• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Implicit Attribute Recognition of Online Clothing Reviews Based on Bidirectional Gated Recurrent Unit-Conditional Random Fields

    2021-04-08 11:09:00WENQinqin溫琴琴TAORanWEIYaping衛(wèi)亞萍MILiying米麗英
    關鍵詞:很漂亮尺碼性價比

    WEN Qinqin(溫琴琴), TAO Ran(陶 然)*, WEI Yaping(衛(wèi)亞萍), MI Liying(米麗英)

    1 College of Computer Science and Technology, Donghua University, Shanghai 201620, China

    2 School of Foreign Studies, Shanghai University of Finance and Economics, Shanghai 200433, China

    Abstract: Sentiment analysis has been widely used to mine users’ opinions on products, product attributes and merchants’ response attitudes from online product reviews. One of the key challenges is that the opinion words in some reviews lack obvious evaluation objects (product attributes). This paper aims to identify implicit attributes from online clothing reviews, and presents a unified model which applies a unified tagging scheme. Our model integrates the indicator consistency (IC) module on the basis of bidirectional gated recurrent unit (BiGRU) with a conditional random fields (CRF) layer (BiGRU-CRF), which denoted as BiGRU-IC-CRF. On the 9640 comments data set of a certain clothing brand, the comparative experiment is carried out by BiGRU, BiGRU with an IC layer (BiGRU-IC) and BiGRU-CRF. The results show that this method has a higher recognition rate, and the F1 value reaches 85.48%. The method proposed in this paper is based on character labeling, which effectively avoids the inaccuracy of word segmentation in natural language processing. The IC module proposed in this paper can maintain the consistency of the product attributes corresponding to the opinion words, thereby enhancing the recognition ability of the original BiGRU-CRF method. This method is not only applicable to the implicit attributes recognition in clothing reviews, but also helpful to other fields implicit attribute recognition of product reviews.

    Key words: implicit attribute; clothing reviews; indicator consistency; a unified tagging scheme

    Introduction

    The online product reviews contain various opinions and experience of users. Through effective analysis of these review information, it can not only help consumers make purchase analysis, but also help merchants improve product quality, improve service quality, and optimize sales strategies[1-2]. Therefore, the need for sentiment analysis of online reviews has become more and more urgent, and has attracted the attention of a wide range of researchers[1-4]. According to the granularity of the processed text, sentiment analysis research can be divided into coarse-grained sentiment analysis and fine-grained sentiment analysis[5]. Coarse-grained sentiment analysis includes text-level and sentence-level sentiment analysis, and fine-grained sentiment analysis is mainly used to analysis the product attributes and the opinions. In most applications, users are more concerned about which attribute people like or dislike, so sentiment analysis for a certain attribute of a product is more meaningful.

    Product attributes in product reviews are divided into explicit attributes and implicit attributes. Explicit attributes refer to a noun or noun phrase that clearly describes the attributes of the product in the comments[1,6], such as “款式很漂亮(the style is very beautiful)”, where “款式(style)” is the explicit attribute of the product; the implicit attributes means that no nouns or noun phrases that clearly describe the attributes of the product appear in the reviews, but the attributes described can be known through semantic understanding[1,6], such as “有點偏小(a little too small)”, which contains only the adjective“小(small)”. Through semantic analysis, we can know that it describes the “尺碼(size)” of the product, so “尺碼(size)” is the implicit attribute of the comment.

    Existing research often ignores the implicit commodity attributes, and most of them focus on the explicit commodity attributes[1-2,4,7]. However, implicit product attributes are very common in online reviews. For example, Wangetal.[8]used the comment sentences containing implicit attributes in the women’s sweater comments accounted for about 36.71% of the total comments, and the car reviews captured by Zhang and Xu[9]contained implicit attributes review sentences accounting for 15.99% of the overall reviews.

    In this paper, we regard the implicit attributes recognition problem of the online clothing reviews as a sequence tagging task and design a unified model, indicator consistency(IC) module on the basis of bidirectional gated recurrent unit (BiGRU) with a conditional random fields (BiGRU-IC-CRF) to handle it in an end-to-end fashion. The proposed model is combined a BiGRU network, an IC module and a CRF network to improve the performance of the original BiGRU-CRF in processing sequence tagging task. We employ IC module to maintain the consistency of the product attributes corresponding to the opinion words. It is based on the gate mechanism that is designed to consolidate the features of the current character and the previous character. In addition, in order to avoid the inaccuracy of Chinese word segmentation from affecting the effect of the model, we adopt the unified tagging scheme with characters as the unit. The unified tagging scheme will be discussed in detail in section 3. Experimental results on real data show that BiGRU-IC-CRF is an effective implicit attribute recognition method.

