• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Reliability Analysis Based on Support Vector Machine and Dual Neural Network Direct Integration Method

    2021-04-08 11:16:34NIEXiaobo聶曉波LIHaibin李海濱
    關(guān)鍵詞:海濱

    NIE Xiaobo(聶曉波), LI Haibin(李海濱)

    1 College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

    2 College of Science, Inner Mongolia University of Technology, Hohhot 010051, China

    3 Inner Mongolia Key Laboratory of Advanced Manufacturing Technology, Hohhot 010051, China

    Abstract: Aiming at the reliability analysis of small sample data or implicit structural function, a novel structural reliability analysis model based on support vector machine (SVM) and neural network direct integration method (DNN) is proposed. Firstly, SVM with good small sample learning ability is used to train small sample data, fit structural performance functions and establish regular integration regions. Secondly, DNN is approximated the integral function to achieve multiple integration in the integration region. Finally, structural reliability was obtained by DNN. Numerical examples are investigated to demonstrate the effectiveness of the present method, which provides a feasible way for the structural reliability analysis.

    Key words: support vector machine (SVM); neural network direct integration method; structural reliability; small sample data; performance function

    Introduction

    Currently, structural reliability analysis calculation methods mainly include probability method (direct integration method[1-3]), approximate probability method (e.g., first-order moment method, second-order moment method[4-5]) and numerical simulation methods (e.g., Monte Carlo method[6]). With the development of mathematical statistics theory, the relatively accurate probability method-direct integration method, is gradually gaining more attention. The direct integral method for calculating structural reliability mainly includes three aspects of technical problems[1], the regularization of the integral region, the constructing of the probability density function, and multiple definite integrals in the regular region. However, when the sample data are insufficient or the limit state function is implicit, regularization of the integration region is difficult to achieve. At the same time, the calculation of multiple integrals has not been effectively solved, which limits the direct integration method.

    Reliability experimental data are often limited by many factors. When the experimental sample size is not large, it is difficult to obtain satisfactory results with classical reliability analysis methods. At present, the reliability analysis methods for small sample data mainly include the Bayes method[7], the Bootstrap method[8], and the support vector machine (SVM) method[9-10]. The Bayes method uses the prior distribution to obtain better probability estimates under small sample conditions. Whether the prior distribution is reasonable will directly affect the evaluation results of the system reliability. However, in the application process of the Bayes method, there is often little prior information or even no prior information. The Bootstrap method is essential a re-sampling process, which uses existing data to simulate unknown distributions. This method can perform interval estimation or statistical hypothesis testing. The small sample problem is transformed into a large sample problem by regenerating sampling, which is suitable for statistical inference under the condition of small sample.

    SVM is a machine learning algorithm based on statistical learning theory that was proposed by Professor Vapnik. It adopts the principle of minimizing structural risk and has good generalization performance. It can solve small samples, nonlinear and high-dimensional problems, and is mainly used for pattern recognition and function fitting. The method of processing technology reliability evaluation based on Copula-SVM is presented in Ref.[11]. Yangetal.[12]proposed a multi-least squares recursive projection dual support vector machine (MLSPTSVM) for multi-classification problems. Tehranyetal.[13]used SVMS with different kernel functions for spatial prediction of flood occurrence. Mohammadpouretal.[14]predicted the water quality index of free constructed wetland using SVM and two artificial neural network(ANN) methods.

    Neural networks have the ability to approximate arbitrary functions. Using this property, neural networks can be used in structural reliability calculations. Shu and Gong[15]presented an ANN-based response surface method that can be used to predict the failure probability of slopes with spatially variable soil. Pengetal.[16]proposed mixed uncertainties reliability analysis method based on back propagation neural networks. Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back propagation neural network (HU-BP neural network) was proposed. Lietal.[1]proposed dual neural network direct integration method (DNN) for the calculation of multiple integrals. In this paper, the dual neural network combined with the function of regularization of the integration region overcame the difficulties of multiple integration and realized the accurate calculation of the reliability of the direct integration method.

    This paper combines the advantages of SVM and DNN for small sample data reliability calculation. The basic idea of the proposed method is to use Latin hypercube sampling (LHS) to obtain the sample data, and then use the support vector regression machine to train the sample data, approach the limit state function, and obtain performance function of the direct integration method to regularize the integration region. Then the DNN[1]is used to perform multiple integration calculations to obtain the structural reliability and achieve a certain calculation accuracy. The proposed method is compared with traditional method such as Monte Carlo simulation method and first-order second-moment to verify the feasibility of the proposed method.

