• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Implicit Attribute Recognition of Online Clothing Reviews Based on Bidirectional Gated Recurrent Unit-Conditional Random Fields

    2021-04-08 11:09:00WENQinqin溫琴琴TAORanWEIYaping衛(wèi)亞萍MILiying米麗英
    關鍵詞:很漂亮尺碼性價比

    WEN Qinqin(溫琴琴), TAO Ran(陶 然)*, WEI Yaping(衛(wèi)亞萍), MI Liying(米麗英)

    1 College of Computer Science and Technology, Donghua University, Shanghai 201620, China

    2 School of Foreign Studies, Shanghai University of Finance and Economics, Shanghai 200433, China

    Abstract: Sentiment analysis has been widely used to mine users’ opinions on products, product attributes and merchants’ response attitudes from online product reviews. One of the key challenges is that the opinion words in some reviews lack obvious evaluation objects (product attributes). This paper aims to identify implicit attributes from online clothing reviews, and presents a unified model which applies a unified tagging scheme. Our model integrates the indicator consistency (IC) module on the basis of bidirectional gated recurrent unit (BiGRU) with a conditional random fields (CRF) layer (BiGRU-CRF), which denoted as BiGRU-IC-CRF. On the 9640 comments data set of a certain clothing brand, the comparative experiment is carried out by BiGRU, BiGRU with an IC layer (BiGRU-IC) and BiGRU-CRF. The results show that this method has a higher recognition rate, and the F1 value reaches 85.48%. The method proposed in this paper is based on character labeling, which effectively avoids the inaccuracy of word segmentation in natural language processing. The IC module proposed in this paper can maintain the consistency of the product attributes corresponding to the opinion words, thereby enhancing the recognition ability of the original BiGRU-CRF method. This method is not only applicable to the implicit attributes recognition in clothing reviews, but also helpful to other fields implicit attribute recognition of product reviews.

    Key words: implicit attribute; clothing reviews; indicator consistency; a unified tagging scheme

    Introduction

    The online product reviews contain various opinions and experience of users. Through effective analysis of these review information, it can not only help consumers make purchase analysis, but also help merchants improve product quality, improve service quality, and optimize sales strategies[1-2]. Therefore, the need for sentiment analysis of online reviews has become more and more urgent, and has attracted the attention of a wide range of researchers[1-4]. According to the granularity of the processed text, sentiment analysis research can be divided into coarse-grained sentiment analysis and fine-grained sentiment analysis[5]. Coarse-grained sentiment analysis includes text-level and sentence-level sentiment analysis, and fine-grained sentiment analysis is mainly used to analysis the product attributes and the opinions. In most applications, users are more concerned about which attribute people like or dislike, so sentiment analysis for a certain attribute of a product is more meaningful.

    Product attributes in product reviews are divided into explicit attributes and implicit attributes. Explicit attributes refer to a noun or noun phrase that clearly describes the attributes of the product in the comments[1,6], such as “款式很漂亮(the style is very beautiful)”, where “款式(style)” is the explicit attribute of the product; the implicit attributes means that no nouns or noun phrases that clearly describe the attributes of the product appear in the reviews, but the attributes described can be known through semantic understanding[1,6], such as “有點偏小(a little too small)”, which contains only the adjective“小(small)”. Through semantic analysis, we can know that it describes the “尺碼(size)” of the product, so “尺碼(size)” is the implicit attribute of the comment.

    Existing research often ignores the implicit commodity attributes, and most of them focus on the explicit commodity attributes[1-2,4,7]. However, implicit product attributes are very common in online reviews. For example, Wangetal.[8]used the comment sentences containing implicit attributes in the women’s sweater comments accounted for about 36.71% of the total comments, and the car reviews captured by Zhang and Xu[9]contained implicit attributes review sentences accounting for 15.99% of the overall reviews.

    In this paper, we regard the implicit attributes recognition problem of the online clothing reviews as a sequence tagging task and design a unified model, indicator consistency(IC) module on the basis of bidirectional gated recurrent unit (BiGRU) with a conditional random fields (BiGRU-IC-CRF) to handle it in an end-to-end fashion. The proposed model is combined a BiGRU network, an IC module and a CRF network to improve the performance of the original BiGRU-CRF in processing sequence tagging task. We employ IC module to maintain the consistency of the product attributes corresponding to the opinion words. It is based on the gate mechanism that is designed to consolidate the features of the current character and the previous character. In addition, in order to avoid the inaccuracy of Chinese word segmentation from affecting the effect of the model, we adopt the unified tagging scheme with characters as the unit. The unified tagging scheme will be discussed in detail in section 3. Experimental results on real data show that BiGRU-IC-CRF is an effective implicit attribute recognition method.