    1 Related Work

    The main method of implicit attributes recognition is used to construct the explicit attribute words and the emotion words pairs in comment sentences, and then match the emotion words in the implicit comment based on the matching relationship between the attribute words and the emotion words.

    Liuetal.[2]proposed to construct the explicit attribute words and the emotion words pairs in 2005, and then extracted implicit attributes through mapping relations. Qietal.[6]proposed an implicit attributes extraction method based on the co-occurrence relationship of attribute words and emotion words. That was, by clustering explicit attribute words and emotion words in turn, attribute word clusters and emotion word clusters were formed, and the association between single attribute words and emotion words was extended to the relationship between attribute word clusters and emotion word clusters. Zhang and Xu[8]used the car review corpus containing explicit attributes to construct a dictionary in the form of “attributes, opinions, weights”, and used the dictionary as a basis to extract implicit attributes with a multi-strategy implicit attribute extraction algorithm.

    In recent years, machine learning has been widely used in the field of sentiment analysis, and as people study neural networks, deep learning has gradually become the focus of research[4, 7, 10-13]. Xuetal.[14]combined explicit topic models with support vector machines for implicit attributes recognition. Several support vector machine classifiers were constructed to train the selected attributes and use them to detect the corresponding implicit attributes. Cruzetal.[15]manually marked whether a word or phrase in the comment text is an indicator of implicit attributes, and then applied CRF to machine learning. The experimental results showed that this method was better than the naive bayes method, but only the indicator of the implicit attribute was recognized, and the specific attribute was not given. Chen and Chen[16]applied convolutional neural network (CNN) to the recognition of implicit attributes, and achieved good implicit recognition results on the T41-test data set. Wang and Zhang[13]annotated the attribute words and emotional words in the comment corpus after word segmentation to obtain the word sequence, part of speech sequence and annotation sequence, and then used the bidirectional long short-term memory (BiLSTM) with a CRF layer (BiLSTM-CRF) and BiGRU-CRF network to identify the implicit attributes. The experimental results show that the recognition effect of BiLSTM-CRF model and BiGRU-CRF model is better than that of single CRF model. This method can identify the product attributes (including implicit attributes) in the comment sentences, but it does not specify the implicit attributes in the comments.

    The above studies indicated the need to conduct more research on the recognition of implicit product attributes in online reviews, but also provided insights and guidance for our study. We regard the implicit attributes recognition task as a sequence tagging task, and take the character as the sequence annotation unit. BiGRU is used to train the labeled corpus. In order to maintain the consistency of the product attributes corresponding to the opinion words, the feature vector obtained from BiGRU training is transferred to IC module training, and then CRF layer is added to learn some constraints in training data.

    2 Implicit Attributes Recognition Model

    2.1 Task description

    We regard the task of implicit attributes recognition as a sequence labeling problem, and employ a unified tagging scheme. For a given input sequenceX={x1,x2, …,xn} with lengthn, our goal is to predict a tag sequenceY={y1,y2, …,yn}, whereyi∈ys,ysis the set of all possible tags, with a total of 29 tags.

    2.2 BiGRU-IC-CRF model

    As shown in Fig. 1, we integrate IC module on the basis of BiGRU-CRF network to form the BiGRU-IC-CRF model. The IC module is empowered with the gate mechanism, which explicitly integrates the features of the previous character into the current prediction, aiming at maintaining the consistency of the commodity attributes corresponding to the opinion words. The BiGRU-IC-CRF model is mainly composed of four parts: character embedding layer, BiGRU layer, IC layer and CRF layer. First, the comment sentences segmented by character are vectorized. Next, the vectors are input to BiGRU for training to obtain features containing context information, and then, the obtained feature vectors are input to the IC module. Finally, the CRF layer is added to learn some constraints in the training data to obtain the optimal tag sequence. More details of the BiGRU-IC-CRF model is followed in later sections.

    Fig. 1 Structure of BiGRU-IC-CRF model

    2.3 Character embedding

    The character embedding layer is used to map the real input into the computable tensor of the model. The input is a sequenceXcomposed ofncharacters. Thed-dimensional pre-training word vector is obtained by word2vec software, and the outputV={v1,v2, …,vn},V∈Rn×d. Word2vec is a software tool for training word vectors[17], which can quickly and effectively express a character into a vector form through an optimized training model based on a given corpus. We use the continuous bag of words (CBOW) algorithm of Word2vec model to train the character vector (d=128) on the unlabeled online clothing review corpus.

