• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed Cooperative Control of Battery Energy Storage Systems in DC Microgrids

    2021-04-16 03:56:12TingyangMengZongliLinFellowIEEEandYacovShamashFellowIEEE
    IEEE/CAA Journal of Automatica Sinica 2021年3期

    Tingyang Meng, Zongli Lin, Fellow, IEEE, and Yacov A. Shamash, Fellow, IEEE

    Abstract—The control of battery energy storage systems(BESSs) plays an important role in the management of microgrids. In this paper, the problem of balancing the state-ofcharge (SoC) of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators. Two types of estimators are proposed. One achieves asymptotic estimation and the other achieves finite time estimation. We show that, under the proposed control laws, SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power. A simulation example is shown to verify the theoretical results.

    I. INTRODUCTION

    ENERGY storage systems are essential components in microgrids [1]. They not only ensure the power quality and reliability but also reduce energy loss in microgrids.Among various energy storage technologies, battery energy storage systems (BESSs) have emerged as an appealing technology due to their versatility, rapid response, high energy density, and efficiency [2]. By absorbing power from the grid during off-peak time and supplying power to the grid in peak time, BESSs enable the grid to have the ability of peakshaving/shifting, power quality enhancement, and congestion relief [3]. As a result, BESSs of various types are increasingly being integrated into modern energy systems [4], [5]. Despite the technological advancements in electrochemistry, management/control of BESSs remains a challenging problem [6].

    In general, a BESS may be composed of multiple battery units. Each unit monitors its own state and controls its own charging/discharging power while communicating with nearby units. The fundamental control objective of a BESS is to satisfy the charging/discharging power desired by the grid while balancing the state-of-charge (SoC) of all its units. Due to variations in their manufacturing process and in their operating conditions, battery units may exhibit different characteristics even if they have the same nominal specifications. As a result, the SoC of all battery units may diverge with the same charging/discharging power. The divergence of their SoC can eventually lead to overcharge/overdischarge of the units, which significantly reduces not only the efficiency of the system but also the lifetime of battery units, and may even cause dangerous situations.Therefore, the design of coordinated control of charging/discharging power for the units in a BESS with SoC balancing has been an active research problem (see, e.g., [7]-[11]).

    The control scheme of a BESS consisting of networked battery units can be either centralized or distributed. A centralized controller monitors all battery unit’s SoC and other critical states, and coordinates the charging/discharging power of each individual unit by external balancing circuits [12].Such centralized control schemes for large-scale systems are costly to implement and can introduce single-point failures. In addition, the balancing circuits may introduce circulating currents that cause energy loss. Distributed control schemes,on the other hand, provide advantages such as robustness and reconfigurability. Models such as multi-agent systems match the networked structure of battery units in BESSs. Thus, the control problem of a BESS can be reformulated in the framework of multi-agent systems (see, e.g., [13]-[19]), in which the battery units are regarded as a group of locally interacting agents. Distributed controllers and estimators can be designed by using local information and communication among neighbors so that the desired power is satisfied while SoC balancing of all units is achieved.

    In particular, in [7], a distributed control scheme for package-level SoC balancing of BESSs is proposed, in which the local power reference for each battery package is generated by an average desired power estimator and an energy coordinator. In [8], a sliding mode control based SoC balancing strategy among multiple BESSs, with each BESS as a battery unit, is proposed under which fast SoC balancing is achieved and circulating currents are prevented. In [9], a distributed two-level controller is proposed, in which the upper-level provides power reference based on SoC and the lower-level controls BESSs to track the power reference. In[10], with the desired total charging/discharging power known to each BESS in a group of networked BESSs, each representing a battery unit, the charging/discharging power of each BESS is assigned based on the average of the states of the BESSs that contain both intrinsic properties as well as the SoC of the BESSs. Event-triggered design is adopted to reduce unnecessary communication loads. Simulation results demonstrate that, in the event that the average of the states of the BESSs is not accessible to all individual BESSs and needs to be estimated by distributed average state estimators, the controllers are able to achieve the control objective approximately despite of the estimation errors.