    1 Related Work

    The main method of implicit attributes recognition is used to construct the explicit attribute words and the emotion words pairs in comment sentences, and then match the emotion words in the implicit comment based on the matching relationship between the attribute words and the emotion words.

    Liuetal.[2]proposed to construct the explicit attribute words and the emotion words pairs in 2005, and then extracted implicit attributes through mapping relations. Qietal.[6]proposed an implicit attributes extraction method based on the co-occurrence relationship of attribute words and emotion words. That was, by clustering explicit attribute words and emotion words in turn, attribute word clusters and emotion word clusters were formed, and the association between single attribute words and emotion words was extended to the relationship between attribute word clusters and emotion word clusters. Zhang and Xu[8]used the car review corpus containing explicit attributes to construct a dictionary in the form of “attributes, opinions, weights”, and used the dictionary as a basis to extract implicit attributes with a multi-strategy implicit attribute extraction algorithm.

    In recent years, machine learning has been widely used in the field of sentiment analysis, and as people study neural networks, deep learning has gradually become the focus of research[4, 7, 10-13]. Xuetal.[14]combined explicit topic models with support vector machines for implicit attributes recognition. Several support vector machine classifiers were constructed to train the selected attributes and use them to detect the corresponding implicit attributes. Cruzetal.[15]manually marked whether a word or phrase in the comment text is an indicator of implicit attributes, and then applied CRF to machine learning. The experimental results showed that this method was better than the naive bayes method, but only the indicator of the implicit attribute was recognized, and the specific attribute was not given. Chen and Chen[16]applied convolutional neural network (CNN) to the recognition of implicit attributes, and achieved good implicit recognition results on the T41-test data set. Wang and Zhang[13]annotated the attribute words and emotional words in the comment corpus after word segmentation to obtain the word sequence, part of speech sequence and annotation sequence, and then used the bidirectional long short-term memory (BiLSTM) with a CRF layer (BiLSTM-CRF) and BiGRU-CRF network to identify the implicit attributes. The experimental results show that the recognition effect of BiLSTM-CRF model and BiGRU-CRF model is better than that of single CRF model. This method can identify the product attributes (including implicit attributes) in the comment sentences, but it does not specify the implicit attributes in the comments.

    The above studies indicated the need to conduct more research on the recognition of implicit product attributes in online reviews, but also provided insights and guidance for our study. We regard the implicit attributes recognition task as a sequence tagging task, and take the character as the sequence annotation unit. BiGRU is used to train the labeled corpus. In order to maintain the consistency of the product attributes corresponding to the opinion words, the feature vector obtained from BiGRU training is transferred to IC module training, and then CRF layer is added to learn some constraints in training data.

    2 Implicit Attributes Recognition Model

    2.1 Task description

    We regard the task of implicit attributes recognition as a sequence labeling problem, and employ a unified tagging scheme. For a given input sequenceX={x1,x2, …,xn} with lengthn, our goal is to predict a tag sequenceY={y1,y2, …,yn}, whereyi∈ys,ysis the set of all possible tags, with a total of 29 tags.

    2.2 BiGRU-IC-CRF model

    As shown in Fig. 1, we integrate IC module on the basis of BiGRU-CRF network to form the BiGRU-IC-CRF model. The IC module is empowered with the gate mechanism, which explicitly integrates the features of the previous character into the current prediction, aiming at maintaining the consistency of the commodity attributes corresponding to the opinion words. The BiGRU-IC-CRF model is mainly composed of four parts: character embedding layer, BiGRU layer, IC layer and CRF layer. First, the comment sentences segmented by character are vectorized. Next, the vectors are input to BiGRU for training to obtain features containing context information, and then, the obtained feature vectors are input to the IC module. Finally, the CRF layer is added to learn some constraints in the training data to obtain the optimal tag sequence. More details of the BiGRU-IC-CRF model is followed in later sections.

    Fig. 1 Structure of BiGRU-IC-CRF model

    2.3 Character embedding

    The character embedding layer is used to map the real input into the computable tensor of the model. The input is a sequenceXcomposed ofncharacters. Thed-dimensional pre-training word vector is obtained by word2vec software, and the outputV={v1,v2, …,vn},V∈Rn×d. Word2vec is a software tool for training word vectors[17], which can quickly and effectively express a character into a vector form through an optimized training model based on a given corpus. We use the continuous bag of words (CBOW) algorithm of Word2vec model to train the character vector (d=128) on the unlabeled online clothing review corpus.

    2.4 BiGRU layer

    Fig. 2 Structure of BiGRU

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    The working principle of the backward GRU is the same as that of the forward GRU. However, different calculation orders are used, one is from front to back, the other is from back to front, so that the calculated feature vector has context information.

