• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation and Analysis of Electromagnetic Fields Induced by a Moving Ship Based on a Three-Layer Geoelectric Model

    2020-11-30 04:43:18SHAOGuihangandLIYuguo
    Journal of Ocean University of China 2020年6期

    SHAO Guihang, and LI Yuguo, 2), *

    Numerical Simulation and Analysis of Electromagnetic Fields Induced by a Moving Ship Based on a Three-Layer Geoelectric Model

    SHAO Guihang1), and LI Yuguo1), 2), *

    1),,,,266100,2),,266237,

    In this paper, we present a numerical simulation method of electromagnetic (EM) fields induced by a moving ship (EMFMS), which consist of both the shaft-rate EM field and the static EM field. The shaft-rate EM fields in the frequency domain are first obtained by solving the partial differential equations together with suitable boundary conditions, and then they are transformed into the time domain by using the inverse Fourier transform. Finally, the static fields are added to obtain the EM fields of a moving ship. The effects of the source current intensity and the source position on the EM fields of a moving ship are discussed in detail. A field example of EM response of a moving ship is presented and its characteristics are analyzed.

    moving ship; shaft-rate EM field; static EM field; numerical simulation

    1 Introduction

    In order to prevent seawater corrosion, ships are often equipped with cathodic protection devices. The currents pro- duced by cathodic protection devices usually form two circuits as shown in Fig.1 (Jeffrey and Brooking, 1999). The one flowing through the ship’s propeller is modulated by the varying bearing resistance, and generates shaft-rate electromagnetic fields (Holtham., 1999). The other flowing through the ship’s coating damage point generates static electromagnetic fields (Nain., 2013). Thus, the electric and magnetic fields induced by a moving ship (EMFMS) consist of both the shaft-rate field and the sta- tic field.

    The study of ship’s EM fields began in the 1960s (Zolotarevskii., 2005), and many studies on EMFMS have been conducted since then (Holmes, 2006). In these studies, however, simulation problems are often simplified. For instance, the geoelectric model is designed as an air- sea two-layer model (Sun., 2003; Lu., 2004; Liu., 2004; Zhang and Wang, 2016), in which the current source of a moving ship is assumed to be equivalent to a horizontal electric dipole (Lu., 2005; Ni., 2006), or the shaft-rate EM fields are neglected (Bao., 2011; Li., 2012). Although these simplifications can reduce the complexity of numerical simulation, they donot sufficiently simulate the real situation. Therefore, three types of problems can be caused by the simplifications. Firstly, in shallow water areas, the seafloor sediment layer has a great influence on the EM responses of a moving ship, hence the two-layer model is improper. Secondly, since the location of the ship’s propeller is different from the coating damage points (Liu, 2009; Cheng., 2016), the ship cannot be equivalent to a horizontal electric dipole. Third, the EM fields of a moving ship consist of both the shaft-rate field and the static field, so both of them should be considered.

    In this paper, we consider an air-seawater-seafloor three- layer geoelectric model. Both the shaft-rate field and the static field are simulated in the frequency domain by using both the horizontal and vertical electric dipoles, then the results are transformed into the time domain by using the inverse Fourier transform, and the EMFMS are obtained by adding the shaft-rate field to the static field. Finally, the shaft-rate field and the static field are separated from the measured EMFMS data, and the characteristics of them are discussed.

    2 Simulation of the EMFMS

    2.1 Theory

    The EMFMS consists of the shaft-rate EM field and the static EM field. They can be approximated by the EM fields of the tilted electric dipole source in the air-sea- seafloor three-layer geoelectric model (Fig.2a). The EM fields generated by a tilted dipole source can be seen as the superposition of those caused by the horizontal and vertical electric dipoles (Fig.2b), and can be expressed as

    where,,andare EM fields generated by the horizontal and vertical electric dipoles, respe- ctively.

    The electromagnetic fields generated by both the horizontal electric dipole (HED) and vertical electric dipole (VED) sources in the layered earth have been well studied (Li and Li, 2016).

    To obtain the EMFMS, both the shaft-rate field and the static field need to be transformed into time domain from frequency domain. Assuming that a ship starts to move at time1and position1along the-axis at a constant velocity, the ship’s position at timet(Fig.3a) can be expressed as:

    where t1, x1and v are known. The ship arrives at location xi at time ti, and ri is the distance from the mid-point of an electric dipole source to a receiver positioned at the seafloor.

    The procedure for calculating the EMFMS is listed as follows.

    1) Calculate shaft-rate fields(x,) (=1, 2,…,) in the frequency domain;

    Fig.2 Schematic diagrams of (a) a moving ship in the air-sea-seafloor three-layer geoelectric model and (b) electric dipole vector decomposition.

    Fig.3 Schematic diagrams of (a) three-layer model for a moving ship and (b) the shaft-rate EM fields in the time domain.