    In this paper, we design distributed controllers for a BESS consisting of multiple networked heterogeneous battery units.A novel control framework based on distributed estimators is proposed that only requires the, possibly time-varying, desired charging/discharging power to be known by at least one of the battery units. The SoC of all battery units is balanced through the charging/discharging process by allocating the desired total charging/discharging power of the entire BESS among its units. A distributed allocating/control algorithm is designed for each battery unit based on the distributed estimators built for the battery unit that estimate the average desired charging/discharging power and the average unit state. These estimators are referred to as the average desired power estimators and the average unit state estimators, respectively.Compared to the existing results in [10], we provide explicit analysis of the effects of estimation errors on control accuracy. We show that, by setting the design parameters properly, the desired charging/discharging power can be satisfied and SoC balancing can be achieved by any prespecified accuracy. In addition, we propose alternative finitetime estimators that can achieve perfect power supply and SoC balancing.

    The remainder of the paper is organized as follows. Section II reviews graph theory that is used to describe the communication network. Section III formulates the control problem of a networked BESS, including desired charging/discharging power tracking and SoC balancing. Section IV recalls charging/discharging power allocating algorithms by using the desired charging/discharging power and the average unit state.Section V presents distributed charging/discharging power controllers based on asymptotic average power estimators and average unit state estimators. Section VI presents charging/discharging power controllers based on finite-time average power estimators and finite-time average unit state estimators.Section VII provides simulation results to verify and compare the theoretical conclusions. Section VIII concludes the paper.

    II. GRAPH THEORY

    III. PROBLEM STATEMENT

    In this paper we consider a BESS consisting of N networked battery units. Each battery unit, with its own distributed controller, is able to communicate with nearby battery units and exchange critical states such as their SoC so that the overall control objective of the networked system can be achieved.

    We make the following assumption on the communication topology among the battery units in the BESS.

    Assumption 1: The graph associated with the communication topology is undirected and connected.

    Under Assumption 1, the graph Laplacian L is symmetric with eigenvalues 0=λ1<λ2≤λ3≤···≤λN. In addition, 1Nis the eigenvector associated with λ1=0 [13].

    The following well known Coulomb counting method is used to model the SoC dynamics of each battery unit,

    where si(t) is the SoC at t ≥0 , si(0) is the initial SoC value, Ciis the capacity, and ii(t) is the output current. The output current ii>0 indicates discharging and ii<0 indicates charging. By taking the time derivative of both sides of (1),the SoC dynamics of each battery unit is given as

    The output power pi(t) of each battery unit is calculated as

    where vi(t) is the output voltage. The output power pi>0 indicates discharging and pi<0 indicates charging. It is noted that most direct current to direct current (DC-DC)bidirectional converters commonly used in BESSs have a constant output voltage [20]. Thus, in this paper we assume that the output voltage of each battery unit remains constant during its operation, i.e.,

    Since the state of the BESS will remain unchanged with zero charging/discharging power demand, we will, without loss of generality, make the following assumption on the desired total power.

    Assumption 2: The desired total charging/discharging power p*(t) of the BESS satisfies

    for some positive constants p, pˉ and ψ.

    The control objective of the BESS is stated as follows.

    Problem 1: Consider a BESS consisting of N networked battery units with SoC dynamics (2) and output power equation (3). Let the communication topology satisfy Assumption 1. Let the desired total power satisfy Assumption 2.Design distributed charging/discharging power controllers for the battery units so that

    1) all units achieve SoC balancing with any pre-specified accuracy εs≥0 in steady state, i.e.,

    2) the total charging/discharging power of the BESS tracks the desired power with any pre-specified acuracy εp≥0, i.e.,

    IV. POWER CONTROL BASED ON THE AVERAGE UNIT STATE

    In this section, we first recall the SoC variation rules for the battery units based on their SoC, then recall power allocating laws based on the average state of all units [10].

