• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A FRACTIONAL NONLINEAR EVOLUTIONARY DELAY SYSTEM DRIVEN BY A HEMI-VARIATIONAL INEQUALITY IN BANACH SPACES?

    2021-04-08 12:52:04YunhuaWENG翁云華XuesongLI李雪松NanjingHUANG黃南京
    關(guān)鍵詞:雪松南京

    Yunhua WENG(翁云華)Xuesong LI(李雪松)Nanjing HUANG(黃南京)

    Department of Mathematics,Sichuan University,Chengdu 610064,China E-mail:yunhuaweng@outlook.com;xuesongli78@hotmail.com;nanjinghuang@hotmail.com;njhuang@scu.edu.cn

    Abstract This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using afixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.

    Key words fractional differential variational inequality;fractional nonlinear delay evolution equation;hemi-variational inequality;condensing map;KKM theorem;fixed point theorem

    1 Introduction

    It is well known that the differential variational inequality(for short,DVI),introduced initially by Aubin and Cellina[2]in 1984,was systematically studied by Pang and Stewart[35]infinite dimensional Euclidean spaces in 2008.As pointed out by Pang and Stewart[35],DVI plays an important role in describing issues pertaining to many areas,such as fluid mechanical problems,contact friction,engineering operation research,economical dynamics,dynamic traffic networks problems,obstacle problems for contacting bodies,and so on.Various theoretical results,numerical algorithms and applications have been studied for DVIs.For example,by adopting a method of differential inclusions with regard to the set-valued map,Li et al.[22]proved the existence theorems of a class of DVIs and established the convergence result on a time-series for solving DVIs involving an initial condition.By utilizing Mosco convergence,Gwinner[13]obtained a stability theorem for a new class of DVIs concerning perturbation parameters for the data.Some related works concerned with DVIs in finite dimensional spaces can be found in [19–21,23,31,36].Recently,Liu and Zeng [24],Liu et al.[27],Liu et al.[26],and Liu et al.[25]discussed the existence of solutions as well as the topological structure of the solution set for DVIs in infinite-dimensional Banach spaces under some mild conditions.

    On the other hand,as a field of applied mathematics,fractional calculus can be used to handle calculus of arbitrary order.During the last 20 years,fractional calculus has been widely used in almost every field of physics,engineering,biology,and economics (see [3–5,14,34]).It is noticeable that one of the major advantages of fractional order models is that they can be deemed as the super set of integer order calculus.Thus,there is great potential for fractional calculus to achieve what integer order calculus cannot.In 2015,Ke et al.[18]proved the nonemptiness of the decay solution set for a new class of DVIs regarding fractional order derivatives in finite dimensional spaces.Recently,by using the difference method,together with the surjectivity theorem of set-valued maps and properties of the Clarke subdifferential,Zeng et al.[41],Zeng and Mig′orski[42]discussed fractional differential elliptic hemi-variational inequality and fractional differential parabolic hemi-variational inequality in Banach spaces,respectively.Very recently,Mig′orski and Zeng [30]investigated a class of fractional DVIs in Banach spaces and obtained the existence theorem of solutions for their model by employing the discrete approximation approach.

    We note that,in some practical situations,it is necessary to consider some dynamical systems driven by delay evolution equations because time delay is ubiquitous in most physical,chemical and biological systems such as population dynamics,optical bistable devices,electromechanical systems,predator-prey models,and physiological systems (see,for example,[8,15,32,39]and the references therein).Recently,Wang et al.[38]investigated a class of delay DVIs consisting of a system of variational inequalities and delay differential equations in finite dimensional Euclidean spaces.Due to the fact that a lot of application problems arising in engineering and physics can be described more precisely by differential equations in infinite dimensional spaces [1],it is important and interesting to investigate fractional DVIs involving time delay in infinite dimensional spaces.However,until now,there has never been a study on fractional differential hemi-variational inequalities involving state-dependent delay in infinite dimensional spaces.The main purpose of this article is to study a new fractional delay evolution system governed by a hemi-variational inequality (for short,FDESHVI) in Banach spaces under some mild conditions.

    The rest of this article proceeds as follows:the next section presents some necessary preliminaries.In Section 3,we show that the solution set of a hemi-variational inequality is upper semicontinuious and measurable by employing the KKM theorem.In addition,by using the fixed point argument of the condensing set-valued map,we obtain the existence and compactness of the set of mild solutions for FDESHVI.Finally,we present an example to demonstrate our main results in Section 4.

    2 Preliminaries

    Some special cases of FDESHVI (2.1) are as follows:

    This was considered by Mig′orski and Zeng [30].Moreover,if α=1 and ?=0,then (2.3)reduces to the DVI considered by Liu and Zeng [28].

    This was discussed by Ke et al.[18].

    This was investigated by Wang et al.[38].