    2.5 IC layer

    The output of BiGRU layer is taken as the input of this layer, and the current feature and the previous feature are obtained through IC layer to predict the current unified label.

    Considering that opinion words is mainly composed of multiple characters, such as “穿起來很帥(looks handsome)”, these five characters indicate the same attribute. However, in the labeling task, they may be labeled as opinion words of different attributes. In order to avoid this phenomenon, the method of sentiment consistency(SC) module was designed by Lietal.[7]to maintain the consistency of emotion within the same opinion target. This module introduces a gate mechanism, which uses the features of the previous state and the current state to predict the label of the current character. Because it is to maintain consistency of corresponding attributes within the opinion words, we call this module IC, and the internal structure of the module is shown in Fig. 3.

    Fig. 3 Internal structure of IC module

    The equations of IC module is

    gi=σ(Wghi+bg),

    (10)

    (11)

    2.6 CRF layer

    CRF is an undirected sequence model proposed by Laffertyetal.[19]in 2001. It obtains an optimal label sequence by considering the relationship between adjacent labels. For a sentencex={x1,x2, …,xn} and the prediction sequencey={y1,y2, …,yn}, its score can be defined as

    (12)

    whereTis the state transition matrix, and each elementTi, jin the matrixTrepresents the probability of changing from stateito statej;Pis the scoring result calculated and output by the IC layer, andPi, jrepresents the probability of outputting thej-th label at thei-th character. The dynamic optimization algorithm can be used efficiently to calculate the optimalS(x,y), see Ref.[19] for details.

    3 Unified Tagging Scheme for Implicit Attribute Recognition of Clothing Reviews

    We introduce a unified tagging scheme for implicit attributes recognition of clothing reviews, which is a combination of boundary labels and attribute labels to jointly label opinion words that lack evaluation objects (product attributes). We call opinion words that lack evaluation object in online reviews as implicit attribute indicators. The boundary label is BIEOS, respectively expressed as: B (Begin), the beginning of the implicit attribute indicator; I (Inside), the middle of the implicit attribute indicator; E (End), the end of the implicit attribute indicator; O (Other), other non-implicit attribute indicators; S (Single), the implicit attribute indicator represented by a single character. The term frequency-inverse document frequency (TF-IDF) algorithm is used to extract the top 20 key words from clothing reviews, and then combined with clothing details to manually select seven attribute tags, namely clothing “價格(Price, P)”, “做工(workmanship, W)”, “面料(Fabric, F)”, “款式(Style, S1)”, “性價比(Cost performance, C)”, “尺碼(Size, S2)”and “上身效果(Upper body effect, U)”. The label of each attribute indicator is shown in Table 1.

    Table 1 Attribute indicator label

    The implicit attribute indicator of a single word can be represented by a unified tag like “S-P”, and multiple words are marked together by three tags from the “Start label” column to “End label” column of Table 1. Table 2 gives an example of the unified tagging scheme.

    Table 2 Annotation example

    As shown in Table 2, in the sentence “……有點偏小……(...a little too small...)”, the opinion words “有點偏小(a little too small)” is the implicit attribute indicator of the size. We marked the character “有” as “B-S2”, the characters “點” and “偏” as “I-S2”, and the last character “小” of the opinion words as “E-S2”.

    4 Experiments and Analyses

    4.1 Data sources and preprocessing

    As one of the basic needs of people’s lives, clothing ranks first in the online shopping category. It is of great significance to analyze the data in the field of clothing e-commerce. We took online reviews in the clothing field as the research object, and crawled 12 983 reviews of 10 T-shirts of a certain brand on the T-mall website through crawler technology. After deduplicating the collected data, removing line breaks and other illegal characters such as network symbols, and filtering out comments with less than 10 words, 9 640 valid comments were obtained. Divide the training set, validation set and test set according to the ratio of 8∶1∶1.

    4.2 Experimental results and analyses

    On the corpus labeled under the unified scheme of the section 3, we compared BiGRU-IC-CRF with three models BiGRU, BiGRU-IC and BiGRU-CRF in the environment. We use the commonly used evaluation indicators in sequence labeling tasks, precision (P), recall (R) andF1 value[4, 7, 13]to evaluate the performance of the model.

    Fig. 4 F1 value of different models varying with the number of epochs

    The experiment is based on the PyTorch framework. The learning rate is set to 10-3, and the dimension of the hidden for BiGRU is 128. As shown in Fig. 4, models BiGRU-IC-CRF and BiGRU-CRF tend to be stable after epoch reaches 20. However, models BiGRU and BiGRU-IC reach the highest when epoch is 30, so the models are trained up to 30 with Adam[20]. The experimental comparison results are shown in Table 3.

