• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Zinc(II) coordination complex containing multi-benzimidazole ligand: synthesis, characterization and theoretical research

    2021-04-10 06:56:52ZHOUHongbinLIJiXIAOFengpingMENGXianggao

    ZHOU Hongbin, LI Ji, XIAO Fengping, MENG Xianggao*

    (1.College of Chemistry, Central China Normal University, Wuhan 430079, China;2.School of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China)

    Abstract: One new multi-benzimidazole (bzim) zinc (II) coordination compound, [Zn(NTB)Cl]2·(ZnCl4)·4(CH3OH) (1) (NTB=Tris(2-benzimidazolylmethyl)amine), has been synthesized and characterized by infrared absorption spectroscopy, elemental analysis and X-ray diffraction. Compound (1) was crystallized in the triclinic P-1 space group with a=1.3874(2) nm,b=1.4095(1) nm,c=1.6214(2) nm;α=86.440(3)°,β=87.296(2) °,γ=70.699(3) °,V=2.9855(6) nm3; μ=1.520 mm-1,ρc=1.504 mg·m-3,F(xiàn)(000)=1384,R1=0.0777, and wR2=0.2068 for 9 770 observed reflections (I > 2σ(I)). Two [Zn(NTB)Cl]+ cationic units, one (ZnCl4)2- anionic unit and four methanol solvent molecules are existing in its asymmetric unit. The component ions are linked by N—H…O, N—H…Cl, O—H…Cl, C—H…π and π…π interactions into a complex three-dimensional network. A quantitative analysis of the intermolecular interactions in crystal (1) were analyzed by using Hirshfeld surface and fingerprint plot, indicating that the strong spikes are mainly ascribed to H…O and H…Cl interactions. The electronic structure was theoretically calculated at the DFT(RB3LYP)/6-31G+(d, p) level for one discrete [Zn(NTB)Cl]+ unit. Frontier molecular orbital analysis shows that the less delocalization between these BD orbits of CH2 group and BD* orbits of benzimidazole group may be facilitating for the formation of the Δ and Λ configurations for the NTB ligand. The mulliken charge analysis shows that the three nitrogen-bonded hydrogen atoms (H3/H5/H7) in the [Zn(NTB)Cl]+ units possesses higher positive charges(about 0.28 a.u.) which can facilitate the formation of N—H…X interactions.

    Key words: multi-benzimidazole; Zinc (II) coordination compound; crystal structure; Hirshfeld surface; DFT

    Carbonic anhydrases (CAs) are widespread zinc-containing enzymes in plants and animals which can catalyze a crucially physiological reaction: the hydration of carbon dioxide to bicarbonate and protons (Fig.1)[1]. The active site of CAs are unambiguously known as three histidine imidazole groups and a water solvent molecule (Fig.2), forming a tetrahedral coordination configuration around the central Zn(II) atom[2]. In order to ascertain its catalytic mechanism, many studies have been mainly focused on the structural mimicking of the active sites of CA. In recent years, multi-benzimidazole ligand tris(2-benzimidazolylmethyl)amine (NTB) has been often used in the design and synthesis of metal-containing enzymatic-mimicking compounds due to its structurally similar to the histidine imidazole group[3-5]. Herein, we used NTB and ZnCl2as the starting materials and obtained a mononuclear Zn(II) compound under a certain conditions. In this paper, its structural characteristic, Hirshfeld surface and frontier orbits have been reported and discussed which can be useful for the future structure-activity-relationship research about CAs.

    Fig.1 Simplified scheme for the catalytic mechanism of carbon anhydrase activity

    Fig.2 Schematic representation of the active site of carbonic anhydrase.

    1 Experimental

    1.1 Materials and measurements

    All chemicals were of reagent grade as received from commercial sources and used without further purification. C, H, N elemental analyses were performed on an Elementar Vario MICRO E III analyzer. Ultraviolet-visible (UV-vis) spectra was recorded on a CARY 60 spectrometer. Infrared (IR) spectra was recorded as KBr pellets on a Perkin Elmer spectrometer (4 000-400 cm-1). All calculations were made by Gaussian 09 software[6]and Gauss View 5 software was used to visualize the optimized structures[7]. The optimized molecular structure parameters of both the compounds are calculated through density functional theory (DFT) method. And the ground state optimizations in the gas phase were carried out using the crystallographic coordinates as the starting point with the method of RB3LYP/6-31G+(d, p). Crystal Explorer 17.5 program was used to perform the Hirshfeld surfaces analysis[8].

