久不卡| www.999成人在线观看| 国产欧美日韩一区二区三| 黄色女人牲交| 99热只有精品国产| 国产蜜桃级精品一区二区三区 | 午夜精品在线福利| a在线观看视频网站| 狠狠狠狠99中文字幕| 叶爱在线成人免费视频播放| 大陆偷拍与自拍| 久久亚洲真实| 亚洲黑人精品在线| cao死你这个sao货| 老鸭窝网址在线观看| 亚洲七黄色美女视频| 香蕉丝袜av| 亚洲av第一区精品v没综合| 中文字幕另类日韩欧美亚洲嫩草| 精品国产一区二区三区久久久樱花| 香蕉丝袜av| 久久人妻熟女aⅴ| 满18在线观看网站| cao死你这个sao货| 啪啪无遮挡十八禁网站| 中亚洲国语对白在线视频| 久久性视频一级片| 久久性视频一级片| 美女 人体艺术 gogo| 国产精品成人在线| 国产主播在线观看一区二区| 国产又爽黄色视频| 国产不卡av网站在线观看| 天天影视国产精品| av天堂在线播放| videos熟女内射| 午夜精品国产一区二区电影| 男人舔女人的私密视频| avwww免费| 日本黄色日本黄色录像| 亚洲av电影在线进入| 99在线人妻在线中文字幕 | 一区二区三区激情视频| 又紧又爽又黄一区二区| 国产亚洲一区二区精品| 91字幕亚洲| 欧美精品高潮呻吟av久久| 99国产精品免费福利视频| 国产淫语在线视频| 在线天堂中文资源库| 性色av乱码一区二区三区2| 十八禁网站免费在线| 久久中文字幕人妻熟女| 久久中文字幕人妻熟女| 亚洲国产欧美一区二区综合| 国产黄色免费在线视频| 国产极品粉嫩免费观看在线| 国产97色在线日韩免费| 国内久久婷婷六月综合欲色啪| 午夜免费鲁丝| 不卡av一区二区三区| 高潮久久久久久久久久久不卡| 色播在线永久视频| 国产免费男女视频| 欧美亚洲日本最大视频资源| 亚洲欧美色中文字幕在线| 精品国产美女av久久久久小说| 亚洲熟妇熟女久久| 黑丝袜美女国产一区| 午夜亚洲福利在线播放| 女同久久另类99精品国产91| 精品久久久精品久久久| 激情在线观看视频在线高清 | 国产日韩欧美亚洲二区| tube8黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利,免费看| 国产一区二区三区综合在线观看| 日本黄色日本黄色录像| 母亲3免费完整高清在线观看| 国产又爽黄色视频| 欧美老熟妇乱子伦牲交| 午夜福利,免费看| 亚洲av成人av| 国产亚洲精品第一综合不卡| 纯流量卡能插随身wifi吗| 国产成人欧美| 欧美av亚洲av综合av国产av| 巨乳人妻的诱惑在线观看| 久久中文看片网| 亚洲熟妇熟女久久| 人人妻人人澡人人爽人人夜夜| 免费观看人在逋| 男女免费视频国产| av不卡在线播放| 一级a爱视频在线免费观看| 亚洲欧美激情在线| 成人特级黄色片久久久久久久| 午夜免费成人在线视频| 一级a爱片免费观看的视频| avwww免费| 欧美在线黄色| 91成人精品电影| 午夜免费观看网址| 久久精品国产亚洲av高清一级| 成人亚洲精品一区在线观看| 性色av乱码一区二区三区2| 一边摸一边抽搐一进一小说 | 99热网站在线观看| 男人操女人黄网站| 波多野结衣一区麻豆| 日韩视频一区二区在线观看| 亚洲av日韩在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品永久免费网站| www.