    2.1 Set-valued analysis and measure of noncompactness (MNC)

    Let W be a topological space.In the sequel,we denote the following:

    Definition 2.1

    (see [17]) Let E be a Banach space.A function β :P(E)→Ris called an MNC in E if

    An MNC β is said to be

    i) monotone if,for any I,I∈P(E),I?Iimplies that β(I)≤β(I);

    ii) nonsingular if β(a ∪I)=β(I),?a ∈E,?I ∈P(E);

    iii) invariant with reference to union with compact set if β(K∪I)=β(I)for every relatively compact set K ?E and I ∈P(E);

    iv) semi-additive if β(I+I)≤β(I)+β(I);

    v) regular if β(I)=0 is equivalent to that I is relative compact.

    A representative instance of MNC is the Hausdorff MNC ν(·):

    We also need to repeat the definition of MNC in Banach space C([0,T];E)(see[17]),which is given by

    where ?(I) denotes the group of all countable subsets of I,where Lis a constant,and

    Clearly,MNC ν is monotone nonsingular and regular.

    In what follows,we turn to some preliminaries of set-valued analysis.Let Eand X be two metric spaces.

    Definition 2.2

    A set-valued map F :E→P(X) is said to be

    ii) lower semicontinuous(l.s.c.) if,for every closed set W ?X,the small preimage F(W)defined by F(W)={y ∈E:F(y)?W} is a closed subset of E;

    iii) continuous if F is both u.s.c.and l.s.c..

    iv) closed if G={(y,z):y ∈E,z ∈F(y)}?E×X is closed;

    Lemma 2.3

    (see[12,Proposition 14.5]) Let E and V be two Hausdorff topological spaces.Assume that the set-valued map G:E →P(V) satisfies the following conditions:

    i) there exists a compact set K ?V such that G(E)?K;

    ii) the graph of G is closed.

    Then G is u.s.c..

    Definition 2.4

    A set-valued map F :Z ?E →P(E)is said to be condensing in relation to MNC β (or β-condensing) if,for every bounded subset I ?Z,the relation β(I) ≤β(F(I))entails that I is relatively compact in Z.

    Lemma 2.5

    (see[17,Corollary 2.2.1]) Let D be a nonempty,bounded,and closed subset of a Banach space E.If Σ:E →K(E) is k-Lipschitz (0 Lemma 2.6

    (see [7,Theorem 5.1.5]) Let D ∈Cv(E),with E being a Banach space and F :D →Cv(D) being a closed u.s.c.β-condensing map.Then,FixF,the set of fixed point of F,is nonempty.

    Lemma 2.7

    (see [17,Proposition 3.5.1]) Let D ∈C(E),with E being a Banach space and F :D →K(E) being a closed map such that F is β-condensing when it is restricted to any bounded subset of D.Then FixF is compact,provided that it is bounded.

    Definition 2.8

    (see[24]) Let X and V be two Banach spaces and let I ?R be an interval.The set-valued map G given by G:I×X →P(V)is said to be superpositionally measurable if,for any measurable set-valued map Z :I →K(X),the set-valued map M :I →P(V) defined by M(t)=G(t,Z(t)) is measurable.

    Lemma 2.9

    (see [24,Theorem 2.3]) If G:I ×X →P(V) is u.s.c.,then G is superpositionally measurable.

    Definition 2.10

    (see [10]) Let X be a Banach space and J :X →R a locally Lipschitz function.The generalized directional derivative of J at x ∈X in the direction y ∈X is defined by

    and the generalized gradient of J :X →R is defined as

    Proposition 2.11

    (see [10,proposition 2.1.2]) Let J :X →R be a locally Lipschitz function with the Lipschitz constant L>0 near x ∈X.Then

    Lemma 2.12

    (see [11,Lemma 2.4],KKM Theorem) Let Y be a Hausdorff topological space and let K ?Y be nonempty.Assume that the set-valued map F :K →C(Y) meets the following two conditions:

    (a) F is a KKM map,that is,for every {y,y,···,y}?K,one has

    (b) there exists at least one y∈K such that F(y)∈Y is compact.

    2.2 Fractional calculus

    Definition 2.13

    (see [16]) The fractional integral of order q >0 of a function x(t) ∈L([0,+∞);R) is defined by

    Definition 2.14

    (see [16]) For a given function x(t)∈C([0,+∞);R),the Caputo fractional derivative of order q ∈(n ?1,n) is defined by

    Note that,if x(t) has values in an abstract space X,then the integrals appearing in Definitions 2.13 and 2.14 are understood in Bochner’s sense.

    According to [33,40],the mild solution of FDESHVI is defined as follows:

    Definition 2.15

    A pair(x,u)is said to be the mild solution of FDESHVI if x ∈C([?τ,T];X) and u:I →K is measurable such that

    Following [26],if a pair (x,u) is a mild solution of FDESHVI,then x(t) is called the mild trajectory function and u(t) is called the variational control function.