    2.4 BiGRU layer

    Fig. 2 Structure of BiGRU

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    The working principle of the backward GRU is the same as that of the forward GRU. However, different calculation orders are used, one is from front to back, the other is from back to front, so that the calculated feature vector has context information.

    2.5 IC layer

    The output of BiGRU layer is taken as the input of this layer, and the current feature and the previous feature are obtained through IC layer to predict the current unified label.

    Considering that opinion words is mainly composed of multiple characters, such as “穿起來很帥(looks handsome)”, these five characters indicate the same attribute. However, in the labeling task, they may be labeled as opinion words of different attributes. In order to avoid this phenomenon, the method of sentiment consistency(SC) module was designed by Lietal.[7]to maintain the consistency of emotion within the same opinion target. This module introduces a gate mechanism, which uses the features of the previous state and the current state to predict the label of the current character. Because it is to maintain consistency of corresponding attributes within the opinion words, we call this module IC, and the internal structure of the module is shown in Fig. 3.

    Fig. 3 Internal structure of IC module

    The equations of IC module is

    gi=σ(Wghi+bg),

    (10)

    (11)

    2.6 CRF layer

    CRF is an undirected sequence model proposed by Laffertyetal.[19]in 2001. It obtains an optimal label sequence by considering the relationship between adjacent labels. For a sentencex={x1,x2, …,xn} and the prediction sequencey={y1,y2, …,yn}, its score can be defined as

    (12)

    whereTis the state transition matrix, and each elementTi, jin the matrixTrepresents the probability of changing from stateito statej;Pis the scoring result calculated and output by the IC layer, andPi, jrepresents the probability of outputting thej-th label at thei-th character. The dynamic optimization algorithm can be used efficiently to calculate the optimalS(x,y), see Ref.[19] for details.

    3 Unified Tagging Scheme for Implicit Attribute Recognition of Clothing Reviews

    We introduce a unified tagging scheme for implicit attributes recognition of clothing reviews, which is a combination of boundary labels and attribute labels to jointly label opinion words that lack evaluation objects (product attributes). We call opinion words that lack evaluation object in online reviews as implicit attribute indicators. The boundary label is BIEOS, respectively expressed as: B (Begin), the beginning of the implicit attribute indicator; I (Inside), the middle of the implicit attribute indicator; E (End), the end of the implicit attribute indicator; O (Other), other non-implicit attribute indicators; S (Single), the implicit attribute indicator represented by a single character. The term frequency-inverse document frequency (TF-IDF) algorithm is used to extract the top 20 key words from clothing reviews, and then combined with clothing details to manually select seven attribute tags, namely clothing “價格(Price, P)”, “做工(workmanship, W)”, “面料(Fabric, F)”, “款式(Style, S1)”, “性價比(Cost performance, C)”, “尺碼(Size, S2)”and “上身效果(Upper body effect, U)”. The label of each attribute indicator is shown in Table 1.

    Table 1 Attribute indicator label

    The implicit attribute indicator of a single word can be represented by a unified tag like “S-P”, and multiple words are marked together by three tags from the “Start label” column to “End label” column of Table 1. Table 2 gives an example of the unified tagging scheme.

    Table 2 Annotation example

    As shown in Table 2, in the sentence “……有點偏小……(...a little too small...)”, the opinion words “有點偏小(a little too small)” is the implicit attribute indicator of the size. We marked the character “有” as “B-S2”, the characters “點” and “偏” as “I-S2”, and the last character “小” of the opinion words as “E-S2”.

    4 Experiments and Analyses

    4.1 Data sources and preprocessing

    As one of the basic needs of people’s lives, clothing ranks first in the online shopping category. It is of great significance to analyze the data in the field of clothing e-commerce. We took online reviews in the clothing field as the research object, and crawled 12 983 reviews of 10 T-shirts of a certain brand on the T-mall website through crawler technology. After deduplicating the collected data, removing line breaks and other illegal characters such as network symbols, and filtering out comments with less than 10 words, 9 640 valid comments were obtained. Divide the training set, validation set and test set according to the ratio of 8∶1∶1.

    4.2 Experimental results and analyses

    On the corpus labeled under the unified scheme of the section 3, we compared BiGRU-IC-CRF with three models BiGRU, BiGRU-IC and BiGRU-CRF in the environment. We use the commonly used evaluation indicators in sequence labeling tasks, precision (P), recall (R) andF1 value[4, 7, 13]to evaluate the performance of the model.

    Fig. 4 F1 value of different models varying with the number of epochs

    The experiment is based on the PyTorch framework. The learning rate is set to 10-3, and the dimension of the hidden for BiGRU is 128. As shown in Fig. 4, models BiGRU-IC-CRF and BiGRU-CRF tend to be stable after epoch reaches 20. However, models BiGRU and BiGRU-IC reach the highest when epoch is 30, so the models are trained up to 30 with Adam[20]. The experimental comparison results are shown in Table 3.