精华液| 老司机深夜福利视频在线观看| 纯流量卡能插随身wifi吗| 久热这里只有精品99| 中文字幕另类日韩欧美亚洲嫩草| 男人操女人黄网站| 成人18禁高潮啪啪吃奶动态图| 欧美日韩国产mv在线观看视频| 真人做人爱边吃奶动态| 成人影院久久| 欧美黑人精品巨大| 日韩视频一区二区在线观看| 麻豆av在线久日| 成人三级做爰电影| 国产精品永久免费网站| 精品久久久久久久久久免费视频 | 欧美日韩视频精品一区| 日韩人妻精品一区2区三区| 精品熟女少妇八av免费久了| 免费在线观看亚洲国产| 精品少妇久久久久久888优播| 成年人午夜在线观看视频| 好男人电影高清在线观看| 欧美老熟妇乱子伦牲交| 国产亚洲精品久久久久5区| 国产熟女午夜一区二区三区| 免费久久久久久久精品成人欧美视频| 精品久久久久久久久久免费视频 | 成人永久免费在线观看视频| 人妻丰满熟妇av一区二区三区 | 久久人妻av系列| 99香蕉大伊视频| 极品人妻少妇av视频| 久久 成人 亚洲| 亚洲中文字幕日韩| 国产精品久久久人人做人人爽| 精品国产一区二区三区久久久樱花| 日本wwww免费看| 国产精品一区二区在线不卡| 久久久久国产精品人妻aⅴ院 | www.精华液| 热99国产精品久久久久久7| 一进一出抽搐gif免费好疼 | 搡老熟女国产l中国老女人| 亚洲性夜色夜夜综合| 99香蕉大伊视频| 9色porny在线观看| 亚洲五月色婷婷综合| 啦啦啦免费观看视频1| 香蕉丝袜av| 久久精品亚洲av国产电影网| av在线播放免费不卡| 久久国产精品大桥未久av| 国产熟女午夜一区二区三区| 一级毛片精品| 999久久久精品免费观看国产| 日韩欧美一区视频在线观看| 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 久久久久国产精品人妻aⅴ院 | 国产亚洲欧美在线一区二区| 一级作爱视频免费观看| 91精品国产国语对白视频| 91成人精品电影| 亚洲精品中文字幕一二三四区| 国产单亲对白刺激| 老熟妇乱子伦视频在线观看| 久热这里只有精品99| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产区一区二| 女性生殖器流出的白浆| 中出人妻视频一区二区| 成年人午夜在线观看视频| 少妇被粗大的猛进出69影院| 亚洲av熟女| www.熟女人妻精品国产| 97人妻天天添夜夜摸| 欧美黄色片欧美黄色片| 久久九九热精品免费| 国产成人免费无遮挡视频| 精品人妻1区二区| 日韩欧美免费精品| 99久久国产精品久久久| videos熟女内射| 99精国产麻豆久久婷婷| 操出白浆在线播放| 精品国内亚洲2022精品成人 | 天天躁夜夜躁狠狠躁躁| av欧美777| 久久香蕉国产精品| 欧美人与性动交α欧美精品济南到| 最近最新中文字幕大全电影3 | 久久精品国产亚洲av香蕉五月 | 日本a在线网址| 亚洲国产中文字幕在线视频| 97人妻天天添夜夜摸| 女人高潮潮喷娇喘18禁视频| 人妻 亚洲 视频| 国产亚洲欧美在线一区二区| 一夜夜www| 99久久精品国产亚洲精品| 久久精品国产综合久久久| 日韩欧美国产一区二区入口| 日韩视频一区二区在线观看| 国产一区二区三区综合在线观看| 交换朋友夫妻互换小说| 国产亚洲欧美98| 韩国av一区二区三区四区| 亚洲美女黄片视频| 国产蜜桃级精品一区二区三区 | 在线观看免费日韩欧美大片| 亚洲综合色网址| 老熟妇乱子伦视频在线观看| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91| 亚洲成国产人片在线观看| 人人妻人人澡人人爽人人夜夜| 精品无人区乱码1区二区| 国产成人av激情在线播放| 激情在线观看视频在线高清 | 亚洲av成人av| 欧美日韩一级在线毛片| 亚洲色图综合在线观看| 成年版毛片免费区| 十八禁高潮呻吟视频| 一夜夜www| 国产亚洲欧美精品永久| 亚洲专区字幕在线| 亚洲少妇的诱惑av| 久久人妻福利社区极品人妻图片| 免费在线观看黄色视频的| 亚洲av片天天在线观看| 日韩成人在线观看一区二区三区| 