    Table 3 Test results of different models

    Through comparative experiments, it can be found that theF1 value of the BIGRU model integrated with IC or CRF is 0.17% and 2.99% higher than that of the single BiGRU model, respectively. The IC module is used to further optimize the feature vector of BiGRU, and the CRF is used to obtain a globally optimal label sequence considering the relationship between adjacent labels. Therefore, the effect of integrating IC is not as good as that of integrating CRF.

    Compared with BiGRU, BiGRU-IC and BiGRU-CRF, theF1 value of BiGRU-IC-CRF method is increased by 4.15%, 3.98% and 1.16% respectively, which shows that BiGRU-IC-CRF method achieves better results in the implicit attributes recognition of clothing reviews.

    5 Conclusions

    We investigate the implicit attributes recognition task of the online clothing reviews, which is formulated as a sequence tagging problem with a unified tagging scheme in this paper. The basic architecture of our model is used to integrate the IC module on the basis of the BiGRU-CRF model, which further improves the recognition effect of the model. The IC module is mainly based on the gating mechanism to maintain the consistency of corresponding attributes within the opinion words. We employ the BiGRU to obtain the contextual information of the data, which effectively solves the polysemy problems in Chinese and the problem of emotion words modifying different attributes in different contexts. Moreover, due to the unified tagging scheme, our model can not only extract the opinion words that without evaluation object in the online comments, but also identify the attribute of the commodity indicated by the opinion words. The experimental results show that compared with the commonly used model BiGRU-CRF, the unified model BiGRU-IC-CRF proposed in this paper has a higherF1 value and a better implicit attribute recognition effect.

    Considering that the corpus of this article only involves comments on clothing T-shirts, the next step will be to increase the corpus of various clothing comments to improve the recognition effect of the model.