    Table 3 Test results of different models

    Through comparative experiments, it can be found that theF1 value of the BIGRU model integrated with IC or CRF is 0.17% and 2.99% higher than that of the single BiGRU model, respectively. The IC module is used to further optimize the feature vector of BiGRU, and the CRF is used to obtain a globally optimal label sequence considering the relationship between adjacent labels. Therefore, the effect of integrating IC is not as good as that of integrating CRF.

    Compared with BiGRU, BiGRU-IC and BiGRU-CRF, theF1 value of BiGRU-IC-CRF method is increased by 4.15%, 3.98% and 1.16% respectively, which shows that BiGRU-IC-CRF method achieves better results in the implicit attributes recognition of clothing reviews.

    5 Conclusions

    We investigate the implicit attributes recognition task of the online clothing reviews, which is formulated as a sequence tagging problem with a unified tagging scheme in this paper. The basic architecture of our model is used to integrate the IC module on the basis of the BiGRU-CRF model, which further improves the recognition effect of the model. The IC module is mainly based on the gating mechanism to maintain the consistency of corresponding attributes within the opinion words. We employ the BiGRU to obtain the contextual information of the data, which effectively solves the polysemy problems in Chinese and the problem of emotion words modifying different attributes in different contexts. Moreover, due to the unified tagging scheme, our model can not only extract the opinion words that without evaluation object in the online comments, but also identify the attribute of the commodity indicated by the opinion words. The experimental results show that compared with the commonly used model BiGRU-CRF, the unified model BiGRU-IC-CRF proposed in this paper has a higherF1 value and a better implicit attribute recognition effect.

    Considering that the corpus of this article only involves comments on clothing T-shirts, the next step will be to increase the corpus of various clothing comments to improve the recognition effect of the model.

