• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Reliability Analysis Based on Support Vector Machine and Dual Neural Network Direct Integration Method

    2021-04-08 11:16:34NIEXiaobo聶曉波LIHaibin李海濱
    關(guān)鍵詞:海濱

    NIE Xiaobo(聶曉波), LI Haibin(李海濱)

    1 College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

    2 College of Science, Inner Mongolia University of Technology, Hohhot 010051, China

    3 Inner Mongolia Key Laboratory of Advanced Manufacturing Technology, Hohhot 010051, China

    Abstract: Aiming at the reliability analysis of small sample data or implicit structural function, a novel structural reliability analysis model based on support vector machine (SVM) and neural network direct integration method (DNN) is proposed. Firstly, SVM with good small sample learning ability is used to train small sample data, fit structural performance functions and establish regular integration regions. Secondly, DNN is approximated the integral function to achieve multiple integration in the integration region. Finally, structural reliability was obtained by DNN. Numerical examples are investigated to demonstrate the effectiveness of the present method, which provides a feasible way for the structural reliability analysis.

    Key words: support vector machine (SVM); neural network direct integration method; structural reliability; small sample data; performance function

    Introduction

    Currently, structural reliability analysis calculation methods mainly include probability method (direct integration method[1-3]), approximate probability method (e.g., first-order moment method, second-order moment method[4-5]) and numerical simulation methods (e.g., Monte Carlo method[6]). With the development of mathematical statistics theory, the relatively accurate probability method-direct integration method, is gradually gaining more attention. The direct integral method for calculating structural reliability mainly includes three aspects of technical problems[1], the regularization of the integral region, the constructing of the probability density function, and multiple definite integrals in the regular region. However, when the sample data are insufficient or the limit state function is implicit, regularization of the integration region is difficult to achieve. At the same time, the calculation of multiple integrals has not been effectively solved, which limits the direct integration method.

    Reliability experimental data are often limited by many factors. When the experimental sample size is not large, it is difficult to obtain satisfactory results with classical reliability analysis methods. At present, the reliability analysis methods for small sample data mainly include the Bayes method[7], the Bootstrap method[8], and the support vector machine (SVM) method[9-10]. The Bayes method uses the prior distribution to obtain better probability estimates under small sample conditions. Whether the prior distribution is reasonable will directly affect the evaluation results of the system reliability. However, in the application process of the Bayes method, there is often little prior information or even no prior information. The Bootstrap method is essential a re-sampling process, which uses existing data to simulate unknown distributions. This method can perform interval estimation or statistical hypothesis testing. The small sample problem is transformed into a large sample problem by regenerating sampling, which is suitable for statistical inference under the condition of small sample.

    SVM is a machine learning algorithm based on statistical learning theory that was proposed by Professor Vapnik. It adopts the principle of minimizing structural risk and has good generalization performance. It can solve small samples, nonlinear and high-dimensional problems, and is mainly used for pattern recognition and function fitting. The method of processing technology reliability evaluation based on Copula-SVM is presented in Ref.[11]. Yangetal.[12]proposed a multi-least squares recursive projection dual support vector machine (MLSPTSVM) for multi-classification problems. Tehranyetal.[13]used SVMS with different kernel functions for spatial prediction of flood occurrence. Mohammadpouretal.[14]predicted the water quality index of free constructed wetland using SVM and two artificial neural network(ANN) methods.

    Neural networks have the ability to approximate arbitrary functions. Using this property, neural networks can be used in structural reliability calculations. Shu and Gong[15]presented an ANN-based response surface method that can be used to predict the failure probability of slopes with spatially variable soil. Pengetal.[16]proposed mixed uncertainties reliability analysis method based on back propagation neural networks. Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back propagation neural network (HU-BP neural network) was proposed. Lietal.[1]proposed dual neural network direct integration method (DNN) for the calculation of multiple integrals. In this paper, the dual neural network combined with the function of regularization of the integration region overcame the difficulties of multiple integration and realized the accurate calculation of the reliability of the direct integration method.

    This paper combines the advantages of SVM and DNN for small sample data reliability calculation. The basic idea of the proposed method is to use Latin hypercube sampling (LHS) to obtain the sample data, and then use the support vector regression machine to train the sample data, approach the limit state function, and obtain performance function of the direct integration method to regularize the integration region. Then the DNN[1]is used to perform multiple integration calculations to obtain the structural reliability and achieve a certain calculation accuracy. The proposed method is compared with traditional method such as Monte Carlo simulation method and first-order second-moment to verify the feasibility of the proposed method.