    Consider the SoC dynamics (2) and output power equation(3) for each BESS (battery unit). The relationship between the SoC si(t) and the output power pi(t) of the i-th battery unit is written as

    It is noted that, by properly distributing the desired total output power p*(t) among individual battery units based on their SoC, capacity and voltage, the SoC balancing can be achieved during the charging/discharging process.

    In [10], the authors proposed the following rules to regulate the SoC variation during the charging/discharging process:

    1) In discharging mode

    2) In charging mode

    where kd(t) and kc(t) are some functions lower bounded by a positive number and satisfying the power demand. In other words, during the discharging process, a battery unit with higher SoC discharges at a higher rate while a unit with lower SoC discharges at a lower rate. The similar principle holds for the charging process.

    Lemma 1 [10]: Consider a BESS consisting of N networked battery units with SoC dynamics described by (2). Under discharging/charging rules (5) and (6), the SoC of all battery units will converge to the same value asymptotically.

    Next, we recall power control laws that specify the charging/discharging power of individual battery units [10].

    For each battery unit i, i =1,2,...,N, define the state

    for the discharging mode, and

    for the charging mode. The overall state of the battery unit i is denoted as

    In view of (4), we have

    for the discharging mode, and

    for the charging mode.

    Since

    for the discharging mode, and

    for the charging mode, the charging/discharging power of all battery units must satisfy

    for the discharging mode, and

    for the charging mode.

    Design the charging/discharging power of each battery unit as

    for the discharging mode, and

    for the charging mode.

    Then, it is straightforward to verify that both the SoC balancing and the desired total power is satisfied. Denote the average unit state as

    for the discharging mode, and

    for the charging mode. Denote the average desired power as

    Then, (7) and (8) can be written as

    Assumption 3: There exist constants a1, a2>0 such that

    The discharging power of each battery unit i in steady state is written as

    Then, in steady state, we have

    Define

    Then, in steady state, we have

    δ-≤δi(t)≤δ+.

    In addition, the bound can be made arbitrarily tight by choosing the parameters β and κ sufficiently large.

    Define

    Then, (12) can be rewritten in terms of k (t) and δi(t) as

    pi=k(1+δi)?pa,i.

    Fig.2. The evolution of SoC of all battery units under controllers (21) and estimators (22)-(24) with α =1000 , β =2 and κ =20.

    Fig.3. The total output power of all battery units and the desired power under controllers (21) and estimators (22)-(24) with α=1000 , β=2 and κ=20.

    Fig.4. The estimated value by all battery units and the true value of xa under estimators (22) and (23) with α =1000 and β =2.

    Fig.5. The estimated value by all battery units and the true value of pa under estimators (24) with κ =20.

    Fig.6. The evolution of SoC of all battery units under controllers (21) and estimators (22)-(24) with α =1000, β =0.3 and κ =3.

    Fig.7. The total output power of all battery units and the desired power under controllers (21) and estimators (22)-(24) with α=1000 , β=0.3 and κ=3.

    VIII. CONCLUSIONS

    In this paper, we consider a BESS consisting of networked battery units and present a distributed control design based on distributed average unit state estimators and distributed average desired power estimators. We show that, by choosing the design parameters properly, the proposed two types of distributed estimators can estimate the average signals with