    猜你喜歡
    很漂亮尺碼性價比
    Simple Pleasure 快樂從哪兒來?
    買房,要的就是性價比
    小康(2021年13期)2021-05-11 05:32:11
    鄭人買履
    采 蜜
    性價比再度提升 Velodyne Acoustics(威力登)Impact 12 MKII
    購物口語大會串
    有范穿衣也是性價比王
    Coco薇(2015年11期)2015-11-09 12:34:52
    性價比大認證 秋季新品 必掃基本款
    Coco薇(2015年10期)2015-10-19 12:16:20
    如何在她毫無防備下表白
    視野(2015年11期)2015-06-24 23:47:42
    淘寶購衣 尺碼不用記
    電腦迷(2012年12期)2012-04-29 23:27:06
    国产在线观看jvid| 亚洲国产欧美人成| 男女午夜视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 日本三级黄在线观看| 亚洲男人的天堂狠狠| 老司机午夜十八禁免费视频| 这个男人来自地球电影免费观看| 亚洲av熟女| 97碰自拍视频| 熟女电影av网| 国产精品亚洲一级av第二区| 久久精品亚洲精品国产色婷小说| 黄色a级毛片大全视频| 国产精品久久电影中文字幕| 亚洲第一欧美日韩一区二区三区| 一进一出抽搐动态| 精品免费久久久久久久清纯| 中文字幕熟女人妻在线| 色综合站精品国产| 亚洲18禁久久av| 久久亚洲精品不卡| 1024香蕉在线观看| 99精品欧美一区二区三区四区| 一区福利在线观看| 他把我摸到了高潮在线观看| av国产免费在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久99热这里只有精品18| 国产欧美日韩精品亚洲av| 男女之事视频高清在线观看| 青草久久国产| 这个男人来自地球电影免费观看| 在线看三级毛片| 中文在线观看免费www的网站 | 国产精品99久久99久久久不卡| 精品少妇一区二区三区视频日本电影| 成人av一区二区三区在线看| 国产在线观看jvid| 国产高清激情床上av| 国产亚洲欧美在线一区二区| 大型av网站在线播放| 亚洲精品中文字幕一二三四区| 1024视频免费在线观看| 午夜亚洲福利在线播放| av有码第一页| 欧美一区二区国产精品久久精品 | 亚洲九九香蕉| 亚洲国产欧洲综合997久久,| 欧美精品啪啪一区二区三区| 一级毛片高清免费大全| 国内久久婷婷六月综合欲色啪| aaaaa片日本免费| 一本一本综合久久| 色播亚洲综合网| 亚洲狠狠婷婷综合久久图片| 欧美日韩乱码在线| 国产真实乱freesex| 欧美成人一区二区免费高清观看 | 亚洲无线在线观看| 精品乱码久久久久久99久播| av在线播放免费不卡| 欧美又色又爽又黄视频| 日本黄色视频三级网站网址| 成人国产综合亚洲| 色综合婷婷激情| 看免费av毛片| 日韩欧美国产在线观看| 可以免费在线观看a视频的电影网站| 欧美日韩一级在线毛片| 久久久久国内视频| 热99re8久久精品国产| 成人18禁高潮啪啪吃奶动态图| 亚洲专区字幕在线| 国产精品国产高清国产av| 亚洲一区二区三区色噜噜| 五月伊人婷婷丁香| 黄片小视频在线播放| 国产伦人伦偷精品视频| 狂野欧美白嫩少妇大欣赏| a在线观看视频网站| 人成视频在线观看免费观看| 国产精品av久久久久免费| 免费在线观看完整版高清| 久久精品夜夜夜夜夜久久蜜豆 | 97人妻精品一区二区三区麻豆| 国产精品综合久久久久久久免费| 亚洲人成网站在线播放欧美日韩| 好男人电影高清在线观看| 少妇粗大呻吟视频| 夜夜看夜夜爽夜夜摸| 亚洲午夜精品一区,二区,三区| 国产午夜精品论理片| 日韩欧美在线乱码| 成人欧美大片| 亚洲欧美日韩高清在线视频| 两个人看的免费小视频| 国产精品久久电影中文字幕| 高清在线国产一区| 亚洲av电影不卡..在线观看| 精品久久蜜臀av无| 国内久久婷婷六月综合欲色啪| 男女那种视频在线观看| 午夜激情福利司机影院| 18美女黄网站色大片免费观看| 久久久国产精品麻豆| 一进一出好大好爽视频| 午夜影院日韩av| 精品国产亚洲在线| 欧美绝顶高潮抽搐喷水| 日韩大尺度精品在线看网址| 女人被狂操c到高潮| 真人一进一出gif抽搐免费| 亚洲欧美日韩高清专用| 国产成人aa在线观看| 午夜精品在线福利| 亚洲成人久久爱视频| x7x7x7水蜜桃| 又爽又黄无遮挡网站| 熟女少妇亚洲综合色aaa.| 欧美日韩亚洲国产一区二区在线观看| 亚洲av电影不卡..