    This paper is organized as follows. In section 1, direct integral method is introduced. In section 2, structure performance function is fitted by SVM and regularization of the integral area is obtained. In section 3, the reliability is solved with DNN. Examples are followed to demonstrate the proposed methods in section 4. The conclusions are shown in section 5.

    1 Direct Integral Method

    Assume that basic random variables of structure areX1,X2, …,Xnand the corresponding probability density function (PDF) isfX(x1,x2, …,xn). Limit state function (LSF) of these random variables isZ=g(X)=g(X1,X2, …Xn).Z>0 shows that the structure is safe;Z<0 shows that the structure falls in failure;Z=0 shows that the structure is in the critical state.

    So reliability probability of the structure is expressed as

    (1)

    whereF={x|g(X)>0} indicates the structural failure domain andg(X) indicates the limit state function.

    Direct integral method to calculate structural reliability mainly contains three parts. The first part is regularization of integral area. The second one is composition of PDF. The last one is multiple definite integral in regularization area.

    (1) Regularization of integral area will be finished by SVM.

    (2) For composition of PDF, this paper will adopt NATAF model.

    Firstly define a set of standard normal variablesZ=(Z1,Z2, …,Zn) through transformation formulaZi=H-1[Fxi(xi)],i=1, 2, …,n, where,H(x) is the standard normal cumulative distribution function,F(xiàn)xi(xi) is the cumulative distribution function ofxi.

    In the NATAF model, assume thatZis joint normal distribution, and then the joint PDF will be got by some transformation rules of the theory of probability, which is shown as

    fX(X)=

    fx1(x1)…fxn(xn)·hn(Z,R′)/h(z1)…h(huán)(zn),

    (2)

    (3)

    (3) Multiple definite integral in regularization area.

    This paper will use DNN proposed in Ref.[1] to solve the multiple integration problem.

    2 Regularization of the Integral Area

    2.1 SVM fitting structure function

    The SVM is formed by introducing a loss function that corrects the distance based on the support vector classifier. Its basic idea is to map the input space to the high-dimensional feature space through the nonlinear transformation of the inner product function. For non-linear problems, the original problem is mapped to a linear problem in a high-dimensional feature problem through non-linear transformation. In the high-dimensional feature space, the kernel function satisfying Mercer condition is used to replace the inner product in the linear problem, thus solving the problem of nonlinear SVM.

    At present, there are four kernel functions commonly used.

    (1) Linear kernel function

    K(x,xi)=x·xi.

    (5)

    (2) Polynomial kernel function

    K(x,xi)=[(x,xi)+1]q.

    (6)

    (3) Gaussian kernel function

    (7)

    (4) Sigmoid kernel function

    K(x,xi)=tanh(v(x,xi)+c).

    (8)

    One of the key issues in using SVM to solve structural reliability is to choose a kernel function. The linear kernel function is suitable for the linearly separable cases. The input space and the feature space are the same dimension, the classification effect is obvious, and the parameters are less fast, so the linear kernel function is usually used in the support vector classifier. The polynomial kernel function is a global kernel function, which can map low-dimensional input space to high-dimensional feature space, but the polynomial kernel function has many parameters and the calculation is relatively complicated. When the polynomial indexqis too large, the learning complexity is too high, and it is prone to “over-fitting” phenomenon. The Gaussian kernel function is one of the most widely used kernel functions. It can also map samples into high-dimensional space. Compared with polynomial kernel functions, its parameters are few. It has good anti-interference ability to the noise existing in the data. When using the sigmoid kernel function, the SVM implements a multi-layer perceptron neural network, which has good generalization ability for unknown samples.

    When the direct integral method based on SVM is used to calculate structural reliability, several problems should be processed as follows.

    2.1.1LHSmethod

    In LHS method, firstly determine the sampling frequency and then stratify the probability distribution of variables. Cumulative distribution curve is divided into equal interval on the cumulative probability scale [0, 1]. Then extract the sample from each interval or layer of probability distribution and represent the value of each interval.

    Use LHS method to extractNsamplesxi=(xi1,xi2, …,xin)T(i=1, 2, …,N) from random vectorX=(X1,X2, …,Xn)T.

    (1) The scope of each random variableXj(i=1, 2, …,n) can be divided into N equal probability interval.It means that value [0, 1] of cumulative distribution functionFXj(xj) can been divided into N intervals which don’t overlap each other [0, 1/N],(1/N, 2/N], …, (1-1/N, 1].

    (2) For each variableXj, extract a sample from each interval in all. Every child interval only generates a random number, as a representative of the range value.