    1.2 Synthesis of compound (1)

    Tris(2-benzimidazolylmethyl)amine (NTB) was prepared according a earlier reported procedure[9]. NTB (0.204 g, 5.010-4mol) was dissolved in hot methanol (30.0 mL) and added to a solution of ZnCl2(0.102 g, 7.510-4mol) in 30.0 ml of methanol. Crystals were obtained by slow evaporation of a methanol solution. The mixture was stirred for 30 min at 50 ℃, and then the reaction mixture was filtered. Colorless block crystals suitable for X-ray study were obtained at the bottom of the vessel after the filtrate solution was evaporated at room temperature for two weeks (0.270 g, yield: 67%); Element Analysis: calcd.: C 44.76%, H 4.19%, N 14.05%; Found: C 44.90%, H 3.97%, N 14.25%; UV-Vis: 277.2 nm (ε=1.28104L·cm-1·mol-1). IR: 3 409 (m), 1 623 (w), 1 549 (m), 1 473(s), 1 451(s), 1 144(m), 1 111(s), 1 088(s), 752(s), 627(s).

    1.3 X-ray crystallography

    A colorless crystal with dimension of 0.12 × 0.12 × 0.10 mm3was selected for X-ray data collection on a Bruker SMART APEX CCD area-detector diffractometer equipped with a graphite-monochromatic Mo-Kαradiation (λ=0.071073 nm) at 100(2) K. A total of 10 604 reflections were collected in the range of 1.533°≤ λ ≤ 25.250°, of which 9 770 independent reflections (Rint=0.0389) were collected. In the data reduction, Lorentz and polarization effects and empirical absorption corrections were applied[10](Tab.1). The structure was solved by direct methods and refined by full-matrix least square techniques based on F2using the SHELXS-97 and SHELXL-2014[11-12]programs, respectively. All non-hydrogen atoms were refined anisotropically. H atoms bonded to N atoms were located in difference Fourier maps and refined with restraints N—H=0.086(2) nm and Uiso(H)=1.2Ueq(N), O—H=0.082(2) nm and Uiso(H)=1.5Ueq(O), respectively. All the remaining H atoms were positioned geometrically and treated as riding modes with d(C—H)=0.093 nm, Uiso(H)=1.2Ueq(C, aromatic) and d(C-H)=0.097 nm, Uiso(H)=1.2Ueq(C, methylene).Some selected bond lengths are given in Tab.2. CCDC: 1947285. The crystal data can be obtained from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/ cif or from the authors.

    Tab.1 Selected crystallographic data of compound (1)

    2 Results and discussion

    2.1 Crystal structure description

    For compound (1), it was crystallized in the triclinicP-1 space group and its asymmetric unit was composed of two [Zn(NTB)Cl]+cations, one (ZnCl4)2-anion and four methanol solvent molecules. A very similar analog of (1) was reported crystallized in the monoclinic C2/c space group with the formula of [(NTB(Zn)Cl)]2(ZnCl4)2-(EtOH)4[13]. In both the [Zn(NTB)Cl]+moieties, the zinc(II) ions are coordinated with a N4Cl donor set with the τ parameters of 0.51 (1) for Zn1 and 0.52 (1) for Zn2, respectively, indicating slightly distorted trigonal bi-pyramidal polyhedrons (Fig.3). Their base planes are formed both by three benzimidazole (bzim) nitrogen atoms and the two axial sites are occupied by one tertiary nitrogen atom and one chloride anion. The bond lengths Zn—Nbzimare in a range of 0.201 7(6) nm to 0.205 6 (6) nm. The bond distances between Zn(II) and the tertiary nitrogen atoms (N1 and N1A) are 0.252 9(7) nm and 0.253 9(7) nm, which are much longer than the Zn—Nbzimdistances (Tab.2). The significant elongation is frequently observed in some Zn(NTB)-containing analogs[14-15]. When the weak coordination bonds were omitted, the Zn1 and Zn2 atoms can be also regarded as a tetrahedral configuration. The Zn—Cl bonds in the two cationic and anionic ions are comparable with each other, ranging from 0.225 1(2) nm to 0.230 2(2) nm. The distortion of the trigonal bipyramidal coordination environments around Zn(II) centers are indicated by the deviations of the equatorial angles from 120°. For Zn1 and Zn1A, these three angles are 113.1(3)°/110.8(3)°/115.1(3)° and 113.7(3)°/110.0(2)°/114.7(2)°, respectively. They deviate by 0.055 0 and 0.055 8 nm away from their respective basal planes. For the tetrahedral ZnCl4anion, the four bond distances and angles are similar to some analogs (Tab.2-Tab.3)[13].

    Fig.3 ORTEP molecular structure of compound (1) shown as 30% thermal ellipsoid probability

    Tab.2 Selected bond distances for compound (1) nm

    Tab.3 Selected bond angles for compound (1) °

    From a view along the Namine—Zinc—Cl axial direction, there exist the Δ and Λ configurations for the N—(CH2)3—moiety in NTB ligand, which can assist for the construction of some an-centric supra-molecular structures[16]. In the crystal of compound (1), there are equal amounts of Δ and Λ configurations of [Zn(NTB)Cl]+cations due to the inversion center inP-1 space group. Further research can be focused on the effect of metal ions, solvent, temperature etc. on the assembling of a specific Δ or Λ configuration (Fig.4).