    日韩大片免费观看网站| av在线老鸭窝| 欧美老熟妇乱子伦牲交| 日韩人妻精品一区2区三区| 亚洲综合色惰| 一级毛片我不卡| 如何舔出高潮| 99re6热这里在线精品视频| 男女边摸边吃奶| av免费在线看不卡| 又黄又粗又硬又大视频| 亚洲第一av免费看| 永久免费av网站大全| 色吧在线观看| 美国免费a级毛片| 亚洲欧美中文字幕日韩二区| 国产乱来视频区| 国产 精品1| 亚洲五月色婷婷综合| 五月天丁香电影| 亚洲欧美日韩另类电影网站| 亚洲av综合色区一区| 香蕉精品网在线| 老熟女久久久| 一级爰片在线观看| 午夜福利一区二区在线看| 免费在线观看完整版高清| 成人亚洲精品一区在线观看| 精品国产乱码久久久久久男人| 边亲边吃奶的免费视频| 国产精品国产三级专区第一集| av片东京热男人的天堂| 2021少妇久久久久久久久久久| 高清在线视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 精品一区二区免费观看| 日本欧美国产在线视频| 80岁老熟妇乱子伦牲交| 91国产中文字幕| 中文字幕最新亚洲高清| 免费看av在线观看网站| 99国产精品免费福利视频| av在线观看视频网站免费| 欧美日韩亚洲国产一区二区在线观看 | 9热在线视频观看99| 一个人免费看片子| av网站免费在线观看视频| 啦啦啦在线观看免费高清www| 国产精品久久久久成人av| 91成人精品电影| 国产有黄有色有爽视频| 日韩中文字幕视频在线看片| a 毛片基地| 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 亚洲国产欧美在线一区| 一二三四在线观看免费中文在| 成年动漫av网址| 男女下面插进去视频免费观看| 欧美日韩亚洲国产一区二区在线观看 | a级毛片在线看网站| 97在线视频观看| 国产精品免费视频内射| 亚洲国产精品999| 亚洲人成电影观看| 天堂8中文在线网| 久久久久久免费高清国产稀缺| 亚洲第一青青草原| 精品国产乱码久久久久久小说| 日本av手机在线免费观看| 蜜桃国产av成人99| 久久精品人人爽人人爽视色| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区 | 日本vs欧美在线观看视频| 丰满少妇做爰视频| 久热这里只有精品99| 久久久亚洲精品成人影院| 欧美精品av麻豆av| 久久久久久人人人人人| 日本免费在线观看一区| av网站在线播放免费| a级毛片黄视频| 久久精品熟女亚洲av麻豆精品| 人成视频在线观看免费观看| 综合色丁香网| www.自偷自拍.com| 你懂的网址亚洲精品在线观看| xxx大片免费视频| 色婷婷久久久亚洲欧美| 熟女av电影| 成人手机av| 天美传媒精品一区二区| 日日啪夜夜爽| 麻豆av在线久日| 久久ye,这里只有精品| 麻豆精品久久久久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 免费在线观看黄色视频的| 一二三四中文在线观看免费高清| 日本91视频免费播放| 成人毛片60女人毛片免费| 丰满乱子伦码专区| 久久久久久人人人人人| 久久99一区二区三区| 有码 亚洲区| 一二三四在线观看免费中文在| 18禁国产床啪视频网站| 亚洲美女视频黄频| 性色avwww在线观看| 巨乳人妻的诱惑在线观看| 中文天堂在线官网| av在线播放精品| 亚洲精品一区蜜桃| 天堂中文最新版在线下载| 午夜激情久久久久久久| 国产精品国产三级国产专区5o| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看| 亚洲国产色片| 