亚洲七黄色美女视频| 亚洲第一青青草原| 国产成人欧美| 黄色视频不卡| 国产欧美日韩一区二区精品| 亚洲一码二码三码区别大吗| 99久久综合精品五月天人人| 岛国在线观看网站| 久久国产精品男人的天堂亚洲| 久久久久久久久久久久大奶| 欧美久久黑人一区二区| 美女福利国产在线| 日日爽夜夜爽网站| 日韩欧美国产一区二区入口| 精品国产乱码久久久久久男人| 日本vs欧美在线观看视频| 亚洲一区二区三区不卡视频| 亚洲片人在线观看| 亚洲精品粉嫩美女一区| 久久久国产成人免费| 国产成人免费无遮挡视频| 午夜影院日韩av| 天天添夜夜摸| 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 久久ye,这里只有精品| 黄网站色视频无遮挡免费观看| 成人免费观看视频高清| 国产极品粉嫩免费观看在线| 男人的好看免费观看在线视频 | 免费看十八禁软件| av网站在线播放免费| 亚洲一区高清亚洲精品| 精品福利观看| 国产不卡av网站在线观看| 99香蕉大伊视频| 国产亚洲av高清不卡| 亚洲人成77777在线视频| 9191精品国产免费久久| 岛国毛片在线播放| av线在线观看网站| 老汉色av国产亚洲站长工具| 如日韩欧美国产精品一区二区三区| 久久 成人 亚洲| 国产一区有黄有色的免费视频| 交换朋友夫妻互换小说| 一级片'在线观看视频| 中文字幕精品免费在线观看视频| 80岁老熟妇乱子伦牲交| 久久性视频一级片| 看免费av毛片| 人人妻,人人澡人人爽秒播| 久久国产精品大桥未久av| 午夜久久久在线观看| 成人特级黄色片久久久久久久| 欧美在线黄色| 男女下面插进去视频免费观看| 久久久久视频综合| 亚洲va日本ⅴa欧美va伊人久久| 国产淫语在线视频| a级毛片在线看网站| 我的亚洲天堂| 伊人久久大香线蕉亚洲五| 免费女性裸体啪啪无遮挡网站| 黑人猛操日本美女一级片| 激情视频va一区二区三区| 69av精品久久久久久| 女人爽到高潮嗷嗷叫在线视频| 国产精品二区激情视频| 欧美成人免费av一区二区三区 | 国产乱人伦免费视频| 亚洲一区二区三区不卡视频| 女同久久另类99精品国产91| av有码第一页| av国产精品久久久久影院| 丰满的人妻完整版| 十分钟在线观看高清视频www| 亚洲av片天天在线观看| 欧美激情 高清一区二区三区| svipshipincom国产片| 精品亚洲成a人片在线观看| 亚洲人成电影观看| 麻豆成人av在线观看| 少妇裸体淫交视频免费看高清 | 国产又爽黄色视频| 性少妇av在线| 国产无遮挡羞羞视频在线观看| 黄频高清免费视频| 亚洲av片天天在线观看| 91成年电影在线观看| xxxhd国产人妻xxx| 精品国产美女av久久久久小说| 嫁个100分男人电影在线观看| 久久久久久久午夜电影 | 国产免费av片在线观看野外av| 亚洲第一欧美日韩一区二区三区| 久久久久久免费高清国产稀缺| 国产精品偷伦视频观看了| 婷婷成人精品国产| 午夜精品久久久久久毛片777| 精品久久久精品久久久| 久久久久国产精品人妻aⅴ院 | 老汉色av国产亚洲站长工具| 久久久久国内视频| 欧美在线黄色| 在线观看日韩欧美| 精品少妇一区二区三区视频日本电影| 久久久久国内视频| 欧美激情久久久久久爽电影 | 怎么达到女性高潮| 可以免费在线观看a视频的电影网站| 天堂中文最新版在线下载| 男人的好看免费观看在线视频 | 99久久综合精品五月天人人| 国产精品1区2区在线观看. | 亚洲欧洲精品一区二区精品久久久| 婷婷精品国产亚洲av在线 | 在线十欧美十亚洲十日本专区| 露出奶头的视频| 91九色精品人成在线观看| 一二三四社区在线视频社区8| 精品国产一区二区久久| 黄色 视频免费看| 