在线观看| 亚洲国产精品久久男人天堂| 精品第一国产精品| 日日摸夜夜添夜夜添小说| 国产亚洲精品综合一区在线观看 | 欧美黑人精品巨大| 色综合亚洲欧美另类图片| 亚洲熟妇熟女久久| 亚洲七黄色美女视频| 免费看十八禁软件| 国产麻豆成人av免费视频| 欧美一级毛片孕妇| 国产在线精品亚洲第一网站| 亚洲午夜理论影院| 国产亚洲av高清不卡| 日韩欧美国产一区二区入口| avwww免费| 十八禁网站免费在线| 日本免费a在线| 又大又爽又粗| 中文字幕精品亚洲无线码一区| 可以免费在线观看a视频的电影网站| 高清在线国产一区| 色综合婷婷激情| 精品不卡国产一区二区三区| 老司机靠b影院| 美女大奶头视频| 深夜精品福利| 亚洲精品中文字幕一二三四区| 这个男人来自地球电影免费观看| 无人区码免费观看不卡| 最新美女视频免费是黄的| 丁香六月欧美| 国产精品一区二区精品视频观看| 国产av在哪里看| 国产精品久久久人人做人人爽| 亚洲激情在线av| 欧美黑人欧美精品刺激| 国产精品一区二区三区四区久久| www.999成人在线观看| 九色成人免费人妻av| 99精品欧美一区二区三区四区| 老汉色av国产亚洲站长工具| 女生性感内裤真人,穿戴方法视频| 久久精品综合一区二区三区| 俄罗斯特黄特色一大片| av视频在线观看入口| 欧美黑人巨大hd| 国产视频内射| 啦啦啦观看免费观看视频高清| 日日夜夜操网爽| 天堂av国产一区二区熟女人妻 | 夜夜看夜夜爽夜夜摸| 我的老师免费观看完整版| www.自偷自拍.com| 无遮挡黄片免费观看| 国产又色又爽无遮挡免费看| 黄色女人牲交| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 久久久久久亚洲精品国产蜜桃av| 欧美成人免费av一区二区三区| 日本在线视频免费播放| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩黄片免| 亚洲精品美女久久av网站| av福利片在线| 黄色a级毛片大全视频| netflix在线观看网站| 无限看片的www在线观看| 亚洲av五月六月丁香网| 亚洲一区二区三区色噜噜| 成人国产一区最新在线观看| 亚洲欧美日韩无卡精品| 香蕉av资源在线| 国产精品日韩av在线免费观看| 久久久精品欧美日韩精品| 免费人成视频x8x8入口观看| www.www免费av| 成人av在线播放网站| 桃色一区二区三区在线观看| 美女扒开内裤让男人捅视频| 中文字幕最新亚洲高清| 日日爽夜夜爽网站| www日本在线高清视频| 精品一区二区三区视频在线观看免费| 亚洲 国产 在线| 午夜福利欧美成人| 99热只有精品国产| 亚洲九九香蕉| www.www免费av| 亚洲人与动物交配视频| 一卡2卡三卡四卡精品乱码亚洲| 久久热在线av| 欧美日本视频| 小说图片视频综合网站| 伊人久久大香线蕉亚洲五| 国产一区二区在线观看日韩 | 国产精华一区二区三区| 日本撒尿小便嘘嘘汇集6| 国内久久婷婷六月综合欲色啪| 熟妇人妻久久中文字幕3abv| 香蕉久久夜色| 亚洲最大成人中文| 三级男女做爰猛烈吃奶摸视频| 国产一级毛片七仙女欲春2| 999久久久国产精品视频| 97碰自拍视频| 巨乳人妻的诱惑在线观看| 在线永久观看黄色视频| 在线免费观看的www视频| 床上黄色一级片| 亚洲九九香蕉| 亚洲aⅴ乱码一区二区在线播放 | 欧美乱码精品一区二区三区| 欧美精品啪啪一区二区三区| 麻豆成人av在线观看| 动漫黄色视频在线观看| 999久久久国产精品视频| 村上凉子中文字幕在线| 国产真人三级小视频在线观看| 久久精品国产亚洲av香蕉五月| 日本a在线网址| 国产日本99.免费观看| 亚洲在线自拍视频| 国产午夜福利久久久久久| 日本 av在线| 欧美性猛交╳xxx乱大交人| 久久午夜亚洲精品久久| www国产在线视频色| 黄色毛片三级朝国网站| 女同久久另类99精品国产91| 美女大奶头视频| 久久久久久大精品| 两性夫妻黄色片| 日韩欧美在线二视频| 国产午夜精品论理片| 少妇粗大呻吟视频| 91麻豆精品激情在线观看国产| 国产伦人伦偷精品视频| 午夜老司机福利片| 亚洲在线自拍视频| 国产精品1区2区在线观看.| 亚洲自拍偷在线| 国产三级黄色录像| 久久午夜亚洲精品久久| 久久伊人香网站| 不卡av一区二区三区| 亚洲av成人不卡在线观看播放网| 欧美黑人欧美精品刺激| 久久精品成人免费网站| 免费看日本二区| 色综合婷婷激情| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品电影| 亚洲精品中文字幕一二三四区| 18禁黄网站禁片午夜丰满| 国产激情偷乱视频一区二区| 一进一出抽搐gif免费好疼| 在线免费观看的www视频| 成人午夜高清在线视频| 成年免费大片在线观看| 中文字幕高清在线视频| 国产亚洲av高清不卡| 男女做爰动态图高潮gif福利片| 亚洲aⅴ乱码一区二区在线播放 | 午夜免费成人在线视频| 欧美性猛交╳xxx乱大交人| 国产69精品久久久久777片 | 午夜成年电影在线免费观看| 久久人人精品亚洲av| 制服丝袜大香蕉在线| 国产精品 欧美亚洲| 色哟哟哟哟哟哟| 婷婷六月久久综合丁香| 少妇裸体淫交视频免费看高清 | 国产精品永久免费网站| 日韩国内少妇激情av| 久久久久亚洲av毛片大全| 长腿黑丝高跟| 桃红色精品国产亚洲av| 午夜成年电影在线免费观看| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播| 日韩三级视频一区二区三区| 嫁个100分男人电影在线观看| 精品日产1卡2卡| 亚洲 欧美一区二区三区| 亚洲人成网站在线播放欧美日韩| 中文字幕人成人乱码亚洲影| 91av网站免费观看| 老司机午夜十八禁免费视频| 久久 成人 亚洲| 日本黄大片高清| 亚洲,欧美精品.| 久久精品91无色码中文字幕| 午夜福利成人在线免费观看| 国产成+人综合+亚洲专区| 神马国产精品三级电影在线观看 | 天堂影院成人在线观看| 国产黄片美女视频| av国产免费在线观看| 少妇裸体淫交视频免费看高清 | 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人欧美精品刺激| 高清毛片免费观看视频网站| 伦理电影免费视频| 又紧又爽又黄一区二区| av欧美777| 色播亚洲综合网| 精品欧美一区二区三区在线| 又黄又粗又硬又大视频| 亚洲成人精品中文字幕电影| 黄色视频,在线免费观看| 99热6这里只有精品| 亚洲av片天天在线观看| 国产精品久久久久久亚洲av鲁大| av有码第一页| 日韩有码中文字幕| 国产精品野战在线观看| 伊人久久大香线蕉亚洲五| 91成年电影在线观看| 午夜激情福利司机影院| 麻豆一二三区av精品| 不卡一级毛片| 十八禁网站免费在线| 麻豆国产av国片精品| 日韩大尺度精品在线看网址| 我的老师免费观看完整版| 亚洲精品美女久久久久99蜜臀| 91国产中文字幕| 亚洲欧美日韩高清在线视频| 久久婷婷成人综合色麻豆| 国产av不卡久久| 在线观看日韩欧美| 99国产精品99久久久久| 日韩精品青青久久久久久| 中文字幕熟女人妻在线| 国产97色在线日韩免费| 日本熟妇午夜| 一区福利在线观看| 久久精品91无色码中文字幕| 中文在线观看免费www的网站 | 最近最新免费中文字幕在线| √禁漫天堂资源中文www| 日韩中文字幕欧美一区二区| 亚洲精品色激情综合| 禁无遮挡网站| 亚洲欧美日韩高清在线视频| 久久久久久人人人人人| 久久人妻福利社区极品人妻图片| 性色av乱码一区二区三区2| 国产片内射在线| 亚洲国产精品sss在线观看| 久久久国产成人免费| 国产精品98久久久久久宅男小说| 亚洲九九香蕉| 一级毛片精品| www.自偷自拍.com| 九九热线精品视视频播放| 黄色片一级片一级黄色片| 亚洲精品av麻豆狂野| 两个人的视频大全免费| 亚洲精品美女久久久久99蜜臀| 欧美乱妇无乱码| 淫妇啪啪啪对白视频| 亚洲一区二区三区色噜噜| 亚洲国产欧洲综合997久久,| 制服诱惑二区| 日韩大尺度精品在线看网址| 午夜两性在线视频| 久久久久久久久久黄片| 毛片女人毛片| 男女那种视频在线观看| 女同久久另类99精品国产91| www.www免费av| 久久国产乱子伦精品免费另类| 性色av乱码一区二区三区2| 亚洲男人的天堂狠狠| 亚洲欧美精品综合一区二区三区| 美女高潮喷水抽搐中文字幕| 桃色一区二区三区在线观看| 久久婷婷成人综合色麻豆| 大型av网站在线播放| 国产av麻豆久久久久久久| 国产蜜桃级精品一区二区三区| 午夜老司机福利片| 久久久久久免费高清国产稀缺| 少妇裸体淫交视频免费看高清 | 国产亚洲精品综合一区在线观看 | 狂野欧美激情性xxxx| 在线观看66精品国产| 九色成人免费人妻av| 久久久久久亚洲精品国产蜜桃av| 免费无遮挡裸体视频| 长腿黑丝高跟| 欧美黄色淫秽网站| 一二三四在线观看免费中文在| 天堂动漫精品| 国产亚洲欧美98| 国产乱人伦免费视频| 美女高潮喷水抽搐中文字幕| 黄色片一级片一级黄色片| 日本熟妇午夜| 国产成年人精品一区二区| 国内精品久久久久久久电影| 又黄又爽又免费观看的视频| 亚洲男人天堂网一区| 亚洲成a人片在线一区二区| 午夜激情av网站| 99在线人妻在线中文字幕| 久久久久久亚洲精品国产蜜桃av| 又黄又爽又免费观看的视频| 99热只有精品国产| 国产精品美女特级片免费视频播放器 | 久久久久久久久久黄片| 亚洲人成电影免费在线| 亚洲最大成人中文| 99精品欧美一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲电影在线观看av| 亚洲狠狠婷婷综合久久图片| svipshipincom国产片| 国内少妇人妻偷人精品xxx网站 | 叶爱在线成人免费视频播放| 高清在线国产一区| 男人舔奶头视频| 亚洲五月天丁香| 精品久久久久久久人妻蜜臀av| 男女下面进入的视频免费午夜| 久久 成人 亚洲| 在线视频色国产色| 禁无遮挡网站| 欧美绝顶高潮抽搐喷水| 日本精品一区二区三区蜜桃| 欧美3d第一页| 不卡一级毛片| 亚洲av熟女| 久久 成人 亚洲| 国产高清激情床上av| 午夜激情福利司机影院| 在线观看66精品国产| 最近视频中文字幕2019在线8| www.