    Fig.4 Representation of a pair of chiral conformers corresponding to clockwise (left, Δ) and anticlockwise (right, Λ) conformations of the tripodal ligand in the [Cu(NTB)]+ cation

    In the crystal packing of (1), the component ions are linked into complex three-dimensional network by combination of intermolecular N—H…Cl, N—H…O and O—H…Cl hydrogen bonds (Fig.5 and Tab.4). Further analysis by using Platon indicates that C—H…π and π…π interactions are extensively occurred between symmetric benzimidazole groups with the nearest centroid-to-centroid distance being only 0.343 4(2) nm[17].

    Fig.5 Part of the three-dimensional hydrogen-bonded network in compound (1) by N—H…O/Cl, O—H…Cl hydrogen bonds and π…π interactions shown as colored dashed lines

    Tab.4 Hydrogen bond parameters in compound (1)

    2.2 Hirshfeld Surface

    To quantitatively classify the intermolecular actions between two types of elements in a crystal packing, three molecular Hirshfeld surface analysis for the three Zn1-, Zn2- and Zn3-containing moieties have been conducted by using the Crystal-Explorer software[8,18](Fig.6(a)-6(c)).

    From Fig.6(a) and Fig.6(b), one can easily found that the two cationic [Zn(NTB)Cl]+units have similar Hirshfeld surfaces mapped over dnorm. Their full fingerprints are also similar to each other when these distinct spikes are compared (Fig.6(d)-6(e)). For instance, each Zn1-containing cationic unit constitutes two N—H…O and one N—H…Cl hydrogen-bonds as an electron-donor. The H…O and H…Cl interactions occupy about 4.1% and 7.2% with the distinct spikes residing at the upper-left corner of the fingerprint plot, respectively. The other two clear spikes are the H…C (23.8%) contact which can be regarded as the C—H…π interactions. For the π…π interactions, it can also be discriminated from the central region of the fingerprint plot with a reciprocal contact surface of 8.2% for C…C/N element contacts. Although the largest surface area is dominated by the H…H contacts (45.7%) indicating the existence of van der Waals’ interactions, they are not dominant driving forces in the crystal packing due to the lack of short distanced spikes. For the Zn1A-containing coordination unit, these H…O, H…Cl, H…C, C…C/N and H…H contact surface areas are 4.3%, 11.9%, 24.2%, 7.2%, 42.8%, respectively, indicating similar intermolecular interactions. As for the tetrahedral configured [ZnCl4]2-unit, its intermolecular interaction is only the Cl…H contacts with a fingerprint area of 94.9% (Fig.6(f)), indicating the formation of strong N—H…Cl hydrogen bonds. In one word, from the Hirshfeld surface analysis the intermolecular interactions can be quantitatively analyzed according a structural research need.

    Fig.6 Hirshfeld surfaces mapped with dnorm for the Zn1 (a), Zn1A (b) and Zn3-containing coordination ions (a)-(c) and their full fingerprint plots (d)-(f)

    2.3 Quantum mechanical study

    2.3.1 Stability The optimization of one [Zn(NTB)Cl]+unit within the Cipoint group is carried out.The final outcome gives a better convergence criterion and no imaginary frequency has been observed. The total energy for it is -1 836.299 097 a.u. and the energies of HOMO and LUMO orbits are -0.338 02 and -0.151 48 a.u., respectively. The HOMO-LUMO gap is 0.186 54 a.u. and the dipole moment is 13.688 6 D. A narrow frontier bond gap may be helpful for its spectroscopic and biological activity.

    2.3.2 Frontier molecular orbital composition In order to ascertain the structure and bond characteristics in [Zn(NTB)Cl]+unit, these highest occupied and lowest unoccupied frontier molecular orbital populations have been analyzed by us. The atomic orbital composition from different type of atoms in the frontier molecular orbits were expressed as the atomic orbital coefficient square sum in the type of atomic orbits and corrected by normalizing the specific molecule orbital[19]. These atoms in [Zn(NTB)Cl]+can be classified into seven moieties according to their coordination environment and connectivity: 1) N2/N3-containing benzmidazole group; 2) N4/N5-containing benzmidazole group; 3) N6/N7-containing benzmidazole group; 4) the three methylene groups; 5) amine N atom; 6) chloride Cl1 atom; 7) metal Zn1 atom.