    (3) For all sample values of each variableXj, make random arrangement according to interval number and then put them together according to the variable sequence.

    2.1.2Datapreprocessing

    The sample data have been obtained by sampling method. Then divide them into training set and test set. Carry out normalization preprocessing for both of them. Normalized mapping is

    (4)

    where,xin,yin∈Rn,xmin=min(xi),xmax=max(xi). The result of data normalization is to normalize the original data to [0, 1],yin∈[0, 1],i=1, 2, …,n.

    2.1.3Parameteroptimization

    Reasonable selection of penalty parameterCand kernel function parameterεis essential for SVMs. In this paper, the K-fold Cross Validation (K-CV) method is used to perform parameter optimization. The specific methods are as follows.

    Firstly, the original data is divided intoKgroups evenly, and then a validation set is performed on the data of each subset. At the same time, the data of the remainingK-1 groups of subsets are regarded as the training set, thereby obtainingKmodels. Finally, the average of the classification accuracy of the validation set of theKmodels is used as the performance index of the K-CV classifier. The K-CV classifier can effectively avoid the occurrence of under-learning or over-learning, and the selected parameters are more reasonable.

    2.2 Regulation of integral area

    Regulation of integral area can be achieved by introducing the indicator functionI[g(X)≤0]. The original irregular area is translated into an infinite area, and then the infinite area of integral is translated into limited area of integral according to certain accuracy, which is shown as

    (5)

    where,F(xiàn)(X)=I[g(X)>0]fX(X). Wheng(X)≤0,I[g(X)]=0; wheng(X)>0,I[g(X)]=1.

    3 Reliability Solution

    3.1 Dual neural network multiple integral method

    In Ref.[1], the DNN used the neural network method to approximate the integrand function to achieve multiple integrations in the integration region. The main idea is as follows.

    The difficulty of multiple integration is to obtain the integrand function of the integrand. In this paper, the integrand function is obtained using dual neural networks. A single hidden layer BP neural networkBis constructed to establish the mapping relationship between the input variablesXand the original functionY. The network structure is shown in Fig. 1. The functional relationship between the network output and the input variables is

    (6)

    Perform the differentiation operation and obtain the neural networkAas

    (7)

    Fig. 1 Original function network structure

    A pair of neural networks composed of neural networkAand neural networkBis called a dual neural network. Among them, neural networkAis called integrand function network, and neural networkBis called original function network. When networkAin the dual neural network approximates the integrand function in the integral, networkBapproximates the original function. Then, multiple integral calculations are performed.

    3.2 Calculation process

    Firstly, the structural performance function is fitted by support vector regression machine. Through LHS, sample data pre-processing, kernel function selection and optimization of SVM parameters, the SVM is used to train and test data, fit the structural performance function and regularize it; secondly construct a joint probability density function; finally, use DNN to perform multidimensional numerical integration to obtain the structural reliability. The calculation process is shown in Fig. 2.

    Fig. 2 Flow chart of reliability calculation

    4 Numerical Examples

    In order to verify the rationality and feasibility of the proposed method, the two calculation examples are calculated using the proposed method—SVM and DNN (SVM-DNN) and traditional methods such as SVM, DNN and Monte Carlo simulation method(MC). The results of Monte Carlo method sampled 100 000 times are used as theoretical solutions, and the relative errors of different methods are given.

    4.1 Example 1

    Fig. 3 Flat frame structure

    According to the above example, the joint probability density function of input variablesP,E,Ican be given by

    whereδ=3.549 9,α=1.282 5.

    Then use the proposed method and traditional methods to calculate the structural reliability, results are shown in Table 1.

    Table 1 Reliability of Example 1

    From Table 1, it can be seen that the result of MC method is 0.999 3 as theoretical solution; the result of DNN method is 0.984 5, relative error is 1.48%; the result of SVM method is 0.999 9, relative error is 0.06%; the result of the proposed method with 30 samples is 0.991 2, relative error is 0.8% which fully meets the requirements of engineering applications (relative error is less than 3%). The results show that the method is suitable for structural reliability analysis.

    It can be seen from the results in the table that the calculation accuracy of SVM-DNN is higher than DNN. At the same time, SVM-DNN method also retains the high computational efficiency of DNN.

    4.2 Example 2

    The reliability analysis of the 10-bar truss structure is shown in Fig. 4. The lengths of the horizontal and vertical rods are bothL, assuming that the cross-sectional area of the horizontal rodA1, the cross-sectional area of the vertical rodA2, and the cross-sectional area of the inclined rodA3are normal distributed random variables, the average of these three random variables are 13, 2 and 9 Square inches respectively, and the coefficients of variation are all 0.1. It is assumed that other parameters of the structure, such as elastic modulus, material density, member length, and applied load, are all deterministic variables. LoadP=100 000 pounds, rod lengthL=9.14 m, elastic modulusE=107, and allowable displacement value of vertex 2,dallow=0.101 6 m.