    Lemma 2.16

    (see[40,Lemmas 3.2–3.4]) The operators Pand Qpossesses the following properties:

    i) For any given t ≥0,P(t) and Q(t) are bounded linear operators such that,for any x ∈X,

    ii) {P(t),t ≥0} and {Q(t),t ≥0} are strongly continuous;

    iii) For any t>0,if T(t) is compact,then P(t) and Q(t) are also compact.

    Lemma 2.18

    (see [33,Theorem 2.3.2]) For t >0,{T(t)}is uniformly continuous provided that it is a compact C-semigroup.

    3 Existence Results on Bounded Time Intervals

    Let ν be the Hausdorff MNC on C([?τ,T];X).In order to obtain the existence results for FDESHVI,we need the following hypotheses:

    In addition,if K is bounded,then the set of solutions of (3.1)is nonempty,convex,and closed.If K is unbounded,the above conclusion is also correct provided that there exist u∈K and r >0 such that

    Proof

    First,we show that (3.1) is equivalent to (3.2).For simplicity,let Sdenote the set of solutions of (3.1).If u ∈S,then,by Proposition 2.11(b),one has

    for some ξ ∈?J(u).Invoking the monotonicity of Q+?J,it follows from the above inequality that

    Conversely,if u ∈K solves (3.2),then for any t ∈(0,1) and v ∈K,u=tv+(1 ?t)u ∈K thanks to the convexity of K.Thus,

    In view of (Hj)(ii),(iv) and Proposition 2.11(c),one has

    Applying (i),Proposition 2.11(a) and taking the limit as t →0,we have

    Secondly,we prove that Sis closed.Let u∈Sand u→u ∈X.According to the equivalence of (3.1) and (3.2),we have

    It follows from Proposition 2.11(a) and (Hj)(iii) that

    This shows that

    Thirdly,we show that Sis convex.Let u,u∈S.Then

    By condition (iii),one has

    This implies that u=tu+(1 ?t)u∈K for all t ∈(0,1).From (Hj)(iii) and Proposition 2.11(b),for any v ∈K,there is η∈?J(v) such that

    This implies that u∈S,and so Sis convex.

    Fourthly,we claim that Sis nonempty.The proof is divided into two cases.

    Case 1

    If K is bounded in X,we consider the set-valued map F :K →P(K) defined by

    which is a contradiction to (3.3).This shows that the claim holds.Thus,for every u ∈K,there exists λ>0 small enough such that

    (i) U is u.s.c.;

    (ii) U is superpositionally measurable.

    Next,we show that,for any closed subset D ?K,the set

    is closed.In fact,for any sequence {(t,x)} ?U(D) with (t,x) →(t,x),we can choose u∈U(t,x)∩D.According to (3.6),we have

    The compactness of K yields that there exists a subsequence of {u} denoted again by {u}such that u→u ∈D.Letting n →∞in (3.7),from conditions (Hg),(HB),(HJ),and(Hj)(iii),one has

    Next we define a set-valued map F :I ×X→P(X) by setting

    Lemma 3.3

    (see [26],Lemma 3.6) Assume that all the conditions of Theorem 3.2 and(Hf) are fulfilled.Then F possesses the following properties:

    (F) For every (t,x)∈I×X,F(t,x)∈Kv(E);

    (F) F(·,x) admits a strongly measurable selection for every x ∈X;

    (F) For every t ∈I,F(t,·) is u.s.c..

    where F(t,x) is defined by (3.8).

    Lemma 3.5

    Under the same conditions as those of Lemma 3.3,the set P(x)is nonempty and convex for every x ∈C(I;X).

    Lemma 3.6

    Assume that condition (Hf) holds and that {x} ?C(I;X) with f∈P(x) such that x→xand f?f ∈L([0,T]).Then f ∈P(x).

    with ?>0 being a given number and B?Xbeing a ball centered at origin with a radius of ?.Thus,

    Now,we will present the main results of this section.

    Theorem 3.7

    Assume that (HW),(Hf),(Hh),and (HT) hold.Then,under the same conditions as those of Theorem 3.2,FDESHVI (2.1) has at least one mild solution.Moreover,the set of mild trajectory functions of FDESHVI is compact in C([?τ,T],X).

    Proof

    For any x ∈C([?τ,T],X),we define a set-valued map Σ as follows:

    We first show that Σ :C([?τ,T],X)→P(C([?τ,T],X)).Theorem 3.2 ensures that the set-valued map U :I×X→Kv(K) is superpositionally measurable.According to Filippov’s implicit lemma [17],for any x ∈C(I,X),there is a measurable selection u(t)∈U(t,x(t) such that

    Thus,according to Lemma 3.5,we know that Σ(x) is well-defined.Moreover,Lemma 2.17 implies that Σ(x)?C([?τ,T],X),and so Σ:C([?τ,T],X)→P(C([?τ,T],X)).