91精品三级在线观看| 日韩中字成人| 人妻少妇偷人精品九色| 国产欧美亚洲国产| 久久久久视频综合| 人妻少妇偷人精品九色| 亚洲中文av在线| 少妇人妻久久综合中文| 精品少妇一区二区三区视频日本电影 | 欧美在线黄色| 亚洲精品日韩在线中文字幕| 美女福利国产在线| 日韩欧美一区视频在线观看| 最新中文字幕久久久久| 亚洲四区av| kizo精华| 国产国语露脸激情在线看| 又黄又粗又硬又大视频| 欧美黄色片欧美黄色片| 亚洲熟女精品中文字幕| xxx大片免费视频| 精品99又大又爽又粗少妇毛片| 嫩草影院入口| 午夜福利视频精品| 在线 av 中文字幕| 久久久久久人人人人人| 国产又色又爽无遮挡免| 九草在线视频观看| 丝袜人妻中文字幕| 少妇人妻 视频| 啦啦啦中文免费视频观看日本| 777久久人妻少妇嫩草av网站| 九九爱精品视频在线观看| 男人添女人高潮全过程视频| 国产一区二区激情短视频 | 国产免费福利视频在线观看| 一区在线观看完整版| 久久影院123| 亚洲国产色片| 日韩视频在线欧美| 波野结衣二区三区在线| 婷婷色综合大香蕉| 久久影院123| 一二三四在线观看免费中文在| 国产亚洲精品第一综合不卡| 成年人免费黄色播放视频| 超色免费av| 91久久精品国产一区二区三区| 亚洲综合精品二区| 日韩在线高清观看一区二区三区| 国产成人免费观看mmmm| 亚洲精品中文字幕在线视频| 狠狠婷婷综合久久久久久88av| 黑人猛操日本美女一级片| 亚洲成人一二三区av| 老司机影院毛片| 大片电影免费在线观看免费| www.自偷自拍.com| 在线观看免费日韩欧美大片| 午夜老司机福利剧场| 亚洲精品久久成人aⅴ小说| 制服诱惑二区| 男人爽女人下面视频在线观看| 久热这里只有精品99| 国产福利在线免费观看视频| 亚洲国产欧美在线一区| 久久人人爽av亚洲精品天堂| 欧美日韩国产mv在线观看视频| av在线老鸭窝| 婷婷色麻豆天堂久久| av一本久久久久| 99热全是精品| 美女高潮到喷水免费观看| 成人国语在线视频| 亚洲国产色片| 80岁老熟妇乱子伦牲交| 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 亚洲av综合色区一区| 国产一区二区激情短视频 | 久久久久久久久免费视频了| 久久人人97超碰香蕉20202| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 国产精品一二三区在线看| 国产在线免费精品| 免费播放大片免费观看视频在线观看| 精品久久久精品久久久| 午夜影院在线不卡| 国产成人精品久久久久久| 黑人猛操日本美女一级片| 蜜桃国产av成人99| 九草在线视频观看| 成人国语在线视频| 狂野欧美激情性bbbbbb| 十八禁网站网址无遮挡| 亚洲天堂av无毛| 99久久综合免费| 精品亚洲成国产av| 久久99一区二区三区| 丰满乱子伦码专区| 老汉色∧v一级毛片| 亚洲av电影在线进入| 亚洲av福利一区| 黄网站色视频无遮挡免费观看| 国产一区二区三区综合在线观看| 七月丁香在线播放| av不卡在线播放| 美女中出高潮动态图| 国产精品av久久久久免费| 亚洲精品久久久久久婷婷小说| 日韩中文字幕欧美一区二区 | 蜜桃在线观看..| 日韩熟女老妇一区二区性免费视频| 亚洲美女黄色视频免费看| 亚洲精品国产色婷婷电影| 亚洲av免费高清在线观看| 乱人伦中国视频| 波野结衣二区三区在线| 可以免费在线观看a视频的电影网站 | 国产成人精品婷婷| 欧美日韩精品网址| 80岁老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 国精品久久久久久国模美| av线在线观看网站| 天堂中文最新版在线下载| 熟女少妇亚洲综合色aaa.