    This paper is organized as follows. In section 1, direct integral method is introduced. In section 2, structure performance function is fitted by SVM and regularization of the integral area is obtained. In section 3, the reliability is solved with DNN. Examples are followed to demonstrate the proposed methods in section 4. The conclusions are shown in section 5.

    1 Direct Integral Method

    Assume that basic random variables of structure areX1,X2, …,Xnand the corresponding probability density function (PDF) isfX(x1,x2, …,xn). Limit state function (LSF) of these random variables isZ=g(X)=g(X1,X2, …Xn).Z>0 shows that the structure is safe;Z<0 shows that the structure falls in failure;Z=0 shows that the structure is in the critical state.

    So reliability probability of the structure is expressed as

    (1)

    whereF={x|g(X)>0} indicates the structural failure domain andg(X) indicates the limit state function.

    Direct integral method to calculate structural reliability mainly contains three parts. The first part is regularization of integral area. The second one is composition of PDF. The last one is multiple definite integral in regularization area.

    (1) Regularization of integral area will be finished by SVM.

    (2) For composition of PDF, this paper will adopt NATAF model.

    Firstly define a set of standard normal variablesZ=(Z1,Z2, …,Zn) through transformation formulaZi=H-1[Fxi(xi)],i=1, 2, …,n, where,H(x) is the standard normal cumulative distribution function,F(xiàn)xi(xi) is the cumulative distribution function ofxi.

    In the NATAF model, assume thatZis joint normal distribution, and then the joint PDF will be got by some transformation rules of the theory of probability, which is shown as

    fX(X)=

    fx1(x1)…fxn(xn)·hn(Z,R′)/h(z1)…h(huán)(zn),

    (2)

    (3)

    (3) Multiple definite integral in regularization area.

    This paper will use DNN proposed in Ref.[1] to solve the multiple integration problem.

    2 Regularization of the Integral Area

    2.1 SVM fitting structure function

    The SVM is formed by introducing a loss function that corrects the distance based on the support vector classifier. Its basic idea is to map the input space to the high-dimensional feature space through the nonlinear transformation of the inner product function. For non-linear problems, the original problem is mapped to a linear problem in a high-dimensional feature problem through non-linear transformation. In the high-dimensional feature space, the kernel function satisfying Mercer condition is used to replace the inner product in the linear problem, thus solving the problem of nonlinear SVM.

    At present, there are four kernel functions commonly used.

    (1) Linear kernel function

    K(x,xi)=x·xi.

    (5)

    (2) Polynomial kernel function

    K(x,xi)=[(x,xi)+1]q.

    (6)

    (3) Gaussian kernel function

    (7)

    (4) Sigmoid kernel function

    K(x,xi)=tanh(v(x,xi)+c).

    (8)

    One of the key issues in using SVM to solve structural reliability is to choose a kernel function. The linear kernel function is suitable for the linearly separable cases. The input space and the feature space are the same dimension, the classification effect is obvious, and the parameters are less fast, so the linear kernel function is usually used in the support vector classifier. The polynomial kernel function is a global kernel function, which can map low-dimensional input space to high-dimensional feature space, but the polynomial kernel function has many parameters and the calculation is relatively complicated. When the polynomial indexqis too large, the learning complexity is too high, and it is prone to “over-fitting” phenomenon. The Gaussian kernel function is one of the most widely used kernel functions. It can also map samples into high-dimensional space. Compared with polynomial kernel functions, its parameters are few. It has good anti-interference ability to the noise existing in the data. When using the sigmoid kernel function, the SVM implements a multi-layer perceptron neural network, which has good generalization ability for unknown samples.

    When the direct integral method based on SVM is used to calculate structural reliability, several problems should be processed as follows.

    2.1.1LHSmethod

    In LHS method, firstly determine the sampling frequency and then stratify the probability distribution of variables. Cumulative distribution curve is divided into equal interval on the cumulative probability scale [0, 1]. Then extract the sample from each interval or layer of probability distribution and represent the value of each interval.

    Use LHS method to extractNsamplesxi=(xi1,xi2, …,xin)T(i=1, 2, …,N) from random vectorX=(X1,X2, …,Xn)T.

    (1) The scope of each random variableXj(i=1, 2, …,n) can be divided into N equal probability interval.It means that value [0, 1] of cumulative distribution functionFXj(xj) can been divided into N intervals which don’t overlap each other [0, 1/N],(1/N, 2/N], …, (1-1/N, 1].

    (2) For each variableXj, extract a sample from each interval in all. Every child interval only generates a random number, as a representative of the range value.

    (3) For all sample values of each variableXj, make random arrangement according to interval number and then put them together according to the variable sequence.