    猜你喜歡
    很漂亮尺碼性價比
    Simple Pleasure 快樂從哪兒來?
    買房,要的就是性價比
    小康(2021年13期)2021-05-11 05:32:11
    鄭人買履
    采 蜜
    性價比再度提升 Velodyne Acoustics(威力登)Impact 12 MKII
    購物口語大會串
    有范穿衣也是性價比王
    Coco薇(2015年11期)2015-11-09 12:34:52
    性價比大認證 秋季新品 必掃基本款
    Coco薇(2015年10期)2015-10-19 12:16:20
    如何在她毫無防備下表白
    視野(2015年11期)2015-06-24 23:47:42
    淘寶購衣 尺碼不用記
    電腦迷(2012年12期)2012-04-29 23:27:06
    国产亚洲91精品色在线| 亚洲中文字幕日韩| 国产精品国产高清国产av| 18禁动态无遮挡网站| 人妻少妇偷人精品九色| 建设人人有责人人尽责人人享有的 | 中文字幕av在线有码专区| 岛国在线免费视频观看| 丰满少妇做爰视频| 联通29元200g的流量卡| 色吧在线观看| 国产三级中文精品| 免费黄网站久久成人精品| 有码 亚洲区| 久久精品国产亚洲av天美| 成年版毛片免费区| 久久99热这里只有精品18| 天堂av国产一区二区熟女人妻| 亚洲欧美精品专区久久| 久久久久久久久久久免费av| 99热这里只有是精品50| 国产69精品久久久久777片| 精品人妻偷拍中文字幕| av国产久精品久网站免费入址| 国产一区二区三区av在线| 欧美日本视频| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久av不卡| 久99久视频精品免费| 亚洲av日韩在线播放| 晚上一个人看的免费电影| 国国产精品蜜臀av免费| 国产一级毛片七仙女欲春2| 91久久精品电影网| 久久久久久久久大av| 国产亚洲最大av| 六月丁香七月| 在线免费观看不下载黄p国产| 丰满人妻一区二区三区视频av| 久久久欧美国产精品| 欧美成人a在线观看| 久久久久久国产a免费观看| 国产精品电影一区二区三区| 亚洲欧美日韩高清专用| 91狼人影院| 久久午夜福利片| 少妇被粗大猛烈的视频| 亚洲在线自拍视频| 日日撸夜夜添| 搞女人的毛片| 一区二区三区乱码不卡18| 久久精品国产鲁丝片午夜精品| av国产免费在线观看| av视频在线观看入口| 国产色爽女视频免费观看| 晚上一个人看的免费电影| 99热全是精品| 国产精品麻豆人妻色哟哟久久 | 成人三级黄色视频| 国产成人午夜福利电影在线观看| 欧美又色又爽又黄视频| 一个人看视频在线观看www免费| 男女视频在线观看网站免费| 男人舔女人下体高潮全视频| 久久久久免费精品人妻一区二区| 久久久精品94久久精品| 白带黄色成豆腐渣| 亚洲成av人片在线播放无| 久久久精品94久久精品| 蜜桃亚洲精品一区二区三区| 国产精品一二三区在线看| 18+在线观看网站| 高清视频免费观看一区二区 | av在线老鸭窝| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲av片在线观看秒播厂 | 日本一二三区视频观看| 日韩欧美在线乱码| 亚洲av免费在线观看| 精品人妻熟女av久视频| 少妇熟女aⅴ在线视频| 黄片wwwwww| 国产精华一区二区三区| 国产免费福利视频在线观看| 一级黄片播放器| 午夜福利在线观看吧| 2021天堂中文幕一二区在线观| 夫妻性生交免费视频一级片| 精品久久久噜噜| 亚洲国产欧美在线一区| av国产免费在线观看| 国产一区亚洲一区在线观看| 18禁在线无遮挡免费观看视频| 婷婷六月久久综合丁香| 日本免费在线观看一区| 看非洲黑人一级黄片| 国产真实伦视频高清在线观看| 99热精品在线国产| 男女那种视频在线观看| 高清毛片免费看| 久久这里只有精品中国| 精品国内亚洲2022精品成人| 全区人妻精品视频| 2021天堂中文幕一二区在线观| 五月玫瑰六月丁香| 国产极品精品免费视频能看的| 亚洲在久久综合| 国产精品综合久久久久久久免费| 白带黄色成豆腐渣| 人妻制服诱惑在线中文字幕| 久久久久久久亚洲中文字幕| 最近2019中文字幕mv第一页| 免费av毛片视频| 精品久久久久久久久久久久久| 99热网站在线观看| av.