    2) Transform(x,) into time domain response(x,t) (,=1, 2,…,, note thatandare not equal all the time) (shown as red lines in Fig.3b) by using the discrete inverse Fourier transform (Press., 1992), and get the EM field(x,t) (shown as black point in Fig.3b), which is the shaft-rate part of EMFMS;

    3) Set the source frequency to 0 and calculate the static field(x) (=1, 2,…,), then get the time domain static field(t) according to Eq. (3);

    4) Get EMFMS by adding the shaft-rate field(x,t) to static field(t).

    2.2 Numerical Examples

    To demonstrate the procedure described previously, we set an air-seawater-seafloor three-layer model, which is called model M0 (Fig.4a). The resistivity of the air, the seawater and the seafloor is set to be 1010Ωm, 0.3Ωm and 10Ωm, respectively, and the seawater depth is 500m.

    Assuming that a ship travels from1=?1250m to2= 1250m at a constant speed of 3ms?1, the EMFMS can be simulated by using two moving electric dipoles. The one is the alternating electric dipole with a frequency of 3.6Hz and the other is static electric dipole. Both the dipoles are located at the same place and the positive and negative electrodes are at the points (?25, 0, 3) and (+25, 0, 3), respectively. Both of them have a current of 20A. A receiver is positioned at point (0, 0, 500) on the seafloor. Both the frequency domain shaft-rate field (=3.6Hz) and steady field are calculated and shown in Figs.4b and 4c. Assuming that the centers of the dipole sources are equidistantly placed along the line from=?1250m to=1250m at a depth of 3m, the frequency domain shaft-rate fields are transformed into the time domain by using the discrete fast Fourier transform (iFFT), where the frequency interval Δis set to be 0.0012Hz and the number of sample points is equal to 213. The time domain shaft-rate fields at all 213points are obtained by using discrete iFFT (Press., 1992). Finally, the shaft-rate field at the receiver site is synthetized by extracting corresponding value from the 213data set and shown as the red lines in Figs.4d and 4e.

    Fig.4 The numerical example of the EMFMS. (a), Schematic diagram of model M0; (b), Frequency domain Ey component; (c), Hx component; (d), Time domain Ey component; (e), Hx component; (f), Ey component and (g) Hx component of EM- FMS.

    From Figs.4b–4e, one can see that the amplitude of the shaft-rate fields differs from the static field in both the frequency domain (Figs.4b and 4c) and the time domain (Figs.4d and 4e). This means that the EMFMS is different from either the shaft-rate EM field or the static field. Thus, both of them need to be simulated and investigated.

    3 Analysis of EMFMS

    The characteristics of EMFMS responses are related to several parameters in the model M0 shown in Fig.4a. In this section, the effects of both the source current intensity and source position on EMFMS are investigated, re- spectively.

    3.1 Source Current Intensity

    The current intensity of the shaft-rate field might be dif- ferent from that of the static field, thus there is a need to investigate their influences on the EMFMS, respectively.

    Firstly, we investigate the influence of the direct current intensity on the EMFMS. Assuming that the direct current intensities are 4A (model M1, Fig.5a) and 100A (model M2, Fig.5b), respectively, and the other parameters are the same as those in model M0 (Fig.4a), the simulated EMFMS for models M1 and M2 are shown in Figs.5c–5e.

    Fig.5 Schematic diagrams of (a) model M1 and (b) model M2 and the simulated results of (c) Ey, (d) Ez, and (e) Hx to illustrate the effects of direct current intensity on the EMFMS.

    From Figs.5c–5e, one can see that the EMFMS has the following features:

    1) The horizontal components of both the electric and magnetic fields (EandH) have a single peak in their variation curves and is symmetric with respect to the axis of=416.5s (Figs.5c and 5e), while the vertical component of the electric fieldEhas two peaks, one of which is positive at=334s and the other is negative at=499s (Fig.5d). The EMFMS attenuates faster and faster when the ship approaches to the receiver, but this trend slows down when it is far away from the receiver. The EMFMS envelope is crescent-shaped for models M0 and M2, but is spindle-shaped for model M1.

    2) The EMFMS’s amplitude increases with the increase of the direct current intensity, and the influence of direct current intensity on the magnetic field (H) is much greater than on the electric fields (EandE).

    Next, we investigate the influence of alternative current intensity on the EMFMS. We assume that the alternative current intensity is 4A (model M3, Fig.6a) and 100A (mo-del M4, Fig.6b), respectively, and the other parameters are the same as those in model M0 (Fig.4a). The simulated EMFMS for models M3 and M4 are shown in Figs.6c–6e.

    From Figs.6c–6e, one can see that the EMFMS has the following features:

    1) The peak’s position and symmetric feature of EM- FMS response in models M3 and M4 are similar to those in models M1 and M2.

    2) The range of the EMFMS envelope increases with the increase of the alternating current intensity.

    From Figs.5 and 6, one can see that the direct current intensity affects the peak’s position and symmetric feature of the EMFMS, while the alternating current intensity af- fects the range of the envelope.