熟女人妻精品国产| 99国产极品粉嫩在线观看| 高清毛片免费观看视频网站| 亚洲专区字幕在线| 国产精品一区二区三区四区久久| 久久草成人影院| 免费在线观看影片大全网站| av视频在线观看入口| 久久 成人 亚洲| 国产精品久久久人人做人人爽| 日本撒尿小便嘘嘘汇集6| 日韩欧美 国产精品| 99国产综合亚洲精品| 在线播放国产精品三级| 亚洲全国av大片| 99久久无色码亚洲精品果冻| 怎么达到女性高潮| 搡老岳熟女国产| 亚洲色图 男人天堂 中文字幕| 国产伦一二天堂av在线观看| 18禁国产床啪视频网站| 亚洲男人的天堂狠狠| 国产精品香港三级国产av潘金莲| 久99久视频精品免费| 在线a可以看的网站| 久久久久久国产a免费观看| 美女扒开内裤让男人捅视频| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 精品久久久久久久久久免费视频| 亚洲精品一区av在线观看| 十八禁人妻一区二区| 久久精品国产综合久久久| 国产精品久久久人人做人人爽| 非洲黑人性xxxx精品又粗又长| 亚洲精品一卡2卡三卡4卡5卡| videosex国产| 高清在线国产一区| 人人妻,人人澡人人爽秒播| 一边摸一边抽搐一进一小说| 午夜久久久久精精品| 久久久久久免费高清国产稀缺| 人成视频在线观看免费观看| 欧美绝顶高潮抽搐喷水| 欧美日韩中文字幕国产精品一区二区三区| 久久人妻av系列| 日韩精品免费视频一区二区三区| 欧美色欧美亚洲另类二区| 色哟哟哟哟哟哟| 日韩大码丰满熟妇| 成年版毛片免费区| 日韩欧美免费精品| 真人做人爱边吃奶动态| 亚洲av美国av| 成人18禁在线播放| 五月伊人婷婷丁香| 久久久久性生活片| 成人av一区二区三区在线看| www.www免费av| 老熟妇乱子伦视频在线观看| 精品国产乱码久久久久久男人| 欧美最黄视频在线播放免费| 精品国产美女av久久久久小说| 中出人妻视频一区二区| 人人妻,人人澡人人爽秒播| 欧美色视频一区免费| 一边摸一边做爽爽视频免费| 国产成人精品无人区| 一本综合久久免费| 淫秽高清视频在线观看| 免费在线观看日本一区| 亚洲激情在线av| 国产激情久久老熟女| 亚洲欧美日韩无卡精品| 久久这里只有精品19| 两个人的视频大全免费| 国产精华一区二区三区| 黄色成人免费大全| av视频在线观看入口| 欧美乱色亚洲激情| 国产精品精品国产色婷婷| 久久久久久久久中文| 国产黄a三级三级三级人| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| 色综合欧美亚洲国产小说| 国产成人系列免费观看| 久久久久久亚洲精品国产蜜桃av| 国产精品影院久久| 美女 人体艺术 gogo| 999久久久国产精品视频| tocl精华| 身体一侧抽搐| 制服诱惑二区| 欧美日韩黄片免| 午夜福利视频1000在线观看| 精品少妇一区二区三区视频日本电影| 99久久无色码亚洲精品果冻| 久久久久国产精品人妻aⅴ院| 欧美zozozo另类| 黑人巨大精品欧美一区二区mp4| 成年人黄色毛片网站| 999久久久国产精品视频| 两人在一起打扑克的视频| 精华霜和精华液先用哪个| √禁漫天堂资源中文www| 免费在线观看完整版高清| 啦啦啦韩国在线观看视频| or卡值多少钱| 欧美日韩国产亚洲二区| 国产高清有码在线观看视频 | 伊人久久大香线蕉亚洲五| 午夜激情福利司机影院| av天堂在线播放| 久久草成人影院| 亚洲成人中文字幕在线播放| 国产精品久久电影中文字幕| 欧美黑人精品巨大| 最近最新中文字幕大全电影3| 精品乱码久久久久久99久播| 一级毛片女人18水好多| 九九热线精品视视频播放| 99久久99久久久精品蜜桃| 国产伦人伦偷精品视频| 色老头精品视频在线观看| 啪啪无遮挡十八禁网站| av福利片在线观看| www.www免费av| 妹子高潮喷水视频| 国产真实乱freesex| 又粗又爽又猛毛片免费看| 很黄的视频免费| 亚洲成人精品中文字幕电影| 亚洲欧美精品综合久久99| 亚洲片人在线观看| 亚洲天堂国产精品一区在线| 男女床上黄色一级片免费看| 丁香六月欧美| 听说在线观看完整版免费高清| 欧美 亚洲 国产 日韩一| 久久久久久久精品吃奶| 变态另类成人亚洲欧美熟女| 午夜福利视频1000在线观看| 每晚都被弄得嗷嗷叫到高潮| 热99re8久久精品国产| 村上凉子中文字幕在线| 午夜福利成人在线免费观看|