    2.1.2Datapreprocessing

    The sample data have been obtained by sampling method. Then divide them into training set and test set. Carry out normalization preprocessing for both of them. Normalized mapping is

    (4)

    where,xin,yin∈Rn,xmin=min(xi),xmax=max(xi). The result of data normalization is to normalize the original data to [0, 1],yin∈[0, 1],i=1, 2, …,n.

    2.1.3Parameteroptimization

    Reasonable selection of penalty parameterCand kernel function parameterεis essential for SVMs. In this paper, the K-fold Cross Validation (K-CV) method is used to perform parameter optimization. The specific methods are as follows.

    Firstly, the original data is divided intoKgroups evenly, and then a validation set is performed on the data of each subset. At the same time, the data of the remainingK-1 groups of subsets are regarded as the training set, thereby obtainingKmodels. Finally, the average of the classification accuracy of the validation set of theKmodels is used as the performance index of the K-CV classifier. The K-CV classifier can effectively avoid the occurrence of under-learning or over-learning, and the selected parameters are more reasonable.

    2.2 Regulation of integral area

    Regulation of integral area can be achieved by introducing the indicator functionI[g(X)≤0]. The original irregular area is translated into an infinite area, and then the infinite area of integral is translated into limited area of integral according to certain accuracy, which is shown as

    (5)

    where,F(xiàn)(X)=I[g(X)>0]fX(X). Wheng(X)≤0,I[g(X)]=0; wheng(X)>0,I[g(X)]=1.

    3 Reliability Solution

    3.1 Dual neural network multiple integral method

    In Ref.[1], the DNN used the neural network method to approximate the integrand function to achieve multiple integrations in the integration region. The main idea is as follows.

    The difficulty of multiple integration is to obtain the integrand function of the integrand. In this paper, the integrand function is obtained using dual neural networks. A single hidden layer BP neural networkBis constructed to establish the mapping relationship between the input variablesXand the original functionY. The network structure is shown in Fig. 1. The functional relationship between the network output and the input variables is

    (6)

    Perform the differentiation operation and obtain the neural networkAas

    (7)

    Fig. 1 Original function network structure

    A pair of neural networks composed of neural networkAand neural networkBis called a dual neural network. Among them, neural networkAis called integrand function network, and neural networkBis called original function network. When networkAin the dual neural network approximates the integrand function in the integral, networkBapproximates the original function. Then, multiple integral calculations are performed.

    3.2 Calculation process

    Firstly, the structural performance function is fitted by support vector regression machine. Through LHS, sample data pre-processing, kernel function selection and optimization of SVM parameters, the SVM is used to train and test data, fit the structural performance function and regularize it; secondly construct a joint probability density function; finally, use DNN to perform multidimensional numerical integration to obtain the structural reliability. The calculation process is shown in Fig. 2.

    Fig. 2 Flow chart of reliability calculation

    4 Numerical Examples

    In order to verify the rationality and feasibility of the proposed method, the two calculation examples are calculated using the proposed method—SVM and DNN (SVM-DNN) and traditional methods such as SVM, DNN and Monte Carlo simulation method(MC). The results of Monte Carlo method sampled 100 000 times are used as theoretical solutions, and the relative errors of different methods are given.

    4.1 Example 1

    Fig. 3 Flat frame structure

    According to the above example, the joint probability density function of input variablesP,E,Ican be given by

    whereδ=3.549 9,α=1.282 5.

    Then use the proposed method and traditional methods to calculate the structural reliability, results are shown in Table 1.

    Table 1 Reliability of Example 1

    From Table 1, it can be seen that the result of MC method is 0.999 3 as theoretical solution; the result of DNN method is 0.984 5, relative error is 1.48%; the result of SVM method is 0.999 9, relative error is 0.06%; the result of the proposed method with 30 samples is 0.991 2, relative error is 0.8% which fully meets the requirements of engineering applications (relative error is less than 3%). The results show that the method is suitable for structural reliability analysis.

    It can be seen from the results in the table that the calculation accuracy of SVM-DNN is higher than DNN. At the same time, SVM-DNN method also retains the high computational efficiency of DNN.

    4.2 Example 2

    The reliability analysis of the 10-bar truss structure is shown in Fig. 4. The lengths of the horizontal and vertical rods are bothL, assuming that the cross-sectional area of the horizontal rodA1, the cross-sectional area of the vertical rodA2, and the cross-sectional area of the inclined rodA3are normal distributed random variables, the average of these three random variables are 13, 2 and 9 Square inches respectively, and the coefficients of variation are all 0.1. It is assumed that other parameters of the structure, such as elastic modulus, material density, member length, and applied load, are all deterministic variables. LoadP=100 000 pounds, rod lengthL=9.14 m, elastic modulusE=107, and allowable displacement value of vertex 2,dallow=0.101 6 m.