    According to an orbital contribution analysis (Tab.5), it can be seen that the compositions of HOMO and LUMO orbits are almost averagely coming from three benzimidazole groups, ~32% for the former and ~24% for the latter, respectively (Fig.7). But in the LUMO orbit the three —CH2— groups and the central Zn1 atom also provide apparent contribution to the LUMO orbit (9.0% and 11.9%). The distributions of the HOMOs and LUMOs also demonstrate that some specific electron transferring may occur between these benzimidazole groups. In the UV-vis spectrographic determination, the absorption of π…π electron transfer at about 277.2 nm may be also related with these frontier molecular orbits. In the other frontier molecular orbits, it’s found that the three methylene groups are all giving more contributions than that in the HOMO and LUMO orbits. These results here demonstrate that the electrons are mainly delocalized into three benzimidazole groups.

    Fig.7 The frontier molecular orbits from HOMO-4 to LUMO+4 in compound (1)

    Tab.5 Frontier molecular orbital (MO) compositions from different type of groups and atoms in (1) %

    As for the mulliken charge, it can be easily seen that all the three benzimidazole N atoms (N2/N4/N6) have carried more positive charges (Tab.6), indicating the existence of more stronger interactions between the nitrogen atoms and metal Zn1 center. However, the axial amine N1 and chloride Cl1 atoms possess more negative charges (-0.34 a.u. and-0.45 a.u.). Thus, it can be concluded that the coordination bonds between the Zn—Nbzimshould be stronger than that of the Zn—Namineand Zn—Cl1. Additionally, the H3, H5 and H7 atoms are easily forming hydrogen-bonding because of their more positive charges (Tab.6) which is also verified by the crystal packing analysis.

    Tab.6 Mulliken charges in the optimized structure of compound (1) a.u.

    From Tab.7, we can get some selected interactions between the electron-donors and the electron-acceptors orbits. The degree of their interactions were representing by the stabilization energies (E2), as is well known that the larger the energy (E2) is, the stronger the interaction between the orbits (iandj) is the more tendency of orbital i providing electrons to orbitalj. And more electron-delocalization is formed in the studied bonds regions. In Tab.7, it can be easily seen that these three Namine—C and their neighboring C—C bonding orbits are all giving little stabilization energy (2.78 and 2.14 kJ·mol-1, respectively.) with the C=N double bonds in the imidazole groups. Thus, the less delocalization between these bonding and anti-bonding orbits may be helpful for the formation of the Δ and Λ configurations around the amine N atoms. For the central Zinc(II) coordination bonds, they form the different the stabilization energies between the four LP N orbits and one LP Cl1 orbital with the LP×Zn1 orbital (Tab.7).The weakest one is only 11.54 kJ·mol-1which can be also elucidating the apparently longest Zn-N bond (0.270 8(1) nm) among the coordination bonds.

    Tab.7 Selected calculated results of the compound (1) at the B3LYP/6-31G level by NBO analysis

    3 Conclusion

    In summary, we have reported a new zinc (II) coordination complex, [Zn(NTB)Cl]2·ZnCl4·4(CH3OH), in which the component ions are linked into a complex three-dimensional network by a combination of N—H…O, N—H…Cl and O—H…Cl hydrogen bonds. C—H…π and π…π interactions are also observed in the crystal packing. Hirshfeld surface, frontier molecular orbits compositions and natural bond orbital analysis were also performed for a [Zn(NTB)Cl]+unit in details. The theoretical analysis of this compound is believed to be helpful and guiding for the spectroscopic and biological enzymatic mimic research in the future.