在线天堂| av在线亚洲专区| 又爽又黄无遮挡网站| 九九热线精品视视频播放| 插逼视频在线观看| 中文字幕久久专区| 免费大片18禁| 久久精品国产亚洲av涩爱| 少妇人妻精品综合一区二区| 三级经典国产精品| 简卡轻食公司| 成人二区视频| 十八禁国产超污无遮挡网站| 久久久国产成人免费| 国产成人福利小说| 国产成人a∨麻豆精品| 日韩高清综合在线| 欧美bdsm另类| 久久久成人免费电影| 久久99热这里只频精品6学生 | 变态另类丝袜制服| 国产男人的电影天堂91| 91久久精品国产一区二区成人| 汤姆久久久久久久影院中文字幕 | 日本与韩国留学比较| 免费看光身美女| 亚洲天堂国产精品一区在线| 婷婷色av中文字幕| 国产精品一二三区在线看| 国产国拍精品亚洲av在线观看| 天天一区二区日本电影三级| 国产探花在线观看一区二区| 日韩亚洲欧美综合| 日韩高清综合在线| 观看美女的网站| 狂野欧美白嫩少妇大欣赏| 国产亚洲午夜精品一区二区久久 | 麻豆一二三区av精品| 精品人妻一区二区三区麻豆| 日本av手机在线免费观看| 免费看美女性在线毛片视频| 99久久精品国产国产毛片| 日本wwww免费看| 亚洲av中文字字幕乱码综合| 成年女人看的毛片在线观看| 亚洲精品日韩在线中文字幕| 日本五十路高清| 自拍偷自拍亚洲精品老妇| 婷婷色综合大香蕉| 国产精品av视频在线免费观看| 麻豆国产97在线/欧美| 久久精品国产亚洲网站| 亚洲乱码一区二区免费版| 久久久久久大精品| 亚洲国产欧美在线一区| 国产精品乱码一区二三区的特点| 人妻夜夜爽99麻豆av| 精品久久久噜噜| 在线免费十八禁| a级毛色黄片| 国产精品野战在线观看| 国产精品综合久久久久久久免费| 最新中文字幕久久久久| 免费搜索国产男女视频| 日日摸夜夜添夜夜爱| 久久久精品94久久精品| 精品一区二区免费观看| 欧美成人一区二区免费高清观看| 亚洲人成网站在线播| 国产高清有码在线观看视频| 亚洲一区高清亚洲精品| 国产高清有码在线观看视频| 一个人免费在线观看电影| 草草在线视频免费看| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩卡通动漫| 久久欧美精品欧美久久欧美| 中文字幕久久专区| 人妻少妇偷人精品九色| 麻豆av噜噜一区二区三区| 久久草成人影院| 国产亚洲午夜精品一区二区久久 | 男人的好看免费观看在线视频| 午夜福利视频1000在线观看| 大香蕉97超碰在线| 久久久a久久爽久久v久久| 欧美成人精品欧美一级黄| 黑人高潮一二区| 中文字幕久久专区| 精品久久久久久久末码| 七月丁香在线播放| 日韩av不卡免费在线播放| 免费av观看视频| av在线蜜桃| 亚洲伊人久久精品综合 | 欧美性猛交╳xxx乱大交人| 天堂中文最新版在线下载 | 中文在线观看免费www的网站| 在线播放国产精品三级| 欧美一级a爱片免费观看看| 午夜精品国产一区二区电影 | 日韩av在线大香蕉| 亚洲国产欧美人成| 一级毛片电影观看 | 汤姆久久久久久久影院中文字幕 | 日韩国内少妇激情av| 国产av在哪里看| 久久这里只有精品中国| 久久精品影院6| 免费不卡的大黄色大毛片视频在线观看 | 欧美成人精品欧美一级黄| 精品免费久久久久久久清纯| av免费在线看不卡| 长腿黑丝高跟| 精品午夜福利在线看| 亚洲最大成人av| 国产精品美女特级片免费视频播放器| 人妻系列 视频| 国产亚洲精品久久久com| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看吧| 麻豆成人午夜福利视频| 91在线精品国自产拍蜜月| av又黄又爽大尺度在线免费看 | 国语自产精品视频在线第100页| 看片在线看免费视频| 亚洲欧美日韩高清专用| 亚洲婷婷狠狠爱综合网| 一区二区三区乱码不卡18| 欧美性感艳星| 亚洲一区高清亚洲精品| 日本wwww免费看| 国产精品无大码| 岛国在线免费视频观看| 国产欧美日韩精品一区二区| 日本欧美国产在线视频| 亚洲中文字幕日韩| 搞女人的毛片| 狂野欧美激情性xxxx在线观看| 成人性生交大片免费视频hd| 秋霞在线观看毛片| 五月伊人婷婷丁香| 男女下面进入的视频免费午夜| 久久99精品国语久久久| 久久欧美精品欧美久久欧美| 天天一区二区日本电影三级| 国产白丝娇喘喷水9色精品| 七月丁香在线播放| 欧美精品国产亚洲| 国产亚洲91精品色在线| 久久99热这里只频精品6学生 | 99热网站在线观看| 免费av毛片视频| 国产欧美日韩精品一区二区| 日韩欧美在线乱码| 久久99热6这里只有精品| 又粗又硬又长又爽又黄的视频| 国产一区二区在线av高清观看| 美女xxoo啪啪120秒动态图| 一区二区三区四区激情视频| 精品一区二区三区视频在线| 少妇丰满av| 久久精品夜夜夜夜夜久久蜜豆| 久久99蜜桃精品久久| 国产精品国产三级国产av玫瑰| 18禁在线播放成人免费| 91在线精品国自产拍蜜月| 亚洲欧美一区二区三区国产| 久久久a久久爽久久v久久| 麻豆成人av视频| 午夜日本视频在线| 免费观看精品视频网站| 99热6这里只有精品| 成年av动漫网址| 成人美女网站在线观看视频| 欧美性猛交黑人性爽| 在线观看66精品国产| 在线a可以看的网站| 久久国产乱子免费精品| 