    Fig. 4 Diagram of 10-bar truss structure

    Use the proposed method to approach the performance function with SVM and calculate the reliability with DNN. The reliability calculation results are listed in Table 2.

    Table 2 Reliability of Example 2

    From Table 2, it can be seen that the reliability calculated by MC method is 0.992 8 as theoretical solution; the reliability calculated by SVM method is 0.986 6, relative error is 0.6%; the reliability calculated by SVM-DNN is 0.994 7, relative error is 0.19%.

    Because this example is an implicit structural function, the neural network method cannot be used to solve the structural reliability. Therefore, the proposed method is suitable for structural reliability calculation with implicit structural function.

    5 Conclusions

    In order to solve the structural reliability calculation of small sample data, this paper combines a support vector regression machine and a direct integration method of dual neural networks to propose a reliability calculation model. This method firstly fits structural performance function by support vector regression machines. Through LHS, sample data preprocessing, selection of kernel functions, and optimization of support vector machine parameters, the SVM is used to perform sample training and test set data to approach the performance function. Then construct a joint probability density function, and finally use neural network method to perform multi-dimensional numerical integration to calculate the structure reliability. Calculation examples show that the proposed method is a feasible and effective way to solve the structural reliability analysis under small sample data or implicit limit state function.

    This method is based on DNN, so it inherits the computational efficiency of DNN and improves the computational accuracy at the same time. This method provides a new way to solve the structural reliability analysis of small sample data or implicit structural function.