中文字幕人妻丝袜制服| 亚洲中文日韩欧美视频| 啦啦啦 在线观看视频| 亚洲国产欧美一区二区综合| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久午夜电影 | 亚洲欧美一区二区三区黑人| 中文字幕av电影在线播放| 中文字幕人妻丝袜一区二区| 国产精品欧美亚洲77777| 日韩精品免费视频一区二区三区| 欧美人与性动交α欧美精品济南到| 岛国在线观看网站| 国产伦人伦偷精品视频| 国产成人精品久久二区二区免费| 国产xxxxx性猛交| e午夜精品久久久久久久| 在线观看舔阴道视频| 亚洲国产毛片av蜜桃av| 精品乱码久久久久久99久播| 99精品久久久久人妻精品| 飞空精品影院首页| 亚洲一码二码三码区别大吗| 无限看片的www在线观看| 黄频高清免费视频| 女性被躁到高潮视频| 久久国产精品大桥未久av| 国产成人免费无遮挡视频| 嫩草影视91久久| 国产蜜桃级精品一区二区三区 | 老司机深夜福利视频在线观看| 91精品三级在线观看| 人人妻人人添人人爽欧美一区卜| 天堂√8在线中文| 久久精品国产99精品国产亚洲性色 | 飞空精品影院首页| 69av精品久久久久久| 757午夜福利合集在线观看| 欧美黄色片欧美黄色片| 两个人看的免费小视频| 亚洲精品一二三| 午夜久久久在线观看| 午夜福利一区二区在线看| svipshipincom国产片| 一级a爱片免费观看的视频| 精品久久久久久电影网| 国产男靠女视频免费网站| 精品久久久久久电影网| 国产精品综合久久久久久久免费 | 国产精品99久久99久久久不卡| 久久精品成人免费网站| 岛国在线观看网站| 久久精品91无色码中文字幕| 美女国产高潮福利片在线看| 91av网站免费观看| 亚洲一区中文字幕在线| 久久精品91无色码中文字幕| 国产无遮挡羞羞视频在线观看| 嫩草影视91久久| 亚洲人成77777在线视频| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 日日摸夜夜添夜夜添小说| 国产成人系列免费观看| 日韩欧美三级三区| 丰满迷人的少妇在线观看| 欧美日本中文国产一区发布| 久久人妻av系列| 十八禁网站免费在线| 免费观看精品视频网站| 国产一区二区三区综合在线观看| 亚洲精品av麻豆狂野| 国产av精品麻豆| 午夜日韩欧美国产| 久久中文字幕一级| 老司机深夜福利视频在线观看| 男女免费视频国产| 亚洲欧美精品综合一区二区三区| 在线观看午夜福利视频| 国产精品1区2区在线观看. | 别揉我奶头~嗯~啊~动态视频| 国产无遮挡羞羞视频在线观看| 别揉我奶头~嗯~啊~动态视频| 久久久久久久国产电影| 欧美日韩视频精品一区| 成人av一区二区三区在线看| 午夜老司机福利片| 日韩中文字幕欧美一区二区| 欧美精品一区二区免费开放| 成人特级黄色片久久久久久久| 精品熟女少妇八av免费久了| 老熟女久久久| 777米奇影视久久| 91麻豆精品激情在线观看国产 | 国产高清国产精品国产三级| 日韩欧美一区二区三区在线观看 | 老汉色∧v一级毛片| 桃红色精品国产亚洲av| 国产视频一区二区在线看| 欧美人与性动交α欧美精品济南到| 午夜免费成人在线视频| 大码成人一级视频| 午夜免费观看网址| 欧美最黄视频在线播放免费 | 天天躁狠狠躁夜夜躁狠狠躁| 大片电影免费在线观看免费| 久久精品国产清高在天天线| 久久ye,这里只有精品| 中文字幕人妻丝袜一区二区| 色综合婷婷激情| 国内毛片毛片毛片毛片毛片| 午夜激情av网站| 欧美精品一区二区免费开放| 天天躁夜夜躁狠狠躁躁| 亚洲综合色网址| 国产91精品成人一区二区三区| 中文字幕高清在线视频| 午夜福利免费观看在线| 手机成人av网站|