    3.2 Source Position

    The alternating current source is not usually located at the same position as the direct current source. In the following, we discussed the influence of the source position on EMFMS.

    We assume that the alternating current source shifts 50 m horizontally from its position in model M0 (Fig.4a) along the positive and negative-axis direction, respectively, as shown in Fig.7a (model M5) and Fig.7b (model M6), and the other parameters are same as those in model M0 (Fig.4a). The simulated results of EMFMS for models M5 and M6 are shown in Figs.7c–7e.

    From Figs.7c–7e, one can see that the EMFMS is no longer symmetric with respect to the axis of=416.5s, this is because the symmetric centers of the shaft-rate field and the static field are at different position.

    Considering the shallow sea environments, we assume that the thickness of the seawater layer is 100m in models M7 and M8 (Figs.8a and 8b), and the other parameters are same as those in models M5 and M6. The simulated EMFMS for models M7 and M8 are shown in Figs.8c–8e.

    Fig.6 Schematic diagrams of (a) model M3 and (b) model M4 and the simulated results of (c) Ey, (d) Ez, and (e) Hx to illustrate the effects of alternating current intensity on the EMFMS.

    Fig.7 Schematic diagrams of (a) model M5 and (b) model M6 and the simulated results of (c) Ey, (d) Ez, and (e) Hx to illustrate the effects of the source position on the EM- FMS.

    By comparing Figs.7 and 8, one can find that when the seawater depth is much larger than the length of the current source, the source position has very little influence on the EMFMS, and vice versa. There are two reasons for this. One is that the shaft-rate field is of the same order in magnitude as the static field in shallow water. The other is the offsets of symmetric centers between the shaft-rate field and the static field are much larger in shallow water than in deep water.

    3.3 Combined Effect of HED and VED Sources

    In order to investigate the combined effect of HED and VED sources on EMFMS, we build the model M9 and M10. In model M9, there is a HED source, and both the alternating and static horizontal dipole sources are located at the same position and their positive and negative electrodes are at (?25, 0, 15) and (+25, 0, 15), respectively, as shown in Fig.9a. In model M10, the dipole source is tilted at an angle of 30? relative to the-axis and its center is at (, 0, 15), as shown in Fig.9b. The simulated EM- FMS of both models are shown in Figs.9c–9e.

    From Figs.9c–9e, one can see that for the tilted dipole source (model M10), the electric fields are no longer symmetrical with respect to the axis of=416.5s. The electrical field amplitude on the left side becomes smaller and that on the right side becomes larger, and the amplitude of the magnetic field is smaller than that due to the horizontal dipole source (model M9). It is obvious that these features are resulting from the combined effect of the HED and VED sources.

    Fig.8 Schematic diagrams of (a) model M7 and (b) model M8 and the simulated results of (c) Ey, (d) Ez, and (e) Hxto illustrate the effect of the source position on the EMFMS in shallow water.

    Fig.9 Schematic diagrams of (a) model M9 and (b) model M10 and the simulated results of (c) Ey, (d) Ez, and (e) Hxto illustrate the combined effect of HED and VED sources.

    4 Measured Data

    We conducted an EMFMS test in the South Yellow Sea. An ocean bottom EM receiver (OBEM) was positioned on the seabed and recorded three electric field components and two horizontal components of the magnetic field. The sampling rate is 500Hz, and the water depth is 37m.

    The research vessel ‘’ traveled across over the OBEM. The recorded data are processed. The shaft-rate of the vessel is about 3.667Hz.

    Figs.10a and 10b show the measuredEand Hfields during a period of 216s, respectively. The measured fields are divided into the shaft-rate field and static field by using the sliding window technique (Figs.10c and 10d).

    From Figs.10c and 10d, one can see the following features.

    1) The anomaly of the shaft-rate magnetic field is greater than the shaft-rate electric field (in SI unit).

    2) TheEcomponent and theHcomponent of the sta- tic field in Figs.10c and 10d are very similar to the static fields in Figs.4d and 4e.

    3) The amplitude of static magnetic field is much larger than that of the shaft-rate magnetic field.

    From the time-frequency spectrograms (Figs.10e and 10f), one can see the following features:

    1) The static electric field is dominated at a frequency very close to 0Hz and the shaft-rate field is very clear at the fundamental frequency of 3.67Hz and its harmonics.

    2) The amplitude of the static magnetic field is much larger than the shaft-rate magnetic field, which is generated by the metal material of the vessel.

    Fig.10 Time series of (a) Ey and (b) Hx for measured EMFMS, time series of (c) Ey and (d) Hx for shaft-rate EM field and static field and spectrogram of (e) Ey and (f) Hx for EMFMS.