    猜你喜歡
    海濱
    Fringe visibility and correlation in Mach–Zehnder interferometer with an asymmetric beam splitter
    夏日海濱
    海濱的夏天
    孩子(2019年9期)2019-11-07 01:35:49
    古城里的海濱新居
    海濱書簡(jiǎn)
    海濱1
    海濱
    Preparation of Fine Cement Slurries by Wet-Ground Using a Pneumatic Colloid Mill
    講一題通一類得一法
    海濱風(fēng)光掠影
    国产女主播在线喷水免费视频网站| 2018国产大陆天天弄谢| 亚洲天堂av无毛| 亚洲欧美成人综合另类久久久| 亚洲精品乱码久久久久久按摩| 永久网站在线| 母亲3免费完整高清在线观看 | av一本久久久久| 精品久久国产蜜桃| av卡一久久| 国内精品宾馆在线| 青春草国产在线视频| 蜜桃国产av成人99| 少妇被粗大的猛进出69影院 | 久久鲁丝午夜福利片| 免费女性裸体啪啪无遮挡网站| 国产成人精品无人区| 91国产中文字幕| av免费在线看不卡| 亚洲精品久久午夜乱码| 男人爽女人下面视频在线观看| 国产无遮挡羞羞视频在线观看| 久久精品国产鲁丝片午夜精品| 精品人妻在线不人妻| 国产成人一区二区在线| 久久久久久久久久久久大奶| 日日撸夜夜添| 黑人欧美特级aaaaaa片| 国产亚洲精品久久久com| 在线 av 中文字幕| 久久精品国产亚洲av天美| 成人午夜精彩视频在线观看| 免费少妇av软件| 人妻一区二区av| 欧美日韩一区二区视频在线观看视频在线| 如日韩欧美国产精品一区二区三区| 最黄视频免费看| 精品久久国产蜜桃| 精品少妇内射三级| a 毛片基地| 中文字幕制服av| 亚洲丝袜综合中文字幕| 中文字幕人妻丝袜制服| 最黄视频免费看| 日本猛色少妇xxxxx猛交久久| 九色成人免费人妻av| 少妇猛男粗大的猛烈进出视频| 一区二区三区乱码不卡18| 一级黄片播放器| 男女午夜视频在线观看 | 伦理电影免费视频| 国产免费视频播放在线视频| 中文精品一卡2卡3卡4更新| 亚洲欧洲精品一区二区精品久久久 | 九草在线视频观看| 国产精品国产三级专区第一集| 婷婷色综合大香蕉| 国产国拍精品亚洲av在线观看| 看免费av毛片| 在线观看www视频免费| 久热久热在线精品观看| 国产高清三级在线| 日韩熟女老妇一区二区性免费视频| 纵有疾风起免费观看全集完整版| 精品一区二区免费观看| 亚洲精品av麻豆狂野| 99久久精品国产国产毛片| 晚上一个人看的免费电影| 一区二区日韩欧美中文字幕 | 女性生殖器流出的白浆| 午夜av观看不卡| 亚洲国产欧美在线一区| 春色校园在线视频观看| 中文字幕制服av| 看免费成人av毛片| 美女脱内裤让男人舔精品视频| 99视频精品全部免费 在线| 视频在线观看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 欧美另类一区| 午夜老司机福利剧场| 99久久精品国产国产毛片| 男人舔女人的私密视频| 日韩电影二区| 免费观看在线日韩| 亚洲一区二区三区欧美精品| 亚洲一级一片aⅴ在线观看| av一本久久久久| 欧美 亚洲 国产 日韩一| 美女视频免费永久观看网站| 久久这里有精品视频免费| 大陆偷拍与自拍| 男人操女人黄网站| 两个人看的免费小视频| 欧美3d第一页| 亚洲国产精品999| 成年美女黄网站色视频大全免费| 日韩大片免费观看网站| 一本久久精品| 久久久a久久爽久久v久久| 亚洲精品美女久久av网站| 国产精品国产三级专区第一集| 2018国产大陆天天弄谢| 亚洲欧美中文字幕日韩二区| 又黄又爽又刺激的免费视频.| 精品酒店卫生间| 人人妻人人澡人人爽人人夜夜| 国产女主播在线喷水免费视频网站| 欧美日韩精品成人综合77777| 久久人人爽人人爽人人片va| 午夜激情av网站| 97在线人人人人妻| 亚洲精品美女久久av网站| 婷婷色麻豆天堂久久| 少妇的丰满在线观看| 9191精品国产免费久久| 久久99热6这里只有精品| 欧美精品高潮呻吟av久久| 国产白丝娇喘喷水9色精品| 日产精品乱码卡一卡2卡三| 精品午夜福利在线看| 91精品伊人久久大香线蕉| 麻豆乱淫一区二区| 少妇的逼水好多| 纵有疾风起免费观看全集完整版| 日韩大片免费观看网站| 国产精品久久久久久av不卡| 秋霞在线观看毛片| 秋霞伦理黄片| 欧美xxⅹ黑人| 国产精品免费大片| 日本欧美国产在线视频| 国产69精品久久久久777片| 国产免费又黄又爽又色| 夫妻性生交免费视频一级片| 