• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A FRACTIONAL NONLINEAR EVOLUTIONARY DELAY SYSTEM DRIVEN BY A HEMI-VARIATIONAL INEQUALITY IN BANACH SPACES?

    2021-04-08 12:52:04YunhuaWENG翁云華XuesongLI李雪松NanjingHUANG黃南京
    關(guān)鍵詞:雪松南京

    Yunhua WENG(翁云華)Xuesong LI(李雪松)Nanjing HUANG(黃南京)

    Department of Mathematics,Sichuan University,Chengdu 610064,China E-mail:yunhuaweng@outlook.com;xuesongli78@hotmail.com;nanjinghuang@hotmail.com;njhuang@scu.edu.cn

    Abstract This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using afixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.

    Key words fractional differential variational inequality;fractional nonlinear delay evolution equation;hemi-variational inequality;condensing map;KKM theorem;fixed point theorem

    1 Introduction

    It is well known that the differential variational inequality(for short,DVI),introduced initially by Aubin and Cellina[2]in 1984,was systematically studied by Pang and Stewart[35]infinite dimensional Euclidean spaces in 2008.As pointed out by Pang and Stewart[35],DVI plays an important role in describing issues pertaining to many areas,such as fluid mechanical problems,contact friction,engineering operation research,economical dynamics,dynamic traffic networks problems,obstacle problems for contacting bodies,and so on.Various theoretical results,numerical algorithms and applications have been studied for DVIs.For example,by adopting a method of differential inclusions with regard to the set-valued map,Li et al.[22]proved the existence theorems of a class of DVIs and established the convergence result on a time-series for solving DVIs involving an initial condition.By utilizing Mosco convergence,Gwinner[13]obtained a stability theorem for a new class of DVIs concerning perturbation parameters for the data.Some related works concerned with DVIs in finite dimensional spaces can be found in [19–21,23,31,36].Recently,Liu and Zeng [24],Liu et al.[27],Liu et al.[26],and Liu et al.[25]discussed the existence of solutions as well as the topological structure of the solution set for DVIs in infinite-dimensional Banach spaces under some mild conditions.

    On the other hand,as a field of applied mathematics,fractional calculus can be used to handle calculus of arbitrary order.During the last 20 years,fractional calculus has been widely used in almost every field of physics,engineering,biology,and economics (see [3–5,14,34]).It is noticeable that one of the major advantages of fractional order models is that they can be deemed as the super set of integer order calculus.Thus,there is great potential for fractional calculus to achieve what integer order calculus cannot.In 2015,Ke et al.[18]proved the nonemptiness of the decay solution set for a new class of DVIs regarding fractional order derivatives in finite dimensional spaces.Recently,by using the difference method,together with the surjectivity theorem of set-valued maps and properties of the Clarke subdifferential,Zeng et al.[41],Zeng and Mig′orski[42]discussed fractional differential elliptic hemi-variational inequality and fractional differential parabolic hemi-variational inequality in Banach spaces,respectively.Very recently,Mig′orski and Zeng [30]investigated a class of fractional DVIs in Banach spaces and obtained the existence theorem of solutions for their model by employing the discrete approximation approach.

    We note that,in some practical situations,it is necessary to consider some dynamical systems driven by delay evolution equations because time delay is ubiquitous in most physical,chemical and biological systems such as population dynamics,optical bistable devices,electromechanical systems,predator-prey models,and physiological systems (see,for example,[8,15,32,39]and the references therein).Recently,Wang et al.[38]investigated a class of delay DVIs consisting of a system of variational inequalities and delay differential equations in finite dimensional Euclidean spaces.Due to the fact that a lot of application problems arising in engineering and physics can be described more precisely by differential equations in infinite dimensional spaces [1],it is important and interesting to investigate fractional DVIs involving time delay in infinite dimensional spaces.However,until now,there has never been a study on fractional differential hemi-variational inequalities involving state-dependent delay in infinite dimensional spaces.The main purpose of this article is to study a new fractional delay evolution system governed by a hemi-variational inequality (for short,FDESHVI) in Banach spaces under some mild conditions.