    5 Conclusions

    In this paper, we present a simulation method of electric and magnetic fields of a moving ship (EMFMS), which consisted of both the shaft-rate field generated by alterna- ting electric currents and the static field excited by static electric current. Then we investigated the effects of the current intensity and the source positions on the EMFMS. The numerical simulation and real measured data show that the seafloor, the shaft-rate field and the static field all have great impacts on EMFMS, so none of them could be neglected for EMFMS study.

    Acknowledgements

    This study is supported by the Fundamental Research Funds for the Central Universities (No. 201861020) and the Wenhai Program of Qingdao National Laboratory for Marine Science and Technology (QNLM) (No. 2017WH ZZB0201). We thank Drs. Ying Liu, Yunju Wu, Jie Lu, and Baoqiang Zhang for helpful suggestions on formula derivation of shaft-rate EM fields and data processing. We also thank two anonymous reviewers for valuable comments on our manuscript.

    Bao, Z., Gong, S., Sun, J., and Li, J., 2011. Localization of a horizontal electric dipole source embedded in deep sea by using two vector-sensors., 23 (3): 53-57, DOI: 10.3969/j.issn.1009-3486.2011. 03.012 (in Chinese with English abstract).

    Cheng, R., Jiang, R., and Gong, S., 2016. Calculation method of vessels’ shaft rate electric field equivalent source magnitude., 38 (2): 138-143, DOI: 10.11887/j.cn.201602023 (in Chinese with Eng- lish abstract).

    Holmes, J., 2006.. Morgan & Claypool Publishers, London, 78pp.

    Holtham, P., Jeffrey, I., Brooking, B., and Richards, T., 1999. Electromagnetic signature modeling and reduction.. London, UK, 97-100.

    Jeffrey, I., and Brooking, B., 1999. A survey of new electromagnetic stealth technologies.. Biloxi, Mississippi, 1-7.

    Li, D., Chen, C., Liu, H., and Yang, S., 2012. Green function method for extrapolating of ship’s underwater static electric field., 24 (3): 1-6, DOI: 10.3969/j.issn.1009-3486.2012.03.001 (in Chinese with English abstract).

    Li, Y., and Li, G., 2016. Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles., 13 (4): 505-515, DOI: 10.1088/1742-2132/13/4/505.

    Liu, S., Xiao, C., and Gong, S., 2004. Electromagnetic field of DC electric dipole in two-layer model., 28 (5): 641-644, DOI: 10.3963/j.issn.2095-3844.2004.05. 004 (in Chinese with English abstract).

    Liu, Y., 2009. The measurement method of ship’s electric field. Master thesis. Harbin Engineering University (in Chinese with English abstract).

    Lu, X., Gong, S., Zhou, J., and Liu, S., 2005. Quasi-near field localization of a time-harmonic HED in sea water., 29 (3): 331-334, DOI: 10.3963/j.issn.2095-3844. 2005.03.001 (in Chinese with English abstract).

    Lu, X., Gong, S., Zhou, J., and Sun, M., 2004. Analytical expressions of the electromagnetic fields produced by an ELF time-harmonic HED embedded in the sea., 19 (3): 290-295, DOI: 10.13443/j.cjors.2004. 03.008 (in Chinese with English abstract).

    Nain, H., Isa, M. C., Mohd, M., Yusoff, N. H. N., Yati, M. S. D., and Nor, I. M., 2013. Management of naval vessel’s electromagnetic signatures: A review of sources and countermeasures., 6 (2): 93-110.

    Ni, H., Sun, M., and Gong, S., 2006. Calculation of the electromagnetic fields generated by horizontal current element in semi-infinite space of seawater., 20 (1): 63-65, DOI: 10.3969/j.issn. 1672-1497.2006.01.016 (in Chinese with English abstract).

    Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1992.. Press Syndicate of the University of Cambridge, New York, 1574pp.

    Sun, M., Gong, S., Zhou, J., and Lu, X., 2003. Calculation of the electromagnetic fields generated by DC horizontal current element in semi-infinite space of seawater.. Istanbul, Turkey, 734-736.

    Zhang, J., and Wang, X., 2016. Arithetic research about electric- field intensity of horizontal-harmonic current in the deep sea., 38 (1): 90-93, DOI: 10.3404/j. issn.1672-7649.2016.1.019 (in Chinese with English abstract).

    Zolotarevskii, Y. M., Bulygin, F. V., Ponomarev, A. N., Narchev,V. A., and Berezina, L. V., 2005. Methods of measuring the low- frequency electric and magnetic fields of ships., 48 (11): 1140-1144, DOI: 10.1007/s11018-006- 0035-6.