国产成人91sexporn| 亚洲欧美日韩卡通动漫| 久久久精品区二区三区| 在线天堂中文资源库| 男人操女人黄网站| 国产精品久久久久久av不卡| 日本91视频免费播放| 久久精品人人爽人人爽视色| 美女国产视频在线观看| 最近手机中文字幕大全| 国产又爽黄色视频| 伊人亚洲综合成人网| 一级片'在线观看视频| 最近手机中文字幕大全| 精品一品国产午夜福利视频| 男女免费视频国产| 精品久久国产蜜桃| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 免费人妻精品一区二区三区视频| 黄色怎么调成土黄色| a级毛色黄片| 考比视频在线观看| 亚洲精品久久久久久婷婷小说| 伦理电影免费视频| 97精品久久久久久久久久精品| 欧美97在线视频| 狠狠婷婷综合久久久久久88av| 国产免费福利视频在线观看| 精品一区二区免费观看| 夫妻午夜视频| 日韩 亚洲 欧美在线| 如何舔出高潮| 五月开心婷婷网| 免费观看av网站的网址| 各种免费的搞黄视频| 欧美日韩av久久| 亚洲,欧美,日韩| 又大又黄又爽视频免费| 日韩 亚洲 欧美在线| 在线天堂中文资源库| 五月玫瑰六月丁香| 晚上一个人看的免费电影| 狠狠婷婷综合久久久久久88av| 少妇的逼好多水| 久久久精品区二区三区| 永久网站在线| 人人妻人人添人人爽欧美一区卜| 又黄又爽又刺激的免费视频.| 国产成人精品无人区| 2018国产大陆天天弄谢| 丰满饥渴人妻一区二区三| 亚洲性久久影院| 国产 一区精品| 黑人欧美特级aaaaaa片| 丝袜脚勾引网站| 欧美97在线视频| 香蕉丝袜av| 超色免费av| 亚洲综合色网址| 日韩欧美精品免费久久| 如何舔出高潮| 久久鲁丝午夜福利片| 亚洲欧美一区二区三区黑人 | 欧美 日韩 精品 国产| 欧美成人午夜精品| 国产午夜精品一二区理论片| 夫妻性生交免费视频一级片| 欧美人与性动交α欧美精品济南到 | 美女xxoo啪啪120秒动态图| 国内精品宾馆在线| 亚洲欧美色中文字幕在线| 九草在线视频观看| 国产精品一国产av| 天美传媒精品一区二区| 国产无遮挡羞羞视频在线观看| 久久久欧美国产精品| 边亲边吃奶的免费视频| 男女高潮啪啪啪动态图| 亚洲精品日本国产第一区| 丝袜喷水一区| 亚洲欧美精品自产自拍| 菩萨蛮人人尽说江南好唐韦庄| 9191精品国产免费久久| 国产xxxxx性猛交| 伊人亚洲综合成人网| 爱豆传媒免费全集在线观看| 最近2019中文字幕mv第一页| 亚洲精品一区蜜桃| 成年美女黄网站色视频大全免费| 青春草亚洲视频在线观看| 国产精品国产三级国产专区5o| 伦理电影大哥的女人| av片东京热男人的天堂| 在线观看www视频免费| 国产熟女欧美一区二区| 观看美女的网站| tube8黄色片| 中文欧美无线码| av国产久精品久网站免费入址| 考比视频在线观看| 色吧在线观看| 亚洲精品456在线播放app| 免费观看av网站的网址| 久久久久久久精品精品| 欧美 日韩 精品 国产| 欧美精品人与动牲交sv欧美| a级毛片在线看网站| 国产亚洲午夜精品一区二区久久| 午夜福利网站1000一区二区三区| 一级毛片 在线播放| 最后的刺客免费高清国语| 国产精品久久久久久精品古装| 精品一区二区三卡| 人人妻人人爽人人添夜夜欢视频| 免费人妻精品一区二区三区视频| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 亚洲第一区二区三区不卡| 亚洲综合色网址| a级毛片黄视频| 一区二区日韩欧美中文字幕 | 草草在线视频免费看| 最近手机中文字幕大全| 久久精品熟女亚洲av麻豆精品| 熟女电影av网| 激情五月婷婷亚洲| 香蕉精品网在线| 国产免费现黄频在线看| 午夜激情久久久久久久| 国产精品久久久久久av不卡| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 亚洲综合色惰| 男人爽女人下面视频在线观看| 午夜福利乱码中文字幕| 国产极品天堂在线| 亚洲欧美成人综合另类久久久| 最后的刺客免费高清国语| 国产又爽黄色视频| 超色免费av| 亚洲欧美日韩卡通动漫| tube8黄色片| 人成视频在线观看免费观看| 日韩成人av中文字幕在线观看| videos熟女内射| h视频一区二区三区| 久久免费观看电影| 国产1区2区3区精品| 丰满饥渴人妻一区二区三| 看十八女毛片水多多多| 国产一区亚洲一区在线观看| av国产久精品久网站免费入址| 天天躁夜夜躁狠狠躁躁| 母亲3免费完整高清在线观看 | 成年美女黄网站色视频大全免费| 大片电影免费在线观看免费| 大片免费播放器 马上看| 欧美97在线视频| 亚洲精品久久久久久婷婷小说| 