    Fig. 4 Diagram of 10-bar truss structure

    Use the proposed method to approach the performance function with SVM and calculate the reliability with DNN. The reliability calculation results are listed in Table 2.

    Table 2 Reliability of Example 2

    From Table 2, it can be seen that the reliability calculated by MC method is 0.992 8 as theoretical solution; the reliability calculated by SVM method is 0.986 6, relative error is 0.6%; the reliability calculated by SVM-DNN is 0.994 7, relative error is 0.19%.

    Because this example is an implicit structural function, the neural network method cannot be used to solve the structural reliability. Therefore, the proposed method is suitable for structural reliability calculation with implicit structural function.

    5 Conclusions

    In order to solve the structural reliability calculation of small sample data, this paper combines a support vector regression machine and a direct integration method of dual neural networks to propose a reliability calculation model. This method firstly fits structural performance function by support vector regression machines. Through LHS, sample data preprocessing, selection of kernel functions, and optimization of support vector machine parameters, the SVM is used to perform sample training and test set data to approach the performance function. Then construct a joint probability density function, and finally use neural network method to perform multi-dimensional numerical integration to calculate the structure reliability. Calculation examples show that the proposed method is a feasible and effective way to solve the structural reliability analysis under small sample data or implicit limit state function.

    This method is based on DNN, so it inherits the computational efficiency of DNN and improves the computational accuracy at the same time. This method provides a new way to solve the structural reliability analysis of small sample data or implicit structural function.