    多毛熟女@视频| 日韩精品青青久久久久久| 婷婷六月久久综合丁香| 日本a在线网址| 人人妻人人澡人人看| 国产片内射在线| 精品卡一卡二卡四卡免费| 在线观看免费视频日本深夜| 丰满的人妻完整版| 日韩av在线大香蕉| √禁漫天堂资源中文www| 欧美乱色亚洲激情| 国产又爽黄色视频| 免费人成视频x8x8入口观看| 91麻豆av在线| 久久国产亚洲av麻豆专区| 丝袜在线中文字幕| 美女高潮到喷水免费观看| 一个人免费在线观看的高清视频| 一级,二级,三级黄色视频| 精品熟女少妇八av免费久了| 国产精品久久电影中文字幕| av免费在线观看网站| 精品国产一区二区三区四区第35| 久久久久久久久久久久大奶| 伦理电影免费视频| 丰满饥渴人妻一区二区三| 丰满的人妻完整版| 国产av又大| 成人18禁高潮啪啪吃奶动态图| 777久久人妻少妇嫩草av网站| 巨乳人妻的诱惑在线观看| av在线天堂中文字幕 | 亚洲欧美日韩高清在线视频| 女人被躁到高潮嗷嗷叫费观| videosex国产| 成人国语在线视频| 曰老女人黄片| 久久精品aⅴ一区二区三区四区| 欧美激情高清一区二区三区| 99久久综合精品五月天人人| 99国产精品一区二区三区| 亚洲成人精品中文字幕电影 | 精品一区二区三区av网在线观看| 一进一出抽搐gif免费好疼 | 午夜激情av网站| 欧美在线黄色| 一边摸一边抽搐一进一小说| 欧美大码av| 国产亚洲av高清不卡| 另类亚洲欧美激情| 久久九九热精品免费| 最新美女视频免费是黄的| 在线观看66精品国产| 久久精品国产亚洲av香蕉五月| 大型av网站在线播放| 久久久久国产一级毛片高清牌| av电影中文网址| 欧美日本亚洲视频在线播放| 国产亚洲精品久久久久5区| 亚洲免费av在线视频| 欧美乱码精品一区二区三区| 日韩精品青青久久久久久| av有码第一页| 超色免费av| 日韩有码中文字幕| 久久久精品国产亚洲av高清涩受| 亚洲一区高清亚洲精品| 狠狠狠狠99中文字幕| 法律面前人人平等表现在哪些方面| 法律面前人人平等表现在哪些方面| 91老司机精品| 脱女人内裤的视频| 中文字幕高清在线视频| 午夜激情av网站| ponron亚洲| 精品人妻在线不人妻| av电影中文网址| 三上悠亚av全集在线观看| 亚洲第一青青草原| 久久久水蜜桃国产精品网| 久久精品91无色码中文字幕| 精品日产1卡2卡| 国产精品一区二区免费欧美| 好看av亚洲va欧美ⅴa在| 超碰97精品在线观看| 午夜a级毛片| 亚洲七黄色美女视频| 国产亚洲欧美98| 人妻丰满熟妇av一区二区三区| 亚洲一区中文字幕在线| 老司机靠b影院| 亚洲午夜精品一区,二区,三区| 日本黄色视频三级网站网址| 亚洲自拍偷在线| 精品久久久久久久毛片微露脸| 热99re8久久精品国产| 99精品在免费线老司机午夜| 亚洲 欧美 日韩 在线 免费| 国产不卡一卡二| 成人三级黄色视频| 亚洲成av片中文字幕在线观看| 亚洲av日韩精品久久久久久密| 日日干狠狠操夜夜爽| 日本wwww免费看| 午夜成年电影在线免费观看| 99国产精品99久久久久| 久热爱精品视频在线9| 91成人精品电影| 亚洲熟妇熟女久久| 在线观看午夜福利视频| 成人影院久久| 麻豆成人av在线观看| 精品人妻1区二区| 俄罗斯特黄特色一大片| 热99re8久久精品国产| 50天的宝宝边吃奶边哭怎么回事| 久热爱精品视频在线9| 国产又色又爽无遮挡免费看| av有码第一页| 国产极品粉嫩免费观看在线| 亚洲 欧美一区二区三区| 欧美日韩黄片免| 12—13女人毛片做爰片一| 亚洲国产精品999在线| 99精品欧美一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 男女高潮啪啪啪动态图| 久热爱精品视频在线9| 国产免费av片在线观看野外av| 夜夜爽天天搞| 一进一出抽搐动态| 免费在线观看日本一区| 无限看片的www在线观看| 少妇粗大呻吟视频| 黄片小视频在线播放| 免费女性裸体啪啪无遮挡网站| 在线av久久热| 9色porny在线观看| 色老头精品视频在线观看| 在线视频色国产色| 亚洲狠狠婷婷综合久久图片| 女警被强在线播放| 亚洲国产欧美网| 日本免费一区二区三区高清不卡 | 色哟哟哟哟哟哟| 丰满的人妻完整版| 亚洲黑人精品在线| 性少妇av在线| 久久精品亚洲精品国产色婷小说| 亚洲伊人色综图| 黑丝袜美女国产一区| 超色免费av| 精品久久久久久电影网| 精品高清国产在线一区| 久久香蕉精品热| 国产免费av片在线观看野外av| 