    In order to prove the existence of a mild solution for FDESHVI,it suffices to show that Σ admits a fixed point.We will prove that the set-valued map Σ fulfills all the conditions of the Lemmas 2.6 and 2.7.The proof is proceeds in three steps.

    Step 1

    For every x ∈C([?τ,T],X),Σ(x) is compact and convex.

    In light of Lemmas 2.17 and 3.5,it is easy to verify that Σ(x)is compact.Let z,z∈Σ(x).Then there are f,f∈P(x) such that

    By Lemma 2.5,we need only to show that Σis contractive and that Σis u.s.c.and compact.We divide the proof into 5 claims.

    Claim 1

    Σis contractive on B.For any x∈Bwith i=1,2 and t ∈I,it follows from(Hh(ii)) that

    Claim 2

    Σ(x) is uniformly bounded on B.According to the proof of Step 2,one can obtain this claim.

    Claim 3

    {Σ(x) :x ∈B} is equicontinuous.For this purpose,we discuss the following two situations:

    Case 1

    For any x ∈Band ? >0,if t=0,0

    We show that for any t ∈[?τ,T],Υ(t)={Σx(t) :x ∈B} ?Xis relatively compact.For any t ∈[?τ,0],it is easy to see that Υ(t)={0}is compact and so we only need to consider t ∈(0,T].For any t ∈(0,T],x ∈B,and z ∈Σ(x),there is a function f ∈Psuch that

    For any ? ∈(0,t) and δ >0,due to the compactness of operator T(?δ)(?δ >0),it is easy to see that Υ(t)?Xis relatively compact.

    From condition (Hf)(ii),Lemma 2.16,and H?lder’s inequality,one has

    Hence,one can find a relatively compact set close to the set Υ(t)arbitrarily,and so Υ(t)?Xis also relatively compact for t>0.Now the Ascoli-Arzela theorem [6,Proposition 1.7.3]implies that {Σx(t):x ∈B}?Xis relatively compact,and so Claim 4 holds.

    Claim 5

    Σis closed.

    Let x→x and z∈Σxwith z→z.We prove that z ∈Σx.In fact,z∈Σx?Bimplies that there exists f∈P(x) satisfying,for every t ∈I,that

    According to (Hf)(ii),we obtain the boundedness of{f}.Due to the reflexivity of L(I;X),we can assume that f?f in L(I;X).As x→x ∈C(I;X) ?L(I;X),it follows from Lemmas 2.17 and 3.6 that

    Thus,Claim 5 is true.

    By Claims 4 and 5,the upper semicontinuity of Σis a direct result of Lemma 2.3.Therefore,from Claims 1 to 5,we know that Σ=Σ+Σis u.s.c.and condensing.

    4 An Example

    Let X=L([0,π]),X=R,and K=[2π,5π].Define an operator A:D(A) ?X→Xas Ax=xwith the domain D(A) defined by

    D(A)={x ∈X:x,xare absolutely continuous,x∈X,x(t,0)=x(t,π)=0}.According to [43],one can rewrite A as