    The rest of this article proceeds as follows:the next section presents some necessary preliminaries.In Section 3,we show that the solution set of a hemi-variational inequality is upper semicontinuious and measurable by employing the KKM theorem.In addition,by using the fixed point argument of the condensing set-valued map,we obtain the existence and compactness of the set of mild solutions for FDESHVI.Finally,we present an example to demonstrate our main results in Section 4.

    2 Preliminaries

    Some special cases of FDESHVI (2.1) are as follows:

    This was considered by Mig′orski and Zeng [30].Moreover,if α=1 and ?=0,then (2.3)reduces to the DVI considered by Liu and Zeng [28].

    This was discussed by Ke et al.[18].

    This was investigated by Wang et al.[38].

    2.1 Set-valued analysis and measure of noncompactness (MNC)

    Let W be a topological space.In the sequel,we denote the following:

    Definition 2.1

    (see [17]) Let E be a Banach space.A function β :P(E)→Ris called an MNC in E if

    An MNC β is said to be

    i) monotone if,for any I,I∈P(E),I?Iimplies that β(I)≤β(I);

    ii) nonsingular if β(a ∪I)=β(I),?a ∈E,?I ∈P(E);

    iii) invariant with reference to union with compact set if β(K∪I)=β(I)for every relatively compact set K ?E and I ∈P(E);

    iv) semi-additive if β(I+I)≤β(I)+β(I);

    v) regular if β(I)=0 is equivalent to that I is relative compact.

    A representative instance of MNC is the Hausdorff MNC ν(·):

    We also need to repeat the definition of MNC in Banach space C([0,T];E)(see[17]),which is given by

    where ?(I) denotes the group of all countable subsets of I,where Lis a constant,and

    Clearly,MNC ν is monotone nonsingular and regular.

    In what follows,we turn to some preliminaries of set-valued analysis.Let Eand X be two metric spaces.

    Definition 2.2

    A set-valued map F :E→P(X) is said to be

    ii) lower semicontinuous(l.s.c.) if,for every closed set W ?X,the small preimage F(W)defined by F(W)={y ∈E:F(y)?W} is a closed subset of E;

    iii) continuous if F is both u.s.c.and l.s.c..

    iv) closed if G={(y,z):y ∈E,z ∈F(y)}?E×X is closed;

    Lemma 2.3

    (see[12,Proposition 14.5]) Let E and V be two Hausdorff topological spaces.Assume that the set-valued map G:E →P(V) satisfies the following conditions:

    i) there exists a compact set K ?V such that G(E)?K;

    ii) the graph of G is closed.

    Then G is u.s.c..

    Definition 2.4

    A set-valued map F :Z ?E →P(E)is said to be condensing in relation to MNC β (or β-condensing) if,for every bounded subset I ?Z,the relation β(I) ≤β(F(I))entails that I is relatively compact in Z.

    Lemma 2.5

    (see[17,Corollary 2.2.1]) Let D be a nonempty,bounded,and closed subset of a Banach space E.If Σ:E →K(E) is k-Lipschitz (0 Lemma 2.6

    (see [7,Theorem 5.1.5]) Let D ∈Cv(E),with E being a Banach space and F :D →Cv(D) being a closed u.s.c.β-condensing map.Then,FixF,the set of fixed point of F,is nonempty.

    Lemma 2.7

    (see [17,Proposition 3.5.1]) Let D ∈C(E),with E being a Banach space and F :D →K(E) being a closed map such that F is β-condensing when it is restricted to any bounded subset of D.Then FixF is compact,provided that it is bounded.

    Definition 2.8

    (see[24]) Let X and V be two Banach spaces and let I ?R be an interval.The set-valued map G given by G:I×X →P(V)is said to be superpositionally measurable if,for any measurable set-valued map Z :I →K(X),the set-valued map M :I →P(V) defined by M(t)=G(t,Z(t)) is measurable.

    Lemma 2.9

    (see [24,Theorem 2.3]) If G:I ×X →P(V) is u.s.c.,then G is superpositionally measurable.