| 少妇人妻精品综合一区二区| 尾随美女入室| 制服诱惑二区| 啦啦啦视频在线资源免费观看| 国产深夜福利视频在线观看| 免费女性裸体啪啪无遮挡网站| 色哟哟·www| 免费看av在线观看网站| 欧美激情高清一区二区三区 | 亚洲综合精品二区| 亚洲第一av免费看| 久久人妻熟女aⅴ| 看免费av毛片| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 巨乳人妻的诱惑在线观看| 免费播放大片免费观看视频在线观看| 人妻系列 视频| 大陆偷拍与自拍| 校园人妻丝袜中文字幕| 久久久欧美国产精品| 成年女人毛片免费观看观看9 | 人妻人人澡人人爽人人| 人人妻人人澡人人爽人人夜夜| 成人漫画全彩无遮挡| 亚洲三级黄色毛片| 精品午夜福利在线看| 国产深夜福利视频在线观看| 久久精品久久久久久噜噜老黄| 国产黄色视频一区二区在线观看| 亚洲成人av在线免费| 人人妻人人添人人爽欧美一区卜| 国产精品香港三级国产av潘金莲 | 国产熟女午夜一区二区三区| 超碰97精品在线观看| 成人毛片60女人毛片免费| 午夜91福利影院| 欧美人与善性xxx| 国产精品三级大全| 久久久a久久爽久久v久久| 最新中文字幕久久久久| 999久久久国产精品视频| 国产精品偷伦视频观看了| 午夜激情av网站| 国产熟女欧美一区二区| 毛片一级片免费看久久久久| 精品酒店卫生间| 黄片播放在线免费| 熟女av电影| 男女边吃奶边做爰视频| 午夜免费观看性视频| 亚洲av男天堂| 亚洲av在线观看美女高潮| 日韩中字成人| 国产精品女同一区二区软件| 亚洲精华国产精华液的使用体验| 欧美国产精品一级二级三级| 成年动漫av网址| 成年女人毛片免费观看观看9 | 日韩欧美精品免费久久| 国产精品一区二区在线观看99| 久久综合国产亚洲精品| 欧美黄色片欧美黄色片| 国产成人免费观看mmmm| 99热全是精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 婷婷色麻豆天堂久久| 国产成人av激情在线播放| 亚洲国产成人一精品久久久| 精品酒店卫生间| 日日撸夜夜添| 不卡av一区二区三区| 亚洲精品久久成人aⅴ小说| 国产免费福利视频在线观看| 搡老乐熟女国产| 黑人巨大精品欧美一区二区蜜桃| 最近最新中文字幕大全免费视频 | 永久网站在线| 观看美女的网站| 久久久国产欧美日韩av| 婷婷色麻豆天堂久久| 亚洲精品久久午夜乱码| 亚洲精品一区蜜桃| 一级,二级,三级黄色视频| 久久韩国三级中文字幕| 精品一品国产午夜福利视频| 99热国产这里只有精品6| 9热在线视频观看99| 国产一区二区三区综合在线观看| xxx大片免费视频| 久久久久久免费高清国产稀缺| 国产有黄有色有爽视频| 久久午夜综合久久蜜桃| 国产日韩欧美亚洲二区| 国产有黄有色有爽视频| 精品卡一卡二卡四卡免费| 国产精品.久久久| 亚洲,一卡二卡三卡| 伦精品一区二区三区| av天堂久久9| 久久精品aⅴ一区二区三区四区 | 午夜福利影视在线免费观看| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看 | 丰满乱子伦码专区| 精品国产超薄肉色丝袜足j| 热99久久久久精品小说推荐| 精品国产乱码久久久久久小说| 国产 精品1| 五月开心婷婷网| www.熟女人妻精品国产| 亚洲国产精品国产精品| 视频在线观看一区二区三区| 久久韩国三级中文字幕| 午夜福利乱码中文字幕| 久久久久精品久久久久真实原创| 一二三四在线观看免费中文在| 久久久久久久久久人人人人人人| 91久久精品国产一区二区三区| 久久精品国产亚洲av天美| 亚洲激情五月婷婷啪啪| 一区二区三区乱码不卡18| 蜜桃在线观看..