    猜你喜歡
    雪松南京
    南京比鄰
    趙雪松書法作品
    詩(shī)潮(2023年11期)2023-12-01 23:24:36
    “南京不會(huì)忘記”
    基于改進(jìn)DBSCAN的異常電池識(shí)別
    趙雪松書法作品
    牛雪松教授簡(jiǎn)介
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會(huì) 又在大南京
    南京:誠(chéng)實(shí)書店開張
    趙雪松書法作品
    山花(2015年20期)2015-12-20 09:04:29
    51午夜福利影视在线观看| 国产精品一区二区三区四区久久| 欧美日韩乱码在线| 一级毛片高清免费大全| 国产成人影院久久av| 我的老师免费观看完整版| aaaaa片日本免费| 国产免费av片在线观看野外av| 国产高清三级在线| 最近最新免费中文字幕在线| 亚洲精品日韩av片在线观看 | 99在线人妻在线中文字幕| 麻豆成人午夜福利视频| av天堂在线播放| 最近最新中文字幕大全电影3| 国产精品久久久人人做人人爽| 国产在线精品亚洲第一网站| 亚洲狠狠婷婷综合久久图片| 国产成人av激情在线播放| 欧美性感艳星| 日本三级黄在线观看| 国产精品爽爽va在线观看网站| 最好的美女福利视频网| 无限看片的www在线观看| 午夜精品久久久久久毛片777| 99热只有精品国产| 小说图片视频综合网站| 一级毛片女人18水好多| 中出人妻视频一区二区| 国产精品精品国产色婷婷| 看片在线看免费视频| 欧美一级毛片孕妇| 一本久久中文字幕| av国产免费在线观看| 日本在线视频免费播放| 露出奶头的视频| 在线观看一区二区三区| 精品国产亚洲在线| 亚洲av成人精品一区久久| 免费搜索国产男女视频| 欧美在线黄色| www日本在线高清视频| 亚洲最大成人手机在线| 在线观看美女被高潮喷水网站 | 久久中文看片网| 激情在线观看视频在线高清| 人妻久久中文字幕网| 午夜免费激情av| 亚洲18禁久久av| 91久久精品电影网| 在线播放国产精品三级| 亚洲aⅴ乱码一区二区在线播放| 亚洲成人精品中文字幕电影| 午夜精品一区二区三区免费看| 母亲3免费完整高清在线观看| 五月伊人婷婷丁香| 在线十欧美十亚洲十日本专区| 校园春色视频在线观看| 啪啪无遮挡十八禁网站| 亚洲欧美日韩无卡精品| 91九色精品人成在线观看| 精品欧美国产一区二区三| 波多野结衣高清作品| 免费看光身美女| 亚洲欧美日韩高清专用| 午夜亚洲福利在线播放| 中亚洲国语对白在线视频| 午夜福利在线观看吧| 99在线视频只有这里精品首页| 欧美中文日本在线观看视频| 亚洲欧美激情综合另类| 精品不卡国产一区二区三区| 婷婷亚洲欧美| 老司机在亚洲福利影院| 91字幕亚洲| 国产伦精品一区二区三区视频9 | 男女做爰动态图高潮gif福利片| 在线观看一区二区三区| 中文字幕人成人乱码亚洲影| 在线观看av片永久免费下载| 三级国产精品欧美在线观看| 国产一级毛片七仙女欲春2| 成人特级黄色片久久久久久久| 国产毛片a区久久久久| 99久久九九国产精品国产免费| 成人高潮视频无遮挡免费网站| 国产精品98久久久久久宅男小说| 久久久久国产精品人妻aⅴ院| 婷婷精品国产亚洲av| 久久久久亚洲av毛片大全| 色综合亚洲欧美另类图片| 极品教师在线免费播放| 成人性生交大片免费视频hd| 黑人欧美特级aaaaaa片| 一区二区三区激情视频| av国产免费在线观看| 国产成人福利小说| 欧美色视频一区免费| 欧洲精品卡2卡3卡4卡5卡区| 免费看光身美女| 麻豆久久精品国产亚洲av| 久久精品国产自在天天线| 深夜精品福利| 欧美性猛交╳xxx乱大交人| 青草久久国产| 亚洲不卡免费看| 中文资源天堂在线| 国内少妇人妻偷人精品xxx网站| 亚洲 欧美 日韩 在线 免费| 久久精品夜夜夜夜夜久久蜜豆| 91av网一区二区| 又黄又爽又免费观看的视频| 国产乱人视频| 一二三四社区在线视频社区8| 一夜夜www| 午夜免费激情av| 特大巨黑吊av在线直播| 久久精品国产综合久久久| 精品一区二区三区人妻视频| 男女做爰动态图高潮gif福利片| 深爱激情五月婷婷| 99国产精品一区二区蜜桃av| 国产单亲对白刺激| 搡老熟女国产l中国老女人| 亚洲中文字幕日韩| 国产高清激情床上av| 听说在线观看完整版免费高清| 国产精品嫩草影院av在线观看 | 欧美乱妇无乱码| 少妇的丰满在线观看| 真人做人爱边吃奶动态| 悠悠久久av| 人人妻,人人澡人人爽秒播| 88av欧美| 国产亚洲精品久久久com| 婷婷丁香在线五月| 在线国产一区二区在线| 午夜福利高清视频| 