高清黄色对白视频在线免费看| 99精品久久久久人妻精品| 成人亚洲精品av一区二区 | 成人亚洲精品一区在线观看| 亚洲色图 男人天堂 中文字幕| 制服人妻中文乱码| 久热爱精品视频在线9| 亚洲国产看品久久| 欧美日韩福利视频一区二区| 国产精品99久久99久久久不卡| 国产精品二区激情视频| 成熟少妇高潮喷水视频| 少妇粗大呻吟视频| 亚洲五月天丁香| 精品国内亚洲2022精品成人| 一区福利在线观看| 国产国语露脸激情在线看| 精品久久久精品久久久| 男女床上黄色一级片免费看| e午夜精品久久久久久久| 国产精品98久久久久久宅男小说| 亚洲性夜色夜夜综合| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网| 日韩大码丰满熟妇| 亚洲欧美一区二区三区久久| 岛国视频午夜一区免费看| 老司机午夜十八禁免费视频| 亚洲三区欧美一区| 五月开心婷婷网| 成熟少妇高潮喷水视频| 国产欧美日韩一区二区三区在线| 最近最新免费中文字幕在线| 国产亚洲精品一区二区www| 国产av一区二区精品久久| 在线观看日韩欧美| 精品福利观看| 国产av精品麻豆| 黄色丝袜av网址大全| 自线自在国产av| 日韩av在线大香蕉| 搡老熟女国产l中国老女人| 久久欧美精品欧美久久欧美| 午夜福利免费观看在线| 在线免费观看的www视频| 欧美日韩瑟瑟在线播放| av欧美777| 精品国产乱码久久久久久男人| 亚洲精品国产一区二区精华液| 国产亚洲精品久久久久久毛片| 免费高清视频大片| 久久九九热精品免费| 精品国产乱子伦一区二区三区| 日本黄色视频三级网站网址| 日本 av在线| 性色av乱码一区二区三区2| 亚洲avbb在线观看| 老司机在亚洲福利影院| 一区二区日韩欧美中文字幕| 免费人成视频x8x8入口观看| 久久久国产成人精品二区 | 少妇被粗大的猛进出69影院| 久久久久久久精品吃奶| 老司机福利观看| 日韩欧美免费精品| 国产aⅴ精品一区二区三区波| 久久久久亚洲av毛片大全| 在线观看午夜福利视频| 久久久久国产精品人妻aⅴ院| 天堂√8在线中文| 久久久国产一区二区| 亚洲国产欧美日韩在线播放| 午夜福利在线观看吧| 国产亚洲精品综合一区在线观看 | 看片在线看免费视频| 婷婷六月久久综合丁香| 中出人妻视频一区二区| 日韩免费av在线播放| 欧美在线一区亚洲| 国产成+人综合+亚洲专区| 在线免费观看的www视频| 久久久国产成人精品二区 | 成人国语在线视频| 黑人巨大精品欧美一区二区蜜桃| 男人操女人黄网站| 亚洲欧美日韩另类电影网站| 性欧美人与动物交配| 国产亚洲精品一区二区www| 人人妻人人爽人人添夜夜欢视频| 国产成人av教育| 亚洲国产欧美网| 精品乱码久久久久久99久播| 国产精品 欧美亚洲| av中文乱码字幕在线| 欧美乱妇无乱码| 女性被躁到高潮视频| 国产精品九九99| 伦理电影免费视频| 国产主播在线观看一区二区| 大码成人一级视频| 亚洲自拍偷在线| 99香蕉大伊视频| 亚洲午夜精品一区,二区,三区| 露出奶头的视频| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| e午夜精品久久久久久久| 身体一侧抽搐| 91国产中文字幕| 日韩精品中文字幕看吧| 少妇裸体淫交视频免费看高清 | 亚洲成人国产一区在线观看| 午夜成年电影在线免费观看| 亚洲国产看品久久| 夜夜夜夜夜久久久久| 成人特级黄色片久久久久久久| 在线看a的网站| 热re99久久国产66热| 国产成年人精品一区二区 | 免费高清视频大片| 黄片播放在线免费| 亚洲精品一二三| 人妻久久中文字幕网| 欧美+亚洲+日韩+国产| 成人手机av| 激情在线观看视频在线高清| 欧美成人性av电影在线观看| 99国产精品一区二区三区| 90打野战视频偷拍视频| 免费一级毛片在线播放高清视频 | 欧美成狂野欧美在线观看| 曰老女人黄片| 99国产精品一区二区蜜桃av| 久久精品亚洲熟妇少妇任你| 久久人妻熟女aⅴ| 久久国产亚洲av麻豆专区| 88av欧美| 黑人欧美特级aaaaaa片| 91麻豆精品激情在线观看国产 | 免费高清视频大片| 亚洲欧美日韩高清在线视频| 国产精品二区激情视频| 亚洲在线自拍视频| 欧美黄色片欧美黄色片| 成人18禁高潮啪啪吃奶动态图| 男人舔女人下体高潮全视频| 婷婷丁香在线五月| 丁香欧美五月| 99久久综合精品五月天人人| 日本欧美视频一区| 老司机午夜福利在线观看视频| 大型黄色视频在线免费观看| 99热国产这里只有精品6| 精品国产超薄肉色丝袜足j| 