| 一级毛片 在线播放| 韩国av在线不卡| 久久国产精品大桥未久av| 伦理电影免费视频| 女人被躁到高潮嗷嗷叫费观| 91午夜精品亚洲一区二区三区| 色播在线永久视频| 伦精品一区二区三区| 成人漫画全彩无遮挡| 国产成人一区二区在线| 黄片播放在线免费| 免费大片黄手机在线观看| 人人澡人人妻人| 午夜免费观看性视频| 性少妇av在线| 夜夜骑夜夜射夜夜干| 国产成人精品一,二区| 十八禁网站网址无遮挡| 桃花免费在线播放| 日本欧美国产在线视频| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 欧美成人精品欧美一级黄| 精品福利永久在线观看| 卡戴珊不雅视频在线播放| 国产又色又爽无遮挡免| 成年女人毛片免费观看观看9 | 国产探花极品一区二区| 国产激情久久老熟女| 日日啪夜夜爽| 男人操女人黄网站| 最近2019中文字幕mv第一页| 日本免费在线观看一区| 国产av国产精品国产| 人妻 亚洲 视频| 成人国产av品久久久| 色吧在线观看| 女的被弄到高潮叫床怎么办| freevideosex欧美| 国产精品久久久久久精品电影小说| 最近中文字幕2019免费版| 久久精品久久精品一区二区三区| 成年女人在线观看亚洲视频| 国产97色在线日韩免费| 热re99久久精品国产66热6| 不卡视频在线观看欧美| 中文字幕另类日韩欧美亚洲嫩草| 国产日韩一区二区三区精品不卡| 成人午夜精彩视频在线观看| 免费在线观看黄色视频的| 激情视频va一区二区三区| 国产av一区二区精品久久| 欧美xxⅹ黑人| 亚洲av男天堂| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩一区二区三区在线| 欧美人与善性xxx| 汤姆久久久久久久影院中文字幕| 午夜久久久在线观看| 热99国产精品久久久久久7| 国产深夜福利视频在线观看| www.av在线官网国产| 中文欧美无线码| 久久ye,这里只有精品| 亚洲欧美一区二区三区国产| 日本欧美视频一区| 午夜福利在线观看免费完整高清在| 少妇人妻久久综合中文| 王馨瑶露胸无遮挡在线观看| 成年av动漫网址| 亚洲男人天堂网一区| 亚洲av国产av综合av卡| 一级毛片电影观看| 最近2019中文字幕mv第一页| 亚洲精品久久成人aⅴ小说| 满18在线观看网站| 成年女人毛片免费观看观看9 | 中文字幕人妻丝袜一区二区 | 久久这里只有精品19| 国产无遮挡羞羞视频在线观看| 成人手机av| 亚洲国产色片| 亚洲av欧美aⅴ国产| 亚洲欧美精品综合一区二区三区 | www.精华液| 18禁观看日本| 亚洲美女视频黄频| 欧美成人午夜免费资源| 国产极品粉嫩免费观看在线| 999久久久国产精品视频| 电影成人av| 性色avwww在线观看| 成人手机av| 女性被躁到高潮视频| 日本-黄色视频高清免费观看| 美国免费a级毛片| 日本-黄色视频高清免费观看| 免费在线观看视频国产中文字幕亚洲 | 免费高清在线观看日韩| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| 成人国产麻豆网| 黑人巨大精品欧美一区二区蜜桃| 日本wwww免费看| videos熟女内射| 七月丁香在线播放| 在线观看人妻少妇| 香蕉丝袜av| 夜夜骑夜夜射夜夜干| 成年人免费黄色播放视频| 国产成人av激情在线播放| 久久精品国产a三级三级三级| 少妇被粗大猛烈的视频| 久久久久久久大尺度免费视频| 少妇被粗大猛烈的视频| 老熟女久久久| 少妇被粗大猛烈的视频| www日本在线高清视频| 黄频高清免费视频| 久久国内精品自在自线图片| 久久女婷五月综合色啪小说| 久久久久久久久免费视频了| 久久亚洲国产成人精品v| 天堂8中文在线网| av有码第一页| 天堂8中文在线网| 精品人妻熟女毛片av久久网站| 9色porny在线观看| 蜜桃在线观看..