    . E-mail: yuguo@ouc.edu.cn

    September 18, 2019;

    February 26, 2020;

    April 18, 2020

    (Edited by Chen Wenwen)

    麻豆乱淫一区二区| 水蜜桃什么品种好| 97人妻天天添夜夜摸| 国产精品99久久99久久久不卡| 天堂俺去俺来也www色官网| 亚洲精品一卡2卡三卡4卡5卡| 欧美国产精品va在线观看不卡| 无限看片的www在线观看| 欧美日韩av久久| 国产精品亚洲一级av第二区| 777久久人妻少妇嫩草av网站| 妹子高潮喷水视频| 99久久人妻综合| 久久狼人影院| 飞空精品影院首页| 亚洲欧美日韩另类电影网站| 一级a爱视频在线免费观看| 黑人巨大精品欧美一区二区mp4| 国产1区2区3区精品| 国产成人精品久久二区二区免费| 夜夜骑夜夜射夜夜干| 曰老女人黄片| 老司机亚洲免费影院| 日韩一区二区三区影片| 999久久久精品免费观看国产| 亚洲伊人色综图| 天天影视国产精品| av视频免费观看在线观看| 日本黄色日本黄色录像| 丝袜美腿诱惑在线| 一级,二级,三级黄色视频| av网站免费在线观看视频| 日本av免费视频播放| 国产97色在线日韩免费| av一本久久久久| 国产成人免费无遮挡视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久中文字幕人妻熟女| 久久久久久久精品吃奶| 久久久久国内视频| 女警被强在线播放| 高清av免费在线| 黄色a级毛片大全视频| 9191精品国产免费久久| 777久久人妻少妇嫩草av网站| 久久久久久久大尺度免费视频| tube8黄色片| 亚洲第一青青草原| 五月开心婷婷网| 久久久久久久精品吃奶| 最黄视频免费看| 大码成人一级视频| 欧美一级毛片孕妇| 国产一区二区 视频在线| 久久精品亚洲熟妇少妇任你| 女同久久另类99精品国产91| 两性午夜刺激爽爽歪歪视频在线观看 | 交换朋友夫妻互换小说| 国产福利在线免费观看视频| 露出奶头的视频| 欧美激情 高清一区二区三区| 一个人免费看片子| 丁香六月天网| 18禁国产床啪视频网站| 丝袜美腿诱惑在线| tocl精华| 久久这里只有精品19| 制服人妻中文乱码| 国产av国产精品国产| 少妇 在线观看| 亚洲专区中文字幕在线| 免费少妇av软件| 亚洲男人天堂网一区| 国产亚洲精品久久久久5区| 国产黄色免费在线视频| 久9热在线精品视频| 99久久国产精品久久久| 老司机亚洲免费影院| 日韩精品免费视频一区二区三区| 超色免费av| 搡老乐熟女国产| 亚洲中文字幕日韩| 十八禁网站免费在线| 午夜精品久久久久久毛片777| 高潮久久久久久久久久久不卡| 久久精品亚洲熟妇少妇任你| 在线永久观看黄色视频| 男女下面插进去视频免费观看| 18禁裸乳无遮挡动漫免费视频| 一本综合久久免费| 一区二区日韩欧美中文字幕| 超色免费av| 国产一区二区 视频在线| 婷婷成人精品国产| 大陆偷拍与自拍| 夜夜夜夜夜久久久久| 咕卡用的链子| 在线观看人妻少妇| 久久久久精品人妻al黑| 久久性视频一级片| 国产高清videossex| 久久久久网色| 久久久欧美国产精品| 日韩大码丰满熟妇| 亚洲成人手机| 亚洲美女黄片视频| 最新的欧美精品一区二区| 制服人妻中文乱码| 每晚都被弄得嗷嗷叫到高潮| 国产精品九九99| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 嫩草影视91久久| 大香蕉久久网| 欧美黄色淫秽网站| 国产精品熟女久久久久浪| 免费少妇av软件| 亚洲av第一区精品v没综合| 国产激情久久老熟女| 一二三四在线观看免费中文在| 国产不卡av网站在线观看| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| 美女扒开内裤让男人捅视频| 欧美日韩黄片免| 亚洲男人天堂网一区| 久久亚洲真实| 久久久精品94久久精品| 精品国产超薄肉色丝袜足j| 91精品三级在线观看| 日本av免费视频播放| 中文字幕高清在线视频| 国产淫语在线视频| 成年人黄色毛片网站| 国产99久久九九免费精品| 自线自在国产av| 精品国产一区二区三区久久久樱花| 国产单亲对白刺激| 亚洲精品一卡2卡三卡4卡5卡| 人人妻人人爽人人添夜夜欢视频| 首页视频小说图片口味搜索| 亚洲五月色婷婷综合| 捣出白浆h1v1| 精品久久久久久电影网| 国产亚洲av高清不卡| 日本黄色日本黄色录像| 两人在一起打扑克的视频| 欧美性长视频在线观看| 18禁国产床啪视频网站| 国产精品美女特级片免费视频播放器 | kizo精华| 精品久久久久久电影网| 国产精品亚洲一级av第二区| 国产精品av久久久久免费| 欧美成人免费av一区二区三区 | 