久久天躁狠狠躁夜夜2o2o| 老司机亚洲免费影院| 国产av精品麻豆| 男男h啪啪无遮挡| 日本黄色日本黄色录像| 亚洲 欧美一区二区三区| 午夜福利,免费看| 久久伊人香网站| 国产xxxxx性猛交| 国产97色在线日韩免费| 涩涩av久久男人的天堂| 桃色一区二区三区在线观看| 国产三级在线视频| 夜夜夜夜夜久久久久| 韩国精品一区二区三区| 三级毛片av免费| 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区| 欧美日韩av久久| 日日干狠狠操夜夜爽| 国产成+人综合+亚洲专区| 亚洲人成77777在线视频| 日本三级黄在线观看| 悠悠久久av| 丝袜人妻中文字幕| 色婷婷久久久亚洲欧美| 日本黄色日本黄色录像| 久久热在线av| 99国产精品免费福利视频| 国产日韩一区二区三区精品不卡| 岛国视频午夜一区免费看| 国产高清国产精品国产三级| 岛国视频午夜一区免费看| 制服人妻中文乱码| 欧美黑人欧美精品刺激| 久久青草综合色| 国产成年人精品一区二区 | 黄色视频,在线免费观看| 在线国产一区二区在线| 日韩视频一区二区在线观看| 亚洲国产欧美网| 亚洲av日韩精品久久久久久密| 亚洲精品av麻豆狂野| 在线永久观看黄色视频| 亚洲人成电影免费在线| 日日爽夜夜爽网站| 看片在线看免费视频| 国产一区在线观看成人免费| 99久久国产精品久久久| 国产精品1区2区在线观看.| 久久精品人人爽人人爽视色| svipshipincom国产片| 亚洲第一av免费看| 午夜精品在线福利| 久久久久国产精品人妻aⅴ院| 亚洲九九香蕉| 在线观看免费高清a一片| 免费在线观看完整版高清| 免费久久久久久久精品成人欧美视频| 99国产极品粉嫩在线观看| 久久香蕉激情| 一级黄色大片毛片| 99精国产麻豆久久婷婷| 丁香六月欧美| 黄色女人牲交| 国产成人欧美在线观看| 国产高清视频在线播放一区| 桃红色精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 欧美日本中文国产一区发布| 欧美成人免费av一区二区三区| 少妇粗大呻吟视频| 中国美女看黄片| 色老头精品视频在线观看| 亚洲av成人av| 99久久综合精品五月天人人| 久久 成人 亚洲| 男女下面进入的视频免费午夜 | 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区| 午夜日韩欧美国产| 91av网站免费观看| 成年版毛片免费区| 日韩高清综合在线| 12—13女人毛片做爰片一| 99热国产这里只有精品6| 亚洲专区中文字幕在线| 最新在线观看一区二区三区| 午夜福利欧美成人| 国产高清videossex| 亚洲激情在线av| 精品第一国产精品| 国产午夜精品久久久久久| 看片在线看免费视频| 久久久精品欧美日韩精品| 国产亚洲精品一区二区www| 精品免费久久久久久久清纯| 欧美精品亚洲一区二区| 久久九九热精品免费| 少妇粗大呻吟视频| av片东京热男人的天堂| 巨乳人妻的诱惑在线观看| 熟女少妇亚洲综合色aaa.| 午夜福利一区二区在线看| 国产高清国产精品国产三级| 在线天堂中文资源库| 国产成人精品久久二区二区免费| 一夜夜www| 欧美日韩精品网址| 欧美乱妇无乱码| 亚洲专区中文字幕在线| 性欧美人与动物交配| 男人舔女人下体高潮全视频| 精品第一国产精品| 琪琪午夜伦伦电影理论片6080| 午夜91福利影院| 亚洲精品中文字幕一二三四区| 午夜激情av网站| 嫁个100分男人电影在线观看| 久久久久久免费高清国产稀缺| 亚洲人成电影免费在线| 波多野结衣av一区二区av| 欧美另类亚洲清纯唯美| 岛国视频午夜一区免费看| 啦啦啦在线免费观看视频4| 久久精品人人爽人人爽视色| 热99国产精品久久久久久7| 老鸭窝网址在线观看| 成人特级黄色片久久久久久久| 午夜精品久久久久久毛片777| 成年版毛片免费区| 麻豆av在线久日| 精品国产亚洲在线| 精品国产一区二区久久| 亚洲国产毛片av蜜桃av| 正在播放国产对白刺激| 亚洲中文av在线| 欧美乱色亚洲激情| 丝袜人妻中文字幕| 91字幕亚洲| 在线av久久热| 亚洲视频免费观看视频| 中文字幕av电影在线播放| 丝袜美腿诱惑在线| 在线观看66精品国产| 亚洲色图 男人天堂 中文字幕| 国产深夜福利视频在线观看| 校园春色视频在线观看| 亚洲成av片中文字幕在线观看| 看黄色毛片网站| 亚洲七黄色美女视频| 在线观看免费视频日本深夜| 日本一区二区免费在线视频| 