    猜你喜歡
    海濱
    Fringe visibility and correlation in Mach–Zehnder interferometer with an asymmetric beam splitter
    夏日海濱
    海濱的夏天
    孩子(2019年9期)2019-11-07 01:35:49
    古城里的海濱新居
    海濱書簡(jiǎn)
    海濱1
    海濱
    Preparation of Fine Cement Slurries by Wet-Ground Using a Pneumatic Colloid Mill
    講一題通一類得一法
    海濱風(fēng)光掠影
    怎么达到女性高潮| 国产成年人精品一区二区| 最近最新中文字幕大全免费视频| 人人妻人人澡人人看| 亚洲在线自拍视频| 亚洲三区欧美一区| 99精品欧美一区二区三区四区| 一个人观看的视频www高清免费观看 | 老鸭窝网址在线观看| 免费在线观看黄色视频的| 级片在线观看| 国产精品98久久久久久宅男小说| 黄色女人牲交| 中亚洲国语对白在线视频| 精品久久蜜臀av无| 亚洲午夜精品一区,二区,三区| 欧美日本亚洲视频在线播放| 亚洲人成77777在线视频| 好男人在线观看高清免费视频 | 国产亚洲av高清不卡| 男女下面进入的视频免费午夜 | www.www免费av| 精品午夜福利视频在线观看一区| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区中文字幕在线| 露出奶头的视频| 国产熟女午夜一区二区三区| 国产日韩一区二区三区精品不卡| 久久婷婷成人综合色麻豆| 国产精品久久久久久精品电影 | 午夜成年电影在线免费观看| 亚洲色图av天堂| 午夜免费成人在线视频| 国产成人欧美| 手机成人av网站| 日本vs欧美在线观看视频| 亚洲激情在线av| 少妇熟女aⅴ在线视频| 国产精品亚洲av一区麻豆| 90打野战视频偷拍视频| 午夜视频精品福利| 我的亚洲天堂| 操美女的视频在线观看| 亚洲精品久久国产高清桃花| av在线天堂中文字幕| 淫秽高清视频在线观看| 90打野战视频偷拍视频| 久久精品影院6| 欧美日本中文国产一区发布| 国产男靠女视频免费网站| 两个人看的免费小视频| 免费看美女性在线毛片视频| 波多野结衣av一区二区av| 黑人巨大精品欧美一区二区mp4| 国产成+人综合+亚洲专区| 窝窝影院91人妻| 久久久久久久久中文| 99久久国产精品久久久| 女生性感内裤真人,穿戴方法视频| 国产av精品麻豆| 久久久水蜜桃国产精品网| 91精品三级在线观看| 国产一区二区三区在线臀色熟女| 亚洲七黄色美女视频| 久久性视频一级片| 十分钟在线观看高清视频www| 久久国产精品人妻蜜桃| 91在线观看av| av免费在线观看网站| 纯流量卡能插随身wifi吗| 精品一品国产午夜福利视频| 亚洲精品美女久久av网站| 两个人视频免费观看高清| 69精品国产乱码久久久| 一卡2卡三卡四卡精品乱码亚洲| 淫妇啪啪啪对白视频| 国产午夜福利久久久久久| 88av欧美| 天堂动漫精品| 在线观看免费日韩欧美大片| 免费一级毛片在线播放高清视频 | 午夜老司机福利片| 成人永久免费在线观看视频| 日韩欧美一区二区三区在线观看| 男人操女人黄网站| 亚洲av成人一区二区三| 男人舔女人下体高潮全视频| 大型av网站在线播放| 欧美一区二区精品小视频在线| АⅤ资源中文在线天堂| 在线av久久热| 国产精品免费视频内射| 长腿黑丝高跟| 女人精品久久久久毛片| 黄色成人免费大全| 午夜福利,免费看| 国产成人影院久久av| av天堂久久9| 色哟哟哟哟哟哟| 亚洲熟妇熟女久久| 婷婷丁香在线五月| 亚洲国产高清在线一区二区三 | 久久精品人人爽人人爽视色| 久久久久国产一级毛片高清牌| 欧美精品啪啪一区二区三区| 久久天堂一区二区三区四区| 在线观看免费午夜福利视频| 中文字幕精品免费在线观看视频| 一a级毛片在线观看| 免费看十八禁软件| 热re99久久国产66热| 久久久国产欧美日韩av| 男女下面插进去视频免费观看| 国产激情久久老熟女| 久久香蕉精品热| 天堂√8在线中文| 非洲黑人性xxxx精品又粗又长| 欧美日本视频| 在线永久观看黄色视频| 99在线视频只有这里精品首页| 男男h啪啪无遮挡| 欧美av亚洲av综合av国产av| 91国产中文字幕| 免费观看精品视频网站| 无遮挡黄片免费观看| 69av精品久久久久久| 在线观看日韩欧美| 亚洲人成电影观看| 最近最新中文字幕大全免费视频| 日本 av在线| 女人被躁到高潮嗷嗷叫费观| 欧美精品亚洲一区二区| 正在播放国产对白刺激| aaaaa片日本免费| 啪啪无遮挡十八禁网站| av片东京热男人的天堂| 最近最新中文字幕大全免费视频| 欧美黑人欧美精品刺激| 亚洲一码二码三码区别大吗| av超薄肉色丝袜交足视频| 