久久人人97超碰香蕉20202| 俄罗斯特黄特色一大片| 国产在线精品亚洲第一网站| 国产野战对白在线观看| 超色免费av| 男男h啪啪无遮挡| 国产亚洲精品第一综合不卡| 男女边摸边吃奶| 亚洲情色 制服丝袜| 蜜桃国产av成人99| 免费高清在线观看日韩| 久久久精品国产亚洲av高清涩受| 久久ye,这里只有精品| 少妇猛男粗大的猛烈进出视频| 亚洲午夜理论影院| 欧美精品亚洲一区二区| 午夜精品国产一区二区电影| 国产视频一区二区在线看| 12—13女人毛片做爰片一| 亚洲视频免费观看视频| 99国产精品免费福利视频| 国产一区二区三区综合在线观看| 色94色欧美一区二区| 久久精品亚洲av国产电影网| 午夜成年电影在线免费观看| 99久久99久久久精品蜜桃| 黄色 视频免费看| 蜜桃在线观看..| 18禁美女被吸乳视频| e午夜精品久久久久久久| 久久国产亚洲av麻豆专区| 欧美日韩黄片免| 另类亚洲欧美激情| 19禁男女啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 黑人猛操日本美女一级片| 五月天丁香电影| 日韩免费av在线播放| 午夜福利,免费看| 俄罗斯特黄特色一大片| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区四区第35| 99国产精品一区二区蜜桃av | 女人被躁到高潮嗷嗷叫费观| 成人国语在线视频| 男女高潮啪啪啪动态图| 欧美日韩av久久| 久久精品国产a三级三级三级| netflix在线观看网站| 高清欧美精品videossex| 老熟女久久久| 女性生殖器流出的白浆| 欧美日韩福利视频一区二区| 青青草视频在线视频观看| 日韩一区二区三区影片| 1024香蕉在线观看| 高清毛片免费观看视频网站 | 亚洲人成77777在线视频| 国产人伦9x9x在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲,欧美精品.| 女警被强在线播放| 精品国产亚洲在线| 久久99一区二区三区| 精品国内亚洲2022精品成人 | 丰满饥渴人妻一区二区三| 国产精品一区二区在线观看99| 国产男女内射视频| 免费看a级黄色片| 亚洲一区二区三区欧美精品| 高清欧美精品videossex| 男女床上黄色一级片免费看| 亚洲avbb在线观看| 十八禁高潮呻吟视频| 日韩大码丰满熟妇| 成年版毛片免费区| 色94色欧美一区二区| 亚洲avbb在线观看| 自线自在国产av| 视频在线观看一区二区三区| 欧美性长视频在线观看| 亚洲性夜色夜夜综合| 中文字幕最新亚洲高清| av欧美777| 日本一区二区免费在线视频| 侵犯人妻中文字幕一二三四区| 90打野战视频偷拍视频| 国产成人av激情在线播放| 国产亚洲精品第一综合不卡| 高清毛片免费观看视频网站 | 亚洲伊人久久精品综合| 精品一区二区三区视频在线观看免费 | 免费不卡黄色视频| 12—13女人毛片做爰片一| 亚洲av欧美aⅴ国产| 人人澡人人妻人| 亚洲国产成人一精品久久久| 90打野战视频偷拍视频| 国产欧美日韩一区二区精品| 亚洲全国av大片| 亚洲视频免费观看视频| 国产免费福利视频在线观看| 成人国产av品久久久| 丝瓜视频免费看黄片| 精品久久久久久久毛片微露脸| 国产区一区二久久| 无限看片的www在线观看| 欧美在线黄色| 国产精品久久久久久人妻精品电影 | 精品福利观看| 欧美激情 高清一区二区三区| 69精品国产乱码久久久| 色播在线永久视频| 国产精品麻豆人妻色哟哟久久| 久久99一区二区三区| 成人影院久久| 在线观看www视频免费| 日韩三级视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 九色亚洲精品在线播放| 久久中文字幕人妻熟女| 精品少妇内射三级| 啦啦啦 在线观看视频| 久久久久精品国产欧美久久久| 欧美精品高潮呻吟av久久| 免费在线观看黄色视频的| 日韩一区二区三区影片| 一边摸一边抽搐一进一小说 | 国产精品麻豆人妻色哟哟久久| 欧美日韩一级在线毛片| 美女视频免费永久观看网站| 嫁个100分男人电影在线观看| 国产精品熟女久久久久浪| 亚洲av电影在线进入| 淫妇啪啪啪对白视频| 一区福利在线观看| 桃花免费在线播放| 久久精品国产a三级三级三级| 国产av又大| 国产精品98久久久久久宅男小说| 交换朋友夫妻互换小说| 久久久久网色| 大型av网站在线播放| 女人爽到高潮嗷嗷叫在线视频| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 国产91精品成人一区二区三区 | 99re6热这里在线精品视频| 国产成人啪精品午夜网站| 国产日韩欧美亚洲二区| 亚洲国产av影院在线观看| 精品国产亚洲在线| 中文欧美无线码| 九色亚洲精品在线播放| 