    Definition 2.10

    (see [10]) Let X be a Banach space and J :X →R a locally Lipschitz function.The generalized directional derivative of J at x ∈X in the direction y ∈X is defined by

    and the generalized gradient of J :X →R is defined as

    Proposition 2.11

    (see [10,proposition 2.1.2]) Let J :X →R be a locally Lipschitz function with the Lipschitz constant L>0 near x ∈X.Then

    Lemma 2.12

    (see [11,Lemma 2.4],KKM Theorem) Let Y be a Hausdorff topological space and let K ?Y be nonempty.Assume that the set-valued map F :K →C(Y) meets the following two conditions:

    (a) F is a KKM map,that is,for every {y,y,···,y}?K,one has

    (b) there exists at least one y∈K such that F(y)∈Y is compact.

    2.2 Fractional calculus

    Definition 2.13

    (see [16]) The fractional integral of order q >0 of a function x(t) ∈L([0,+∞);R) is defined by

    Definition 2.14

    (see [16]) For a given function x(t)∈C([0,+∞);R),the Caputo fractional derivative of order q ∈(n ?1,n) is defined by

    Note that,if x(t) has values in an abstract space X,then the integrals appearing in Definitions 2.13 and 2.14 are understood in Bochner’s sense.

    According to [33,40],the mild solution of FDESHVI is defined as follows:

    Definition 2.15

    A pair(x,u)is said to be the mild solution of FDESHVI if x ∈C([?τ,T];X) and u:I →K is measurable such that

    Following [26],if a pair (x,u) is a mild solution of FDESHVI,then x(t) is called the mild trajectory function and u(t) is called the variational control function.

    Lemma 2.16

    (see[40,Lemmas 3.2–3.4]) The operators Pand Qpossesses the following properties:

    i) For any given t ≥0,P(t) and Q(t) are bounded linear operators such that,for any x ∈X,

    ii) {P(t),t ≥0} and {Q(t),t ≥0} are strongly continuous;

    iii) For any t>0,if T(t) is compact,then P(t) and Q(t) are also compact.

    Lemma 2.18

    (see [33,Theorem 2.3.2]) For t >0,{T(t)}is uniformly continuous provided that it is a compact C-semigroup.

    3 Existence Results on Bounded Time Intervals

    Let ν be the Hausdorff MNC on C([?τ,T];X).In order to obtain the existence results for FDESHVI,we need the following hypotheses:

    In addition,if K is bounded,then the set of solutions of (3.1)is nonempty,convex,and closed.If K is unbounded,the above conclusion is also correct provided that there exist u∈K and r >0 such that

    Proof

    First,we show that (3.1) is equivalent to (3.2).For simplicity,let Sdenote the set of solutions of (3.1).If u ∈S,then,by Proposition 2.11(b),one has

    for some ξ ∈?J(u).Invoking the monotonicity of Q+?J,it follows from the above inequality that

    Conversely,if u ∈K solves (3.2),then for any t ∈(0,1) and v ∈K,u=tv+(1 ?t)u ∈K thanks to the convexity of K.Thus,

    In view of (Hj)(ii),(iv) and Proposition 2.11(c),one has

    Applying (i),Proposition 2.11(a) and taking the limit as t →0,we have

    Secondly,we prove that Sis closed.Let u∈Sand u→u ∈X.According to the equivalence of (3.1) and (3.2),we have

    It follows from Proposition 2.11(a) and (Hj)(iii) that

    This shows that

    Thirdly,we show that Sis convex.Let u,u∈S.Then

    By condition (iii),one has

    This implies that u=tu+(1 ?t)u∈K for all t ∈(0,1).From (Hj)(iii) and Proposition 2.11(b),for any v ∈K,there is η∈?J(v) such that

    This implies that u∈S,and so Sis convex.

    Fourthly,we claim that Sis nonempty.The proof is divided into two cases.

    Case 1

    If K is bounded in X,we consider the set-valued map F :K →P(K) defined by

    which is a contradiction to (3.3).This shows that the claim holds.Thus,for every u ∈K,there exists λ>0 small enough such that

    (i) U is u.s.c.;

    (ii) U is superpositionally measurable.