精品国产乱码久久久久久男人| 午夜福利免费观看在线| 亚洲国产精品sss在线观看| 一级黄色大片毛片| 亚洲av片天天在线观看| 色综合欧美亚洲国产小说| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区免费欧美| 香蕉久久夜色| 午夜激情av网站| 老汉色∧v一级毛片| 男女下面进入的视频免费午夜 | 国产成人欧美| 国产精品久久久av美女十八| 国产一区二区三区综合在线观看| 69av精品久久久久久| 久久中文看片网| 一夜夜www| 97超级碰碰碰精品色视频在线观看| 国产精品野战在线观看| 可以在线观看毛片的网站| 久久青草综合色| 脱女人内裤的视频| 一级毛片女人18水好多| 午夜成年电影在线免费观看| 免费久久久久久久精品成人欧美视频| 免费久久久久久久精品成人欧美视频| 美女扒开内裤让男人捅视频| 日韩欧美在线二视频| 国产成人av激情在线播放| 国产免费男女视频| 国产精品影院久久| netflix在线观看网站| 色婷婷久久久亚洲欧美| 亚洲中文日韩欧美视频| 中文字幕av电影在线播放| 亚洲中文日韩欧美视频| 91九色精品人成在线观看| 中文字幕精品免费在线观看视频| 亚洲最大成人中文| 久久国产精品影院| 日本黄色视频三级网站网址| 午夜视频精品福利| 日本五十路高清| 国产亚洲精品第一综合不卡| 亚洲自拍偷在线| 亚洲国产看品久久| 国产精品久久久久久精品电影 | 亚洲视频免费观看视频| 久久久久久亚洲精品国产蜜桃av| 18禁裸乳无遮挡免费网站照片 | 99热只有精品国产| 国产一区二区在线av高清观看| 露出奶头的视频| 高清黄色对白视频在线免费看| 久久久久久久久久久久大奶| 在线观看免费日韩欧美大片| 国产欧美日韩综合在线一区二区| 桃色一区二区三区在线观看| 国产精品久久电影中文字幕| 九色国产91popny在线| 真人做人爱边吃奶动态| 黑人操中国人逼视频| 欧美精品啪啪一区二区三区| 国产亚洲av高清不卡| 久久久久亚洲av毛片大全| 妹子高潮喷水视频| 一级a爱视频在线免费观看| 国产av一区二区精品久久| 男人舔女人下体高潮全视频| 亚洲国产精品成人综合色| 老司机午夜十八禁免费视频| 精品久久久精品久久久| 成人国产一区最新在线观看| 他把我摸到了高潮在线观看| 午夜福利免费观看在线| 国产精品永久免费网站| 人人妻人人澡欧美一区二区 | 夜夜看夜夜爽夜夜摸| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 午夜福利欧美成人| aaaaa片日本免费| 久久香蕉精品热| 免费看美女性在线毛片视频| 脱女人内裤的视频| 男女下面进入的视频免费午夜 | 欧美中文综合在线视频| 无遮挡黄片免费观看| 国产精品精品国产色婷婷| 国产精品美女特级片免费视频播放器 | 久久婷婷人人爽人人干人人爱 | 操出白浆在线播放| 国内精品久久久久久久电影| 欧美日韩福利视频一区二区| 无人区码免费观看不卡| 欧美另类亚洲清纯唯美| 国产片内射在线| 国产精品1区2区在线观看.| 欧美激情 高清一区二区三区| 国产精华一区二区三区| 精品国内亚洲2022精品成人| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美在线一区二区| 午夜老司机福利片| 美国免费a级毛片| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| 天堂影院成人在线观看| 国产午夜福利久久久久久| 变态另类丝袜制服| 可以在线观看的亚洲视频| 中文字幕高清在线视频| 乱人伦中国视频| 久久人人精品亚洲av| 亚洲精品国产区一区二| 他把我摸到了高潮在线观看| 久久久久久久久久久久大奶| 亚洲国产精品久久男人天堂| 久久香蕉精品热| 88av欧美| 国产麻豆69| 午夜福利影视在线免费观看| av在线播放免费不卡| 成年人黄色毛片网站| 91精品国产国语对白视频| 亚洲 国产 在线| 免费观看人在逋| 国产精品久久电影中文字幕| 一边摸一边做爽爽视频免费| 十八禁网站免费在线| av福利片在线| av电影中文网址| 一a级毛片在线观看| 一区二区三区精品91| 脱女人内裤的视频| 99国产极品粉嫩在线观看| 一夜夜www| 中文字幕最新亚洲高清| 999精品在线视频| 90打野战视频偷拍视频| 精品欧美一区二区三区在线| 九色亚洲精品在线播放| 国产91精品成人一区二区三区| tocl精华| 亚洲av片天天在线观看| 亚洲欧美日韩无卡精品| 最近最新免费中文字幕在线| 国产日韩一区二区三区精品不卡| 亚洲国产欧美日韩在线播放| videosex国产| 欧美中文日本在线观看视频| 欧美精品亚洲一区二区| 日韩三级视频一区二区三区| x7x7x7水蜜桃| 一边摸一边抽搐一进一出视频| 午夜免费观看网址| 精品熟女少妇八av免费久了| 国产亚洲精品av在线| 久久国产精品男人的天堂亚洲| a级毛片在线看网站| 久久人人爽av亚洲精品天堂| 日韩免费av在线播放| 国产一区二区在线av高清观看| 久久精品国产99精品国产亚洲性色 | 国产麻豆69| 99国产精品一区二区三区| 久久婷婷人人爽人人干人人爱 | 一区二区三区激情视频| 美女高潮到喷水免费观看| 两人在一起打扑克的视频| 激情在线观看视频在线高清| 美女高潮喷水抽搐中文字幕| 久久精品影院6| 女警被强在线播放| 中文字幕精品免费在线观看视频| 精品一品国产午夜福利视频| www.www免费av| 一级毛片高清免费大全| 亚洲欧美日韩无卡精品| 最近最新免费中文字幕在线| 人妻丰满熟妇av一区二区三区| 日韩免费av在线播放| 国产精品日韩av在线免费观看 | www.