成年女人永久免费观看视频| 欧美乱妇无乱码| 蜜桃久久精品国产亚洲av| 日韩欧美在线乱码| 午夜免费成人在线视频| 淫秽高清视频在线观看| www.www免费av| 成人亚洲精品av一区二区| 亚洲午夜理论影院| 91久久精品电影网| 哪里可以看免费的av片| 久久性视频一级片| 国产又黄又爽又无遮挡在线| 国产精品99久久99久久久不卡| 欧美日本亚洲视频在线播放| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩一区二区精品| 两个人看的免费小视频| 少妇高潮的动态图| 一级a爱片免费观看的视频| 亚洲无线在线观看| 亚洲av免费高清在线观看| 一进一出好大好爽视频| 久久精品影院6| 欧美性猛交╳xxx乱大交人| 日本一二三区视频观看| 国产精品久久电影中文字幕| 国产探花极品一区二区| 一进一出抽搐gif免费好疼| 99久久久亚洲精品蜜臀av| 男人舔奶头视频| 精品人妻1区二区| 国产一区二区三区视频了| 激情在线观看视频在线高清| 少妇熟女aⅴ在线视频| 青草久久国产| 亚洲精品亚洲一区二区| 国内精品久久久久精免费| 免费观看人在逋| 免费人成在线观看视频色| 精品99又大又爽又粗少妇毛片 | 99精品在免费线老司机午夜| 看片在线看免费视频| 啦啦啦韩国在线观看视频| 成年女人毛片免费观看观看9| 1024手机看黄色片| 亚洲精品在线美女| 天天一区二区日本电影三级| 亚洲 国产 在线| 91在线精品国自产拍蜜月 | 国产99白浆流出| 国产一区二区亚洲精品在线观看| 亚洲第一电影网av| 女人高潮潮喷娇喘18禁视频| 亚洲精品影视一区二区三区av| 一级毛片女人18水好多| 国产主播在线观看一区二区| 男人和女人高潮做爰伦理| 免费人成在线观看视频色| 亚洲国产精品999在线| 男人的好看免费观看在线视频| 看片在线看免费视频| eeuss影院久久| 黄片大片在线免费观看| 内射极品少妇av片p| 亚洲,欧美精品.| 亚洲欧美激情综合另类| 不卡一级毛片| 在线观看美女被高潮喷水网站 | 国产精品电影一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲人成电影免费在线| 久久国产精品影院| 超碰av人人做人人爽久久 | 亚洲精品成人久久久久久| 禁无遮挡网站| 国产激情欧美一区二区| 亚洲成人免费电影在线观看| 91字幕亚洲| 中文亚洲av片在线观看爽| 啦啦啦韩国在线观看视频| 床上黄色一级片| 18禁在线播放成人免费| 美女 人体艺术 gogo| 亚洲av成人精品一区久久| 精品欧美国产一区二区三| 免费搜索国产男女视频| 19禁男女啪啪无遮挡网站| 一夜夜www| 国产精品嫩草影院av在线观看 | 久久精品国产99精品国产亚洲性色| 99热这里只有是精品50| 久久精品国产综合久久久| 国产探花极品一区二区| 岛国在线观看网站| 成人18禁在线播放| 日日夜夜操网爽| 午夜两性在线视频| 一二三四社区在线视频社区8| 亚洲欧美日韩高清专用| 国产探花极品一区二区| 日本精品一区二区三区蜜桃| 啪啪无遮挡十八禁网站| 久久精品国产99精品国产亚洲性色| 久久香蕉精品热| 噜噜噜噜噜久久久久久91| 欧洲精品卡2卡3卡4卡5卡区| 日本五十路高清| a在线观看视频网站| 国产熟女xx| 久久中文看片网| 国产视频内射| 日韩欧美 国产精品| 久久6这里有精品| 一级毛片女人18水好多| 亚洲激情在线av| 日本撒尿小便嘘嘘汇集6| 国产老妇女一区| 免费大片18禁| 精品久久久久久久人妻蜜臀av| 久久亚洲精品不卡| 欧美丝袜亚洲另类 | 成熟少妇高潮喷水视频| 最好的美女福利视频网| 亚洲国产色片| 亚洲电影在线观看av| 国产精品女同一区二区软件 | 久久精品国产99精品国产亚洲性色| 国产一级毛片七仙女欲春2| 岛国在线免费视频观看| 在线观看舔阴道视频| 欧美黑人欧美精品刺激| 欧美极品一区二区三区四区| 最好的美女福利视频网| 午夜激情欧美在线| 国产一区二区三区视频了| 女人十人毛片免费观看3o分钟| 一级毛片女人18水好多| 久久99热这里只有精品18| 国产麻豆成人av免费视频| 波野结衣二区三区在线 | 精品久久久久久久久久免费视频| 久久99热这里只有精品18| 色视频www国产| 夜夜看夜夜爽夜夜摸| 日日干狠狠操夜夜爽| 中文字幕高清在线视频| 天堂√8在线中文| 日本撒尿小便嘘嘘汇集6| 国产99白浆流出| 老鸭窝网址在线观看| 好看av亚洲va欧美ⅴa在| 长腿黑丝高跟| 久久久精品大字幕| 欧美午夜高清在线| 国产精品 欧美亚洲| 国产野战对白在线观看| 亚洲成av人片免费观看| 波野结衣二区三区在线 | 国产精品野战在线观看| 免费高清视频大片| 国产 一区 欧美 日韩| 一级a爱片免费观看的视频| 可以在线观看的亚洲视频| h日本视频在线播放| 制服丝袜大香蕉在线| 窝窝影院91人妻| 美女黄网站色视频| 熟女少妇亚洲综合色aaa.