交换朋友夫妻互换小说| av片东京热男人的天堂| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 好男人视频免费观看在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 又大又黄又爽视频免费| 亚洲精品国产av蜜桃| 91国产中文字幕| 国产成人aa在线观看| 一级毛片黄色毛片免费观看视频| 亚洲婷婷狠狠爱综合网| 亚洲av电影在线进入| 久久97久久精品| 亚洲精品一二三| 国产国拍精品亚洲av在线观看| 午夜福利视频在线观看免费| 日本vs欧美在线观看视频| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 最近2019中文字幕mv第一页| 91午夜精品亚洲一区二区三区| 女性被躁到高潮视频| 黑丝袜美女国产一区| 看免费av毛片| 一个人免费看片子| 日韩精品有码人妻一区| 在线亚洲精品国产二区图片欧美| 国产一区二区在线观看日韩| 三上悠亚av全集在线观看| 街头女战士在线观看网站| 国产精品99久久99久久久不卡 | 高清视频免费观看一区二区| 久久久久人妻精品一区果冻| av视频免费观看在线观看| av又黄又爽大尺度在线免费看| av线在线观看网站| 亚洲美女视频黄频| 乱人伦中国视频| 国产一区二区在线观看日韩| 中文字幕免费在线视频6| 两性夫妻黄色片 | 亚洲欧美一区二区三区黑人 | 久久久久久久国产电影| 国产国语露脸激情在线看| 亚洲成人一二三区av| freevideosex欧美| 国产精品一二三区在线看| 这个男人来自地球电影免费观看 | 我要看黄色一级片免费的| 国产免费现黄频在线看| 日日摸夜夜添夜夜爱| 成年人免费黄色播放视频| 欧美性感艳星| 色5月婷婷丁香| 一级毛片电影观看| 18禁国产床啪视频网站| 欧美日韩视频高清一区二区三区二| 久久毛片免费看一区二区三区| 精品久久国产蜜桃| 热99久久久久精品小说推荐| 欧美精品av麻豆av| 亚洲精品一二三| 搡老乐熟女国产| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 成人综合一区亚洲| 2018国产大陆天天弄谢| 成人午夜精彩视频在线观看| 中国国产av一级| 宅男免费午夜| 两个人看的免费小视频| 日本黄色日本黄色录像| 国精品久久久久久国模美| 久久久久国产网址| 黄色毛片三级朝国网站| 久久久久久久久久人人人人人人| 午夜老司机福利剧场| 99精国产麻豆久久婷婷| 国内精品宾馆在线| 伊人亚洲综合成人网| 国产精品99久久99久久久不卡 | 在线天堂最新版资源| av国产久精品久网站免费入址| 黑丝袜美女国产一区| 亚洲国产最新在线播放| 中文字幕人妻丝袜制服| 国产精品久久久久久精品电影小说| 中文天堂在线官网| 韩国av在线不卡| 国产黄频视频在线观看| 18禁动态无遮挡网站| 国产极品粉嫩免费观看在线| av在线app专区| 女人精品久久久久毛片| 成人综合一区亚洲| 色哟哟·www| av在线app专区| 国产精品国产三级国产av玫瑰| 乱码一卡2卡4卡精品| 亚洲一级一片aⅴ在线观看| 国产精品久久久av美女十八| 2018国产大陆天天弄谢| 午夜视频国产福利| 亚洲av福利一区| 久久精品熟女亚洲av麻豆精品| 午夜久久久在线观看| 秋霞伦理黄片| √禁漫天堂资源中文www| 久久久精品免费免费高清| 国产精品欧美亚洲77777| 久热这里只有精品99| 多毛熟女@视频| av视频免费观看在线观看| 亚洲av电影在线观看一区二区三区| 深夜精品福利| 中文字幕av电影在线播放| 国产一区二区激情短视频 | 国产乱人偷精品视频| 亚洲综合色惰| 日韩电影二区| 久久热在线av| 免费大片黄手机在线观看| 精品少妇内射三级| 制服丝袜香蕉在线| 亚洲欧美日韩另类电影网站| 亚洲一区二区三区欧美精品| 黄色 视频免费看| 亚洲欧美成人综合另类久久久| 十八禁高潮呻吟视频| 一级毛片 在线播放| 夜夜爽夜夜爽视频| 久久久久人妻精品一区果冻| 国产在线免费精品| 最后的刺客免费高清国语| 国产免费福利视频在线观看| 99热全是精品| 日本午夜av视频| 亚洲av在线观看美女高潮| 黑人高潮一二区| 青春草视频在线免费观看| 91久久精品国产一区二区三区| 国产精品不卡视频一区二区| 一二三四中文在线观看免费高清| 99国产综合亚洲精品| 久久国内精品自在自线图片| 国产精品 国内视频| 国产日韩欧美视频二区| 欧美人与性动交α欧美精品济南到 | 欧美 亚洲 国产 日韩一| 成人毛片a级毛片在线播放| 午夜激情av网站| av播播在线观看一区| 男人舔女人的私密视频| av又黄又爽大尺度在线免费看| 久久久精品免费免费高清| 黄片播放在线免费| 欧美激情极品国产一区二区三区 | 欧美日韩一区二区视频在线观看视频在线| 日韩 亚洲 欧美在线| 男人操女人黄网站| 最近的中文字幕免费完整| 制服诱惑二区| 涩涩av久久男人的天堂| 一级a做视频免费观看| 国产成人午夜福利电影在线观看| 久久99热这里只频精品6学生| 久久久久久久久久人人人人人人| 丝袜脚勾引网站| 欧美精品一区二区免费开放| 久久久久久久国产电影| 亚洲av福利一区| kizo精华| 久久国产亚洲av麻豆专区| 最近中文字幕2019免费版| 女性被躁到高潮视频| 欧美日韩成人在线一区二区| 男人舔女人的私密视频| 又粗又硬又长又爽又黄的视频| 赤兔流量卡办理| 亚洲色图综合在线观看| 国产有黄有色有爽视频| 欧美xxxx性猛交bbbb| 国产精品无大码| 精品亚洲乱码少妇综合久久| 精品久久国产蜜桃| 欧美日本中文国产一区发布| 亚洲四区av| 蜜臀久久99精品久久宅男| 久久人人97超碰香蕉20202| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| 亚洲色图综合在线观看| 国产成人精品久久久久久| 侵犯人妻中文字幕一二三四区| 少妇被粗大猛烈的视频| 精品一区二区三卡| 日本爱情动作片www.在线观看| 熟女电影av网| 三级国产精品片| 日本wwww免费看| 国产淫语在线视频| 欧美日韩视频高清一区二区三区二| 久久久国产精品麻豆| 国产精品熟女久久久久浪| 日本与韩国留学比较| 人妻 亚洲 视频| 天堂8中文在线网| 亚洲av电影在线进入| 午夜激情av网站| 99香蕉大伊视频| 午夜福利视频在线观看免费| 亚洲av电影在线观看一区二区三区| 久久女婷五月综合色啪小说| 9热在线视频观看99| 国产精品无大码| 丁香六月天网| 国产视频首页在线观看| 欧美最新免费一区二区三区| a 毛片基地| 精品国产乱码久久久久久小说| 国产色爽女视频免费观看| 亚洲精品国产色婷婷电影| 成人亚洲精品一区在线观看| 国产精品久久久久久精品电影小说| 成人手机av| 午夜福利视频在线观看免费| 亚洲情色 制服丝袜| 黑丝袜美女国产一区| 在线免费观看不下载黄p国产| 搡女人真爽免费视频火全软件| 少妇精品久久久久久久| 欧美精品av麻豆av| 亚洲成人av在线免费| 欧美精品亚洲一区二区| 久久精品国产自在天天线| 国产日韩欧美在线精品| 2018国产大陆天天弄谢| 大香蕉久久网| 午夜91福利影院| 日韩av在线免费看完整版不卡| 韩国精品一区二区三区 | 日韩视频在线欧美| 亚洲色图综合在线观看| 伊人亚洲综合成人网| 熟妇人妻不卡中文字幕| www.熟女人妻精品国产 | 九色亚洲精品在线播放| 99热国产这里只有精品6| 日韩欧美一区视频在线观看| 国产1区2区3区精品| 国产精品 国内视频| av线在线观看网站| av天堂久久9| 国产有黄有色有爽视频| 99热这里只有是精品在线观看| 色吧在线观看| 亚洲在久久综合| 欧美 亚洲 国产 日韩一| 哪个播放器可以免费观看大片| 亚洲欧美色中文字幕在线| xxxhd国产人妻xxx| 天天操日日干夜夜撸| 亚洲美女搞黄在线观看| 欧美精品av麻豆av| 国产有黄有色有爽视频| 韩国高清视频一区二区三区| 最近最新中文字幕免费大全7| 宅男免费午夜| 大香蕉97超碰在线| 99香蕉大伊视频| 午夜福利乱码中文字幕| 卡戴珊不雅视频在线播放| 亚洲精品自拍成人| 十八禁高潮呻吟视频| 久久综合国产亚洲精品| 满18在线观看网站| 免费黄网站久久成人精品| 高清av免费在线| 人人妻人人澡人人爽人人夜夜| 日韩一区二区三区影片| 精品久久蜜臀av无| 大香蕉久久网| 一级黄片播放器| 一本色道久久久久久精品综合| 国产在线视频一区二区| 水蜜桃什么品种好| 国产成人免费观看mmmm| 不卡视频在线观看欧美| 日韩 亚洲 欧美在线| 国产成人免费观看mmmm| 不卡视频在线观看欧美| 熟女人妻精品中文字幕| 女人精品久久久久毛片| 国产一区二区三区综合在线观看 | 久久久久精品久久久久真实原创| 久久久欧美国产精品| 性色avwww在线观看| 两性夫妻黄色片 | 十分钟在线观看高清视频www| 久久精品国产亚洲av涩爱| 黄色视频在线播放观看不卡| 草草在线视频免费看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇人妻精品综合一区二区| 国产成人91sexporn| 国产探花极品一区二区| 亚洲人与动物交配视频| 18禁裸乳无遮挡动漫免费视频| 欧美激情极品国产一区二区三区 | 久久这里只有精品19| 熟女av电影| 国产精品熟女久久久久浪| 人人妻人人澡人人看| 亚洲精华国产精华液的使用体验| 一本久久精品| 欧美bdsm另类| 18+在线观看网站| 老司机影院成人| www.色视频.com|