美女内射精品一级片tv| 午夜激情福利司机影院| 国产成人91sexporn| 插逼视频在线观看| 国产精品电影一区二区三区| 高清视频免费观看一区二区 | 亚洲最大成人中文| 国内精品美女久久久久久| 18+在线观看网站| 亚洲精品456在线播放app| 欧美3d第一页| 久久亚洲国产成人精品v| 久久这里有精品视频免费| 国产熟女欧美一区二区| 国产av码专区亚洲av| 国产一区二区在线观看日韩| 成人特级av手机在线观看| 一区二区三区乱码不卡18| 乱码一卡2卡4卡精品| 亚洲av成人精品一区久久| 亚洲av中文av极速乱| 国产一区亚洲一区在线观看| av卡一久久| 久久久久久久午夜电影| 亚洲自拍偷在线| 黄色一级大片看看| 国产精品永久免费网站| 中文字幕熟女人妻在线| 亚洲欧美日韩东京热| 久久久久久久国产电影| 久久人人爽人人爽人人片va| 成人午夜高清在线视频| 丰满人妻一区二区三区视频av| 麻豆久久精品国产亚洲av| av国产免费在线观看| 欧美精品一区二区大全| 亚洲欧美日韩无卡精品| 久久久国产成人精品二区| 亚洲美女视频黄频| 99视频精品全部免费 在线| 精品酒店卫生间| 日产精品乱码卡一卡2卡三| 伦理电影大哥的女人| 热99在线观看视频| 日本一二三区视频观看| 久久久久免费精品人妻一区二区| 国产精品,欧美在线| 最近最新中文字幕免费大全7| 国产美女午夜福利| 少妇熟女aⅴ在线视频| 日本黄色视频三级网站网址| 91aial.com中文字幕在线观看| 亚洲一级一片aⅴ在线观看| 午夜老司机福利剧场| 看黄色毛片网站| 色综合亚洲欧美另类图片| 亚洲伊人久久精品综合 | 国产精品女同一区二区软件| 97超视频在线观看视频| 亚洲欧美中文字幕日韩二区| 欧美3d第一页| 一级黄片播放器| 男的添女的下面高潮视频| 国语自产精品视频在线第100页| 国产精品永久免费网站| 午夜精品一区二区三区免费看| 午夜久久久久精精品| 日本av手机在线免费观看| 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| 亚洲自拍偷在线| 亚洲人成网站在线观看播放| 直男gayav资源| 亚洲图色成人| 日韩一区二区三区影片| 一区二区三区乱码不卡18| 插阴视频在线观看视频| 成人毛片60女人毛片免费| 99视频精品全部免费 在线| 国产三级中文精品| kizo精华| 色综合色国产| av播播在线观看一区| 日本与韩国留学比较| 亚洲av二区三区四区| 免费一级毛片在线播放高清视频| 蜜桃亚洲精品一区二区三区| 亚洲最大成人av| 中文字幕熟女人妻在线| videos熟女内射| 老司机影院毛片| 国内揄拍国产精品人妻在线| 国产欧美另类精品又又久久亚洲欧美| 久久韩国三级中文字幕| 精品无人区乱码1区二区| 国产精品.久久久| 观看免费一级毛片| 男女下面进入的视频免费午夜| 91久久精品国产一区二区三区| 亚洲av电影不卡..在线观看| 国产91av在线免费观看| 天堂av国产一区二区熟女人妻| 麻豆乱淫一区二区| 最近中文字幕2019免费版| 亚洲无线观看免费| 内射极品少妇av片p| 高清av免费在线| 久久午夜福利片| 91精品国产九色| 国产精品麻豆人妻色哟哟久久 | 久久99热这里只频精品6学生 | 岛国毛片在线播放| 亚洲中文字幕一区二区三区有码在线看| 69av精品久久久久久| 美女内射精品一级片tv| 在线播放国产精品三级| 欧美精品一区二区大全| 婷婷色综合大香蕉| 淫秽高清视频在线观看| 国产在线一区二区三区精 | 啦啦啦韩国在线观看视频| 18禁动态无遮挡网站| 99热这里只有是精品在线观看| 午夜久久久久精精品| 可以在线观看毛片的网站| 天堂影院成人在线观看| 亚洲国产精品合色在线| 免费大片18禁| 寂寞人妻少妇视频99o| 在线观看一区二区三区| 99久久精品热视频| 91av网一区二区| 久久久成人免费电影| 少妇人妻一区二区三区视频| 女人十人毛片免费观看3o分钟| 最近手机中文字幕大全| 人妻夜夜爽99麻豆av| 精品人妻偷拍中文字幕| 成人综合一区亚洲| av福利片在线观看| 欧美精品国产亚洲| 亚洲精品自拍成人| 国国产精品蜜臀av免费| 男女视频在线观看网站免费| 内地一区二区视频在线| 日韩av在线免费看完整版不卡| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 蜜桃亚洲精品一区二区三区| 亚洲精品久久久久久婷婷小说 | 在线观看美女被高潮喷水网站| 最近最新中文字幕免费大全7| 国产精品久久久久久精品电影小说 | 日韩av不卡免费在线播放| 99久久中文字幕三级久久日本| 亚洲久久久久久中文字幕| 91狼人影院| 97在线视频观看| 最近视频中文字幕2019在线8| av专区在线播放| 精品久久久噜噜| 久久这里只有精品中国| 九九久久精品国产亚洲av麻豆| 国产国拍精品亚洲av在线观看| 成人二区视频| 国产精品久久久久久久电影| 中文字幕熟女人妻在线| 尤物成人国产欧美一区二区三区| 天天躁夜夜躁狠狠久久av| 校园人妻丝袜中文字幕| 国产精品熟女久久久久浪| 日本三级黄在线观看| 亚洲电影在线观看av| 日本爱情动作片www.