自偷自拍.com| 免费观看人在逋| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2 | 国产精品自产拍在线观看55亚洲| 成人三级做爰电影| 国产精品综合久久久久久久免费 | 亚洲精品国产一区二区精华液| 99国产精品一区二区三区| 精品国产一区二区三区四区第35| 亚洲aⅴ乱码一区二区在线播放 | 在线天堂中文资源库| e午夜精品久久久久久久| 9热在线视频观看99| 在线永久观看黄色视频| 久久香蕉激情| 欧美乱色亚洲激情| 岛国视频午夜一区免费看| 非洲黑人性xxxx精品又粗又长| 欧美性长视频在线观看| 免费av毛片视频| 在线观看日韩欧美| 成人国产综合亚洲| 国产一区二区三区综合在线观看| 非洲黑人性xxxx精品又粗又长| 又黄又粗又硬又大视频| 久久天堂一区二区三区四区| 人人妻人人澡人人看| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 欧美丝袜亚洲另类 | 免费女性裸体啪啪无遮挡网站| 桃色一区二区三区在线观看| 一边摸一边抽搐一进一出视频| 国产一卡二卡三卡精品| 亚洲一卡2卡3卡4卡5卡精品中文| 咕卡用的链子| 日韩欧美一区视频在线观看| 精品欧美国产一区二区三| 在线国产一区二区在线| 国产成人系列免费观看| 麻豆av在线久日| 精品国内亚洲2022精品成人| 久久国产乱子伦精品免费另类| 色播亚洲综合网| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 成人亚洲精品av一区二区| 黄网站色视频无遮挡免费观看| 黄色视频不卡| 国产精品美女特级片免费视频播放器 | 国产精品自产拍在线观看55亚洲| 免费不卡黄色视频| 亚洲最大成人中文| 国产私拍福利视频在线观看| 精品熟女少妇八av免费久了| 女人爽到高潮嗷嗷叫在线视频| 在线观看免费视频网站a站| 大香蕉久久成人网| 女人爽到高潮嗷嗷叫在线视频| 午夜免费观看网址| 午夜精品久久久久久毛片777| 无限看片的www在线观看| 18禁国产床啪视频网站| 在线观看日韩欧美| 韩国av一区二区三区四区| 少妇被粗大的猛进出69影院| 欧美成狂野欧美在线观看| 国产成人精品久久二区二区免费| 亚洲国产精品成人综合色| 黑丝袜美女国产一区| 十八禁人妻一区二区| 日韩一卡2卡3卡4卡2021年| 91大片在线观看| 在线观看www视频免费| 国产xxxxx性猛交| 亚洲国产精品成人综合色| 色av中文字幕| 欧美不卡视频在线免费观看 | 女人爽到高潮嗷嗷叫在线视频| 丝袜在线中文字幕| av视频免费观看在线观看| 精品免费久久久久久久清纯| 国产成人一区二区三区免费视频网站| 91大片在线观看| 久久久久久人人人人人| 深夜精品福利| 午夜精品在线福利| 欧美最黄视频在线播放免费| 纯流量卡能插随身wifi吗| 国产精品自产拍在线观看55亚洲| 精品国产一区二区久久| 搡老熟女国产l中国老女人| 欧美+亚洲+日韩+国产| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 嫩草影视91久久| 十八禁网站免费在线| 国产欧美日韩一区二区精品| 国产精品电影一区二区三区| 成人国产一区最新在线观看| 亚洲狠狠婷婷综合久久图片| 国产麻豆69| 中文字幕精品免费在线观看视频| 亚洲国产精品999在线| 亚洲免费av在线视频| 亚洲av成人一区二区三| 国产成人系列免费观看| 高清黄色对白视频在线免费看| 婷婷丁香在线五月| 九色亚洲精品在线播放| 国产91精品成人一区二区三区| 这个男人来自地球电影免费观看| 久久国产精品人妻蜜桃| 亚洲专区中文字幕在线| 黑丝袜美女国产一区| 成人三级做爰电影| 亚洲精品一卡2卡三卡4卡5卡| 宅男免费午夜| 操出白浆在线播放| 精品久久久久久久人妻蜜臀av | 一级a爱片免费观看的视频| 51午夜福利影视在线观看| 久久伊人香网站| 国产一区二区三区视频了| 淫秽高清视频在线观看| 美女扒开内裤让男人捅视频| 亚洲人成网站在线播放欧美日韩| 日韩欧美一区二区三区在线观看| 欧美乱妇无乱码| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 