搡老岳熟女国产| 伦理电影免费视频| 女性生殖器流出的白浆| 岛国在线观看网站| 成年人黄色毛片网站| 韩国精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 久久中文看片网| 国产1区2区3区精品| 性色av乱码一区二区三区2| 侵犯人妻中文字幕一二三四区| 别揉我奶头~嗯~啊~动态视频| 久久人人精品亚洲av| 亚洲国产中文字幕在线视频| 国产一区二区三区综合在线观看| 国产免费男女视频| 黄片大片在线免费观看| 婷婷精品国产亚洲av在线| 校园春色视频在线观看| 日本黄色日本黄色录像| 日韩国内少妇激情av| 日韩大码丰满熟妇| 波多野结衣高清无吗| 亚洲avbb在线观看| 欧美黑人欧美精品刺激| 国产成+人综合+亚洲专区| 麻豆av在线久日| 日本免费一区二区三区高清不卡 | 亚洲av五月六月丁香网| 99在线视频只有这里精品首页| 色在线成人网| 制服人妻中文乱码| 日韩视频一区二区在线观看| 少妇 在线观看| 亚洲人成电影免费在线| 精品一区二区三卡| 亚洲欧美日韩高清在线视频| 黄频高清免费视频| 国产99白浆流出| 97超级碰碰碰精品色视频在线观看| 亚洲精品久久成人aⅴ小说| 免费在线观看日本一区| 久久精品国产亚洲av高清一级| 黄网站色视频无遮挡免费观看| 亚洲人成伊人成综合网2020| 国产蜜桃级精品一区二区三区| 黄色毛片三级朝国网站| 精品福利永久在线观看| ponron亚洲| 一级片'在线观看视频| 国产成年人精品一区二区 | a在线观看视频网站| 91字幕亚洲| www.精华液| 欧美激情极品国产一区二区三区| 曰老女人黄片| 一进一出抽搐动态| 婷婷六月久久综合丁香| 亚洲中文日韩欧美视频| 久久精品91无色码中文字幕| 国产精品影院久久| 天堂影院成人在线观看| 午夜福利在线免费观看网站| 国产精品一区二区精品视频观看| 午夜老司机福利片| 日韩欧美一区二区三区在线观看| 亚洲av成人一区二区三| www.www免费av| 日本五十路高清| 亚洲精品国产色婷婷电影| 午夜福利在线免费观看网站| 在线观看免费视频日本深夜| 两人在一起打扑克的视频| 宅男免费午夜| 无限看片的www在线观看| 久久性视频一级片| 欧美av亚洲av综合av国产av| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕一二三四区| 久久婷婷成人综合色麻豆| 国产成人欧美在线观看| 亚洲av成人av| 美女国产高潮福利片在线看| 操出白浆在线播放| 午夜福利一区二区在线看| 丝袜美足系列| 丝袜人妻中文字幕| 久久久国产欧美日韩av| 黄色怎么调成土黄色| 国产成人精品久久二区二区91| 一进一出抽搐gif免费好疼 | 国产三级黄色录像| 黄色成人免费大全| 精品无人区乱码1区二区| 久久精品国产亚洲av香蕉五月| 丝袜美足系列| 桃红色精品国产亚洲av| 国产精品久久久av美女十八| 一级毛片女人18水好多| 69av精品久久久久久| 成人国产一区最新在线观看| 国产片内射在线| 丝袜美腿诱惑在线| 老司机靠b影院| 国产成人啪精品午夜网站| 亚洲av电影在线进入| 亚洲欧美日韩另类电影网站| 十分钟在线观看高清视频www| 99国产精品免费福利视频| 亚洲一区中文字幕在线| 午夜老司机福利片| 黄片小视频在线播放| 亚洲va日本ⅴa欧美va伊人久久| 99精品久久久久人妻精品| 80岁老熟妇乱子伦牲交| 香蕉久久夜色| 69精品国产乱码久久久| 一区二区日韩欧美中文字幕| 国产熟女xx| 欧美色视频一区免费| 美女午夜性视频免费| 成人精品一区二区免费| 黄片大片在线免费观看| 国产真人三级小视频在线观看| 99国产精品99久久久久| 午夜免费激情av| 亚洲国产精品999在线| 免费观看精品视频网站| 亚洲国产欧美一区二区综合| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址 | 国产精品一区二区在线不卡| 国产亚洲精品久久久久5区| 欧美一区二区精品小视频在线| 国产精品 欧美亚洲| 久久人妻福利社区极品人妻图片| 久久婷婷成人综合色麻豆| 久久伊人香网站| 中文字幕另类日韩欧美亚洲嫩草| 12—13女人毛片做爰片一| 黄色丝袜av网址大全| 性色av乱码一区二区三区2| 亚洲专区中文字幕在线| 久久人妻av系列| 人成视频在线观看免费观看| 女人高潮潮喷娇喘18禁视频| 精品第一国产精品| 99国产精品一区二区蜜桃av| 精品人妻1区二区| 亚洲情色 制服丝袜| 亚洲性夜色夜夜综合|