久久免费观看电影| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 香蕉久久夜色| 亚洲九九香蕉| 欧美乱码精品一区二区三区| 久久中文字幕人妻熟女| 成人永久免费在线观看视频 | 色婷婷久久久亚洲欧美| 免费观看av网站的网址| 国产单亲对白刺激| 国产在线一区二区三区精| 欧美日韩视频精品一区| 免费在线观看影片大全网站| 美女主播在线视频| 久久久久久久国产电影| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 国产黄频视频在线观看| 成人特级黄色片久久久久久久 | 老司机深夜福利视频在线观看| 久久国产精品大桥未久av| 国产成人免费无遮挡视频| 久久久久精品人妻al黑| 亚洲精品av麻豆狂野| 久久av网站| 国产人伦9x9x在线观看| 亚洲,欧美精品.| www.熟女人妻精品国产| 午夜福利一区二区在线看| 91麻豆av在线| 精品一品国产午夜福利视频| 首页视频小说图片口味搜索| 欧美精品高潮呻吟av久久| 成人国产av品久久久| 亚洲成a人片在线一区二区| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 亚洲精品中文字幕在线视频| 波多野结衣一区麻豆| 国产亚洲一区二区精品| 国产黄频视频在线观看| 欧美亚洲日本最大视频资源| 欧美成狂野欧美在线观看| 国产亚洲av高清不卡| 欧美精品人与动牲交sv欧美| 又紧又爽又黄一区二区| 大香蕉久久成人网| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲精品在线美女| 亚洲天堂av无毛| 国产无遮挡羞羞视频在线观看| 国产黄色免费在线视频| 妹子高潮喷水视频| 日韩有码中文字幕| 久久人人97超碰香蕉20202| 99热国产这里只有精品6| 国产欧美日韩一区二区三区在线| 国产麻豆69| 久久人人97超碰香蕉20202| bbb黄色大片| 伊人久久大香线蕉亚洲五| 免费在线观看黄色视频的| 狠狠精品人妻久久久久久综合| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 少妇精品久久久久久久| 免费久久久久久久精品成人欧美视频| 国产av一区二区精品久久| 国产精品久久电影中文字幕 | 亚洲精品粉嫩美女一区| 在线观看免费高清a一片| 色94色欧美一区二区| 丝袜美足系列| 免费观看人在逋| av不卡在线播放| 高清黄色对白视频在线免费看| 色老头精品视频在线观看| 欧美精品人与动牲交sv欧美| 亚洲熟女毛片儿| 国产精品偷伦视频观看了| 热re99久久精品国产66热6| 欧美精品一区二区免费开放| 欧美 日韩 精品 国产| 波多野结衣一区麻豆| 在线亚洲精品国产二区图片欧美| 免费不卡黄色视频| 国产不卡一卡二| www.精华液| 蜜桃在线观看..| 久久人人爽av亚洲精品天堂| 亚洲中文av在线| 亚洲av片天天在线观看| 国产成人精品在线电影| 免费日韩欧美在线观看| av超薄肉色丝袜交足视频| 超碰成人久久| 日韩视频一区二区在线观看| 黄片播放在线免费| 欧美变态另类bdsm刘玥| 国产亚洲欧美精品永久| 国产日韩欧美亚洲二区| 99久久国产精品久久久| 免费在线观看影片大全网站| 一区二区三区精品91| 国产精品国产高清国产av | 天天操日日干夜夜撸| 大片免费播放器 马上看| 亚洲成人国产一区在线观看| 国产精品免费大片| 欧美性长视频在线观看| 日韩精品免费视频一区二区三区| 精品福利永久在线观看| av福利片在线| 日日夜夜操网爽| 久久久久久久大尺度免费视频| 国产一区二区三区综合在线观看| 制服诱惑二区| 免费一级毛片在线播放高清视频 | 国产av国产精品国产| 丝瓜视频免费看黄片| 亚洲九九香蕉| 高清av免费在线| 黄网站色视频无遮挡免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲人成电影免费在线| 99九九在线精品视频| 国产精品久久久av美女十八| 啪啪无遮挡十八禁网站| 国产日韩一区二区三区精品不卡| 国产精品影院久久| 久9热在线精品视频| 国产亚洲一区二区精品| 99国产综合亚洲精品| 高清欧美精品videossex| 纵有疾风起免费观看全集完整版| 成人特级黄色片久久久久久久 | 一边摸一边做爽爽视频免费| √禁漫天堂资源中文www| 一区二区日韩欧美中文字幕| 亚洲欧美日韩高清在线视频 | 国产精品久久久久成人av| 成在线人永久免费视频| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 妹子高潮喷水视频| 极品人妻少妇av视频| 国产xxxxx性猛交| 正在播放国产对白刺激| 岛国毛片在线播放| 亚洲色图综合在线观看| 香蕉丝袜av| 一边摸一边抽搐一进一出视频| 