| 天堂8中文在线网| 18禁国产床啪视频网站| 在线观看美女被高潮喷水网站| 欧美日本中文国产一区发布| 在线观看免费高清a一片| videosex国产| 国产免费视频播放在线视频| 久久女婷五月综合色啪小说| 一本大道久久a久久精品| 叶爱在线成人免费视频播放| av不卡在线播放| 永久网站在线| 国产精品久久久久久精品电影小说| 男的添女的下面高潮视频| 最近的中文字幕免费完整| 亚洲精品视频女| 亚洲欧美一区二区三区国产| 男女免费视频国产| 不卡av一区二区三区| 国产成人精品久久久久久| 我要看黄色一级片免费的| 欧美激情高清一区二区三区 | 我要看黄色一级片免费的| 香蕉丝袜av| 欧美 亚洲 国产 日韩一| 叶爱在线成人免费视频播放| 人妻人人澡人人爽人人| 国产av码专区亚洲av| 精品少妇内射三级| 国产免费现黄频在线看| 国产免费视频播放在线视频| videosex国产| 好男人视频免费观看在线| 国产男女超爽视频在线观看| 一区二区三区乱码不卡18| 欧美日韩一区二区视频在线观看视频在线| 国产在视频线精品| 免费观看在线日韩| 夜夜骑夜夜射夜夜干| 午夜福利在线观看免费完整高清在| av国产久精品久网站免费入址| 国产精品av久久久久免费| 亚洲综合精品二区| 免费观看在线日韩| 亚洲国产精品成人久久小说| 一级片免费观看大全| 国产精品国产三级国产专区5o| 久久精品亚洲av国产电影网| 免费黄频网站在线观看国产| 我的亚洲天堂| 亚洲国产精品一区二区三区在线| 亚洲国产成人一精品久久久| 国产精品 欧美亚洲| 日韩熟女老妇一区二区性免费视频| 97人妻天天添夜夜摸| 26uuu在线亚洲综合色| 一区二区日韩欧美中文字幕| 精品卡一卡二卡四卡免费| 丝袜人妻中文字幕| 久久久国产欧美日韩av| 黄色怎么调成土黄色| 国产成人精品无人区| 久久久久久人妻| 伦理电影免费视频| 国产有黄有色有爽视频| 老汉色∧v一级毛片| 日韩av免费高清视频| 久久精品人人爽人人爽视色| 日韩一区二区三区影片| 可以免费在线观看a视频的电影网站 | 看免费成人av毛片| 丝袜脚勾引网站| 国产一区二区在线观看av| 久久亚洲国产成人精品v| 超碰成人久久| 国产欧美日韩综合在线一区二区| 国产午夜精品一二区理论片| 国语对白做爰xxxⅹ性视频网站| 久久99精品国语久久久| 欧美av亚洲av综合av国产av | 韩国精品一区二区三区| 在线观看国产h片| 免费女性裸体啪啪无遮挡网站| 欧美日韩亚洲高清精品| www.熟女人妻精品国产| 欧美激情高清一区二区三区 | 五月开心婷婷网| 一边摸一边做爽爽视频免费| 成年女人毛片免费观看观看9 | 国产一区二区三区av在线| 亚洲国产看品久久| 国产成人免费无遮挡视频| 丝袜人妻中文字幕| 久久久久久久亚洲中文字幕| 久久 成人 亚洲| 欧美亚洲 丝袜 人妻 在线| 精品亚洲成国产av| 亚洲色图综合在线观看| 亚洲精品视频女| 国产一区有黄有色的免费视频| 日日爽夜夜爽网站| 亚洲精品久久久久久婷婷小说| 国产成人精品一,二区| 在线观看免费高清a一片| 只有这里有精品99| 天天影视国产精品| 国产成人a∨麻豆精品| 国产黄频视频在线观看| 久久精品熟女亚洲av麻豆精品| 午夜91福利影院| av免费观看日本| 久久久欧美国产精品| 免费日韩欧美在线观看| 国产一区二区在线观看av| 精品少妇黑人巨大在线播放|