| 国产男靠女视频免费网站| 美女cb高潮喷水在线观看| 欧美日韩瑟瑟在线播放| 69人妻影院| 18+在线观看网站| 波多野结衣高清作品| 国内久久婷婷六月综合欲色啪| 日韩欧美精品v在线| 黄色片一级片一级黄色片| 熟女电影av网| 最后的刺客免费高清国语| 国产精品乱码一区二三区的特点| 欧美日韩乱码在线| 又黄又粗又硬又大视频| 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 老汉色av国产亚洲站长工具| 午夜精品一区二区三区免费看| 精品国产美女av久久久久小说| 成年人黄色毛片网站| 日本成人三级电影网站| 久久精品91无色码中文字幕| 久久久久国产精品人妻aⅴ院| 黄色视频,在线免费观看| 国产精品野战在线观看| 国产三级黄色录像| a级一级毛片免费在线观看| 美女黄网站色视频| 成人18禁在线播放| 色综合亚洲欧美另类图片| 精品一区二区三区视频在线 | 亚洲精品国产精品久久久不卡| 亚洲一区高清亚洲精品| 亚洲专区国产一区二区| 少妇丰满av| 黄色丝袜av网址大全| 搡老熟女国产l中国老女人| 久久久久国产精品人妻aⅴ院| 老熟妇乱子伦视频在线观看| 在线观看一区二区三区| 99国产精品一区二区蜜桃av| 亚洲欧美精品综合久久99| 真人做人爱边吃奶动态| 国产野战对白在线观看| 精品久久久久久久末码| 日日夜夜操网爽| 五月伊人婷婷丁香| 男人和女人高潮做爰伦理| 国产熟女xx| 国产欧美日韩一区二区三| 可以在线观看的亚洲视频| 韩国av一区二区三区四区| 中文字幕人成人乱码亚洲影| 久久久色成人| 成人国产综合亚洲| 色吧在线观看| 国产亚洲欧美98| 女同久久另类99精品国产91| 女生性感内裤真人,穿戴方法视频| 99久国产av精品| 成人特级黄色片久久久久久久| 久久久国产精品麻豆| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色视频三级网站网址| 一个人免费在线观看的高清视频| 亚洲avbb在线观看| 久久精品人妻少妇| 国产成人影院久久av| 特级一级黄色大片| 美女黄网站色视频| 亚洲人成伊人成综合网2020| 久久久久久九九精品二区国产| tocl精华| 在线观看av片永久免费下载| 免费在线观看亚洲国产| 色在线成人网| 亚洲欧美精品综合久久99| 亚洲精品成人久久久久久| 精品午夜福利视频在线观看一区| 在线观看一区二区三区| 99久久成人亚洲精品观看| 欧美午夜高清在线| 久久久精品大字幕| 成年女人永久免费观看视频| a级一级毛片免费在线观看| 亚洲美女视频黄频| 国产日本99.免费观看| 在线观看免费视频日本深夜| 国产黄a三级三级三级人| 精品99又大又爽又粗少妇毛片 | 母亲3免费完整高清在线观看| 国产av麻豆久久久久久久| 亚洲片人在线观看| 欧美丝袜亚洲另类 | 少妇的丰满在线观看| 亚洲一区二区三区色噜噜| 一夜夜www| 国产探花在线观看一区二区| 一进一出好大好爽视频| 成熟少妇高潮喷水视频| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 国产视频一区二区在线看| 一个人免费在线观看电影| 啦啦啦观看免费观看视频高清| 中文字幕人成人乱码亚洲影| 成年免费大片在线观看| 一区二区三区高清视频在线| 高清毛片免费观看视频网站| 亚洲av五月六月丁香网| 亚洲av一区综合| 国内精品久久久久精免费| 亚洲国产欧洲综合997久久,| 精品久久久久久久人妻蜜臀av| 乱人视频在线观看| 日韩精品中文字幕看吧| 成人无遮挡网站| 99视频精品全部免费 在线| 国产男靠女视频免费网站| 欧美黄色淫秽网站| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| 国产精品香港三级国产av潘金莲| 久久草成人影院| 男女做爰动态图高潮gif福利片| 久久人妻av系列| 日韩欧美三级三区| 亚洲av中文字字幕乱码综合| 性色av乱码一区二区三区2| 99久久九九国产精品国产免费| www.www免费av| 久久精品亚洲精品国产色婷小说| 亚洲五月天丁香| 又紧又爽又黄一区二区| 欧美色视频一区免费| 神马国产精品三级电影在线观看| 国产日本99.