男女边摸边吃奶| 老司机靠b影院| 国产精品美女特级片免费视频播放器 | 国产精品 国内视频| 亚洲五月色婷婷综合| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人免费av在线播放| 国产亚洲午夜精品一区二区久久| 人人妻人人爽人人添夜夜欢视频| 9191精品国产免费久久| 母亲3免费完整高清在线观看| av免费在线观看网站| 色精品久久人妻99蜜桃| 色老头精品视频在线观看| 美女福利国产在线| 欧美黑人欧美精品刺激| 高清在线国产一区| 天天影视国产精品| 777米奇影视久久| 波多野结衣av一区二区av| 夜夜夜夜夜久久久久| 亚洲全国av大片| tocl精华| 精品国产亚洲在线| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 在线观看免费日韩欧美大片| 97人妻天天添夜夜摸| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| 蜜桃在线观看..| 黄色丝袜av网址大全| 国产xxxxx性猛交| 最新在线观看一区二区三区| 老熟妇仑乱视频hdxx| 69精品国产乱码久久久| 999久久久精品免费观看国产| 午夜福利在线观看吧| 国产精品久久久久成人av| 天天添夜夜摸| 亚洲av成人一区二区三| 国产成人精品在线电影| 国产免费视频播放在线视频| 99国产精品免费福利视频| 精品国产乱子伦一区二区三区| 亚洲精品一二三| 高清在线国产一区| 欧美午夜高清在线| 正在播放国产对白刺激| 欧美变态另类bdsm刘玥| 久久久久精品国产欧美久久久| 考比视频在线观看| 国产男女内射视频| 12—13女人毛片做爰片一| 精品熟女少妇八av免费久了| 精品一区二区三区视频在线观看免费 | 巨乳人妻的诱惑在线观看| 亚洲熟女精品中文字幕| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲综合一区二区三区_| 亚洲午夜理论影院| 欧美激情高清一区二区三区| 又黄又粗又硬又大视频| 少妇裸体淫交视频免费看高清 | 丝瓜视频免费看黄片| 亚洲人成伊人成综合网2020| av天堂在线播放| 国产成人免费观看mmmm| 在线观看一区二区三区激情| 亚洲精品国产一区二区精华液| 人妻 亚洲 视频| 久久影院123| 99re6热这里在线精品视频| 日日夜夜操网爽| 成人亚洲精品一区在线观看| 美国免费a级毛片| 18禁美女被吸乳视频| 欧美日韩精品网址| 大香蕉久久成人网| 纯流量卡能插随身wifi吗| 精品久久久久久电影网| 亚洲第一av免费看| 高清在线国产一区| 十八禁网站免费在线| 在线观看免费高清a一片| 99精国产麻豆久久婷婷| 五月天丁香电影| 青草久久国产| 国产xxxxx性猛交| 丁香六月欧美| 亚洲av第一区精品v没综合| 国产成人欧美| 亚洲国产中文字幕在线视频| 人人妻人人澡人人爽人人夜夜| 国产精品免费视频内射| 精品国产一区二区久久| 日韩视频在线欧美| av一本久久久久| 亚洲成av片中文字幕在线观看| 久久人妻福利社区极品人妻图片| 久久久久久久久免费视频了| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 一区二区日韩欧美中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲视频免费观看视频| 淫妇啪啪啪对白视频| 大香蕉久久网| 美国免费a级毛片| 大型av网站在线播放| 亚洲欧美日韩另类电影网站| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃| 国产精品亚洲av一区麻豆| 成年动漫av网址| 最新美女视频免费是黄的| 日本黄色日本黄色录像| 91精品国产国语对白视频| 欧美日韩亚洲综合一区二区三区_| 国产老妇伦熟女老妇高清| a在线观看视频网站| 午夜精品国产一区二区电影| 国产成人免费观看mmmm| 欧美黑人精品巨大| 亚洲欧洲精品一区二区精品久久久| 考比视频在线观看| 一级毛片女人18水好多| 亚洲av电影在线进入| 国产老妇伦熟女老妇高清| 桃红色精品国产亚洲av| 在线亚洲精品国产二区图片欧美| 十分钟在线观看高清视频www| 久热这里只有精品99| 怎么达到女性高潮| 老司机影院毛片| 欧美日韩黄片免| 法律面前人人平等表现在哪些方面| 天天添夜夜摸| 丝袜在线中文字幕| 午夜成年电影在线免费观看| 老司机影院毛片| 国产精品久久久久久精品古装| 欧美国产精品一级二级三级| 少妇裸体淫交视频免费看高清 | 高清在线国产一区| 男女之事视频高清在线观看| 老熟妇仑乱视频hdxx| 国产高清国产精品国产三级| 久久精品国产亚洲av高清一级| 老熟妇仑乱视频hdxx| 国产日韩一区二区三区精品不卡|