在线观看| 在线播放国产精品三级| 久久精品91蜜桃| 嫩草影院新地址| 免费看av在线观看网站| 色网站视频免费| 成年女人永久免费观看视频| 日本黄色片子视频| 国产成人午夜福利电影在线观看| 久久久久久久久久久免费av| 搡女人真爽免费视频火全软件| 日韩欧美精品免费久久| 秋霞伦理黄片| 亚洲最大成人中文| 久久精品国产自在天天线| 性色avwww在线观看| 国产在视频线在精品| 波多野结衣巨乳人妻| 熟女电影av网| 美女脱内裤让男人舔精品视频| 久久久精品94久久精品| 99热这里只有精品一区| 日本免费在线观看一区| 免费av毛片视频| 国产男人的电影天堂91| 国产91av在线免费观看| 伦精品一区二区三区| 中文字幕熟女人妻在线| 亚洲美女搞黄在线观看| 久久99热这里只有精品18| 成人一区二区视频在线观看| 国产成年人精品一区二区| 亚洲人成网站高清观看| 国产一区有黄有色的免费视频 | 久久99精品国语久久久| 精华霜和精华液先用哪个| 在现免费观看毛片| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 国产精品国产三级国产专区5o | 久久99蜜桃精品久久| 午夜激情欧美在线| 中文字幕免费在线视频6| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲av天美| 日韩制服骚丝袜av| 久久这里有精品视频免费| 久久久久久国产a免费观看| 人妻系列 视频| 少妇的逼水好多| 亚洲国产欧洲综合997久久,| 国产免费又黄又爽又色| 床上黄色一级片| 亚洲国产精品久久男人天堂| 国产精品av视频在线免费观看| 国语对白做爰xxxⅹ性视频网站| 欧美区成人在线视频| 插阴视频在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 免费观看的影片在线观看| 午夜日本视频在线| 午夜爱爱视频在线播放| 午夜a级毛片| 18禁裸乳无遮挡免费网站照片| 午夜福利在线在线| av卡一久久| 成人毛片60女人毛片免费| 婷婷色av中文字幕| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| av福利片在线观看| 久久精品国产亚洲网站| 午夜日本视频在线| av黄色大香蕉| 亚洲成人精品中文字幕电影| 一级爰片在线观看| 搡老妇女老女人老熟妇| 特级一级黄色大片| 两个人视频免费观看高清| 小蜜桃在线观看免费完整版高清| 久久久久久大精品| 免费观看性生交大片5| 一级黄色大片毛片| 18禁裸乳无遮挡免费网站照片| 亚洲精品亚洲一区二区| 成年免费大片在线观看| 日韩国内少妇激情av| 久久久色成人| 日本免费在线观看一区| 亚洲国产精品成人久久小说| 久久精品久久久久久噜噜老黄 | 两个人视频免费观看高清| 国产精品国产高清国产av| 久久久久网色| 亚洲无线观看免费| 最近手机中文字幕大全| 波多野结衣高清无吗| 国产成人a∨麻豆精品| 寂寞人妻少妇视频99o| 日韩av在线大香蕉| 中文亚洲av片在线观看爽| 日韩欧美精品v在线| 超碰97精品在线观看| 日韩av在线免费看完整版不卡| 啦啦啦啦在线视频资源| 日韩视频在线欧美| 中文亚洲av片在线观看爽| 高清午夜精品一区二区三区| 免费观看性生交大片5| 美女被艹到高潮喷水动态| 少妇被粗大猛烈的视频| 国产老妇伦熟女老妇高清| 国产乱来视频区| 日本熟妇午夜| 男的添女的下面高潮视频| 久久久久九九精品影院| 国产精华一区二区三区| av免费观看日本| 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| av视频在线观看入口| 男人狂女人下面高潮的视频| 亚洲不卡免费看| 亚洲中文字幕一区二区三区有码在线看| 只有这里有精品99| 99久国产av精品国产电影| 久久亚洲国产成人精品v| 亚洲精品国产成人久久av| 国产大屁股一区二区在线视频| 26uuu在线亚洲综合色| 麻豆精品久久久久久蜜桃| 亚洲第一区二区三区不卡| 色综合站精品国产| 国产成人a区在线观看| 日韩强制内射视频| 午夜爱爱视频在线播放| 美女国产视频在线观看| 国产v大片淫在线免费观看| 少妇被粗大猛烈的视频| 国产精品人妻久久久久久| 男女国产视频网站| 搞女人的毛片| 国产精品久久久久久精品电影小说 | 亚洲成人精品中文字幕电影| 老司机福利观看| 天天躁夜夜躁狠狠久久av| 国产v大片淫在线免费观看| 国产午夜精品久久久久久一区二区三区|