免费观看| 3wmmmm亚洲av在线观看| 真实男女啪啪啪动态图| 久久久久性生活片| 99国产极品粉嫩在线观看| 国产精品亚洲av一区麻豆| 欧美bdsm另类| 真实男女啪啪啪动态图| 露出奶头的视频| 国产av麻豆久久久久久久| 免费大片18禁| 又紧又爽又黄一区二区| 精品欧美国产一区二区三| 久久久久亚洲av毛片大全| 亚洲欧美精品综合久久99| 国产欧美日韩一区二区三| 中文字幕久久专区| 黄色视频,在线免费观看| 国产精品一区二区三区四区免费观看 | 69人妻影院| 欧美区成人在线视频| 最近在线观看免费完整版| 亚洲精品亚洲一区二区| 熟女少妇亚洲综合色aaa.| 久久久久久久久久黄片| 午夜日韩欧美国产| 69av精品久久久久久| h日本视频在线播放| tocl精华| 亚洲自拍偷在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧洲综合997久久,| 亚洲午夜理论影院| 嫩草影院入口| 国产高清视频在线播放一区| 久久精品国产99精品国产亚洲性色| 久久久成人免费电影| 国产激情欧美一区二区| 日本a在线网址| 精品不卡国产一区二区三区| 51国产日韩欧美| 色哟哟哟哟哟哟| 在线看三级毛片| 亚洲美女视频黄频| 丁香六月欧美| 女人十人毛片免费观看3o分钟| 亚洲 欧美 日韩 在线 免费| 中文字幕精品亚洲无线码一区| www日本黄色视频网| 两个人看的免费小视频| av在线天堂中文字幕| 手机成人av网站| 男人和女人高潮做爰伦理| 人人妻人人澡欧美一区二区| 亚洲国产精品久久男人天堂| 国产一区二区激情短视频| 亚洲最大成人中文| 一本一本综合久久| 亚洲第一欧美日韩一区二区三区| 免费av毛片视频| 99久久精品一区二区三区| 制服丝袜大香蕉在线| 久久香蕉精品热| x7x7x7水蜜桃| 久久久成人免费电影| 麻豆一二三区av精品| 丝袜美腿在线中文| ponron亚洲| 国产日本99.免费观看| 黄色女人牲交| 丁香六月欧美| 免费搜索国产男女视频| 国产爱豆传媒在线观看| 亚洲久久久久久中文字幕| 床上黄色一级片| 亚洲国产精品合色在线| 亚洲国产色片| 男人舔女人下体高潮全视频| 国产av麻豆久久久久久久| 99国产精品一区二区蜜桃av| 91久久精品电影网| 亚洲久久久久久中文字幕| 有码 亚洲区| 国产精品国产高清国产av| 国产伦人伦偷精品视频| 在线观看免费视频日本深夜| 国产日本99.免费观看| 一进一出好大好爽视频| 91在线观看av| 午夜福利在线观看吧| 两个人的视频大全免费| 久久久久性生活片| 免费电影在线观看免费观看| 久久久久免费精品人妻一区二区| 久久久久国内视频| 欧美又色又爽又黄视频| 日本三级黄在线观看| 九九热线精品视视频播放| 婷婷精品国产亚洲av| 最后的刺客免费高清国语| av天堂在线播放| 99热这里只有精品一区| 成人特级av手机在线观看| 欧美不卡视频在线免费观看| 一进一出抽搐动态| 国产精品av视频在线免费观看| 国产精品野战在线观看| 亚洲五月天丁香| 国产精品影院久久| 国产aⅴ精品一区二区三区波| a级毛片a级免费在线| 一个人看的www免费观看视频| 一进一出抽搐动态| 国产精品久久久久久精品电影| 免费av观看视频| 一区二区三区免费毛片| 久久久久亚洲av毛片大全| 国产综合懂色| 亚洲av一区综合| 麻豆久久精品国产亚洲av| 欧美日韩亚洲国产一区二区在线观看| 九色成人免费人妻av| 老司机在亚洲福利影院| 很黄的视频免费| 黄片小视频在线播放| 成人永久免费在线观看视频| 高清毛片免费观看视频网站| 亚洲国产精品999在线| 啦啦啦韩国在线观看视频| 99久久无色码亚洲精品果冻| 中文字幕av成人在线电影| 国产精品 欧美亚洲| 亚洲性夜色夜夜综合| 少妇熟女aⅴ在线视频| 日韩有码中文字幕| 3wmmmm亚洲av在线观看| 成人精品一区二区免费| 欧美xxxx黑人xx丫x性爽| 人人妻,人人澡人人爽秒播| 亚洲精品乱码久久久v下载方式 | 久久精品国产亚洲av涩爱 | 国产在线精品亚洲第一网站| 一个人免费在线观看电影| 国产高清视频在线播放一区| 欧洲精品卡2卡3卡4卡5卡区| 噜噜噜噜噜久久久久久91| 小说图片视频综合网站| 免费看日本二区| 国产欧美日韩精品亚洲av| 亚洲欧美日韩东京热| 久9热在线精品视频| 亚洲国产精品sss在线观看| 可以在线观看毛片的网站| 夜夜爽天天搞| 午夜影院日韩av| 日日夜夜操网爽| 一边摸一边抽搐一进一小说| 久久欧美精品欧美久久欧美| 国产又黄又爽又无遮挡在线| 欧美性猛交黑人性爽| 国内精品一区二区在线观看| 禁无遮挡网站| 在线视频色国产色| 亚洲av中文字字幕乱码综合| 一个人观看的视频www高清免费观看| 欧美日韩黄片免| 日本撒尿小便嘘嘘汇集6| 黄片小视频在线播放| 国产毛片a区久久久久| 日本撒尿小便嘘嘘汇集6| 久久精品影院6| 小说图片视频综合网站|