国产精品爽爽va在线观看网站 | 国产精品日韩av在线免费观看 | 日韩免费av在线播放| 国产精品电影一区二区三区| 久久婷婷成人综合色麻豆| 啦啦啦 在线观看视频| 久久这里只有精品19| 一本大道久久a久久精品| 在线永久观看黄色视频| 亚洲成av人片免费观看| 亚洲av片天天在线观看| 国产xxxxx性猛交| 亚洲五月婷婷丁香| 中文字幕高清在线视频| 久久亚洲精品不卡| 日韩高清综合在线| 两性午夜刺激爽爽歪歪视频在线观看 | 九色国产91popny在线| 成人特级黄色片久久久久久久| 亚洲精品美女久久av网站| 亚洲人成伊人成综合网2020| 欧美国产日韩亚洲一区| 亚洲欧美日韩另类电影网站| 国产精品久久久人人做人人爽| 久久久久久国产a免费观看| 亚洲成国产人片在线观看| 欧美成人午夜精品| 亚洲性夜色夜夜综合| 中文字幕最新亚洲高清| 国产三级在线视频| 日韩高清综合在线| 亚洲av成人一区二区三| 在线永久观看黄色视频| 热99re8久久精品国产| 欧美国产精品va在线观看不卡| 亚洲男人天堂网一区| 老司机午夜福利在线观看视频| 精品少妇一区二区三区视频日本电影| 欧美激情极品国产一区二区三区| 91麻豆av在线| 妹子高潮喷水视频| 51午夜福利影视在线观看| 亚洲 欧美一区二区三区| 美女大奶头视频| 如日韩欧美国产精品一区二区三区| 国产熟女xx| 88av欧美| www.精华液| 伊人久久大香线蕉亚洲五| 国产精品久久久久久人妻精品电影| 国产精品电影一区二区三区| 国产蜜桃级精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 亚洲色图av天堂| 90打野战视频偷拍视频| 日韩欧美在线二视频| 亚洲全国av大片| 麻豆av在线久日| 搡老熟女国产l中国老女人| 岛国视频午夜一区免费看| 成人亚洲精品av一区二区| 97碰自拍视频| 十八禁人妻一区二区| 日韩精品中文字幕看吧| 国产精品自产拍在线观看55亚洲| 9色porny在线观看| 欧美日本亚洲视频在线播放| 国产成人影院久久av| 精品卡一卡二卡四卡免费| 国产精品一区二区三区四区久久 | 国产精品爽爽va在线观看网站 | 久久精品国产亚洲av高清一级| 99国产精品99久久久久| 一进一出好大好爽视频| 可以免费在线观看a视频的电影网站| 久久婷婷成人综合色麻豆| 一个人观看的视频www高清免费观看 | 精品人妻1区二区| www.www免费av| 国产精品一区二区精品视频观看| 免费高清在线观看日韩| 50天的宝宝边吃奶边哭怎么回事| 午夜a级毛片| 在线av久久热| 国产午夜福利久久久久久| 久久人妻福利社区极品人妻图片| 日韩大尺度精品在线看网址 | 一进一出抽搐动态| 国产精品一区二区精品视频观看| 黑丝袜美女国产一区| 淫妇啪啪啪对白视频| av在线播放免费不卡| 久久这里只有精品19| 999久久久精品免费观看国产| 国产亚洲av嫩草精品影院| 亚洲国产欧美日韩在线播放| 如日韩欧美国产精品一区二区三区| 国产精品综合久久久久久久免费 | 男男h啪啪无遮挡| 国产黄a三级三级三级人| 脱女人内裤的视频| 国产一区二区三区综合在线观看| 色播在线永久视频| 成人免费观看视频高清| 丁香六月欧美| 成在线人永久免费视频| 欧美乱色亚洲激情| 搡老妇女老女人老熟妇| 成人国产综合亚洲| 最近最新免费中文字幕在线| 国产精品1区2区在线观看.| 一区二区三区精品91| 老汉色∧v一级毛片| 女警被强在线播放| 国产三级在线视频| 美女扒开内裤让男人捅视频| 在线免费观看的www视频| 人人澡人人妻人| 成人免费观看视频高清| 一本大道久久a久久精品| 母亲3免费完整高清在线观看| 国产亚洲av高清不卡| 久久久久久久精品吃奶| 国产亚洲精品综合一区在线观看 | 夜夜看夜夜爽夜夜摸| 国产av又大| 97人妻天天添夜夜摸| 满18在线观看网站| 亚洲五月色婷婷综合| 日本一区二区免费在线视频| 久久国产乱子伦精品免费另类| 成熟少妇高潮喷水视频| 少妇被粗大的猛进出69影院| 脱女人内裤的视频| 丝袜美腿诱惑在线| 熟妇人妻久久中文字幕3abv| 亚洲片人在线观看| 欧美中文综合在线视频| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 午夜免费观看网址| 91精品国产国语对白视频| 女性生殖器流出的白浆| 在线观看舔阴道视频| 亚洲黑人精品在线| 成人特级黄色片久久久久久久| 国产国语露脸激情在线看| 国产精品综合久久久久久久免费 | 不卡av一区二区三区| 中亚洲国语对白在线视频| 亚洲国产高清在线一区二区三 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲av五月六月丁香网| 亚洲色图 男人天堂 中文字幕| 黄色 视频免费看| 成人国语在线视频| 黄色女人牲交| 男男h啪啪无遮挡|