    Next,we show that,for any closed subset D ?K,the set

    is closed.In fact,for any sequence {(t,x)} ?U(D) with (t,x) →(t,x),we can choose u∈U(t,x)∩D.According to (3.6),we have

    The compactness of K yields that there exists a subsequence of {u} denoted again by {u}such that u→u ∈D.Letting n →∞in (3.7),from conditions (Hg),(HB),(HJ),and(Hj)(iii),one has

    Next we define a set-valued map F :I ×X→P(X) by setting

    Lemma 3.3

    (see [26],Lemma 3.6) Assume that all the conditions of Theorem 3.2 and(Hf) are fulfilled.Then F possesses the following properties:

    (F) For every (t,x)∈I×X,F(t,x)∈Kv(E);

    (F) F(·,x) admits a strongly measurable selection for every x ∈X;

    (F) For every t ∈I,F(t,·) is u.s.c..

    where F(t,x) is defined by (3.8).

    Lemma 3.5

    Under the same conditions as those of Lemma 3.3,the set P(x)is nonempty and convex for every x ∈C(I;X).

    Lemma 3.6

    Assume that condition (Hf) holds and that {x} ?C(I;X) with f∈P(x) such that x→xand f?f ∈L([0,T]).Then f ∈P(x).

    with ?>0 being a given number and B?Xbeing a ball centered at origin with a radius of ?.Thus,

    Now,we will present the main results of this section.

    Theorem 3.7

    Assume that (HW),(Hf),(Hh),and (HT) hold.Then,under the same conditions as those of Theorem 3.2,FDESHVI (2.1) has at least one mild solution.Moreover,the set of mild trajectory functions of FDESHVI is compact in C([?τ,T],X).

    Proof

    For any x ∈C([?τ,T],X),we define a set-valued map Σ as follows:

    We first show that Σ :C([?τ,T],X)→P(C([?τ,T],X)).Theorem 3.2 ensures that the set-valued map U :I×X→Kv(K) is superpositionally measurable.According to Filippov’s implicit lemma [17],for any x ∈C(I,X),there is a measurable selection u(t)∈U(t,x(t) such that

    Thus,according to Lemma 3.5,we know that Σ(x) is well-defined.Moreover,Lemma 2.17 implies that Σ(x)?C([?τ,T],X),and so Σ:C([?τ,T],X)→P(C([?τ,T],X)).

    In order to prove the existence of a mild solution for FDESHVI,it suffices to show that Σ admits a fixed point.We will prove that the set-valued map Σ fulfills all the conditions of the Lemmas 2.6 and 2.7.The proof is proceeds in three steps.

    Step 1

    For every x ∈C([?τ,T],X),Σ(x) is compact and convex.

    In light of Lemmas 2.17 and 3.5,it is easy to verify that Σ(x)is compact.Let z,z∈Σ(x).Then there are f,f∈P(x) such that

    By Lemma 2.5,we need only to show that Σis contractive and that Σis u.s.c.and compact.We divide the proof into 5 claims.

    Claim 1

    Σis contractive on B.For any x∈Bwith i=1,2 and t ∈I,it follows from(Hh(ii)) that

    Claim 2

    Σ(x) is uniformly bounded on B.According to the proof of Step 2,one can obtain this claim.

    Claim 3

    {Σ(x) :x ∈B} is equicontinuous.For this purpose,we discuss the following two situations:

    Case 1

    For any x ∈Band ? >0,if t=0,0

    We show that for any t ∈[?τ,T],Υ(t)={Σx(t) :x ∈B} ?Xis relatively compact.For any t ∈[?τ,0],it is easy to see that Υ(t)={0}is compact and so we only need to consider t ∈(0,T].For any t ∈(0,T],x ∈B,and z ∈Σ(x),there is a function f ∈Psuch that

    For any ? ∈(0,t) and δ >0,due to the compactness of operator T(?δ)(?δ >0),it is easy to see that Υ(t)?Xis relatively compact.

    From condition (Hf)(ii),Lemma 2.16,and H?lder’s inequality,one has

    Hence,one can find a relatively compact set close to the set Υ(t)arbitrarily,and so Υ(t)?Xis also relatively compact for t>0.Now the Ascoli-Arzela theorem [6,Proposition 1.7.3]implies that {Σx(t):x ∈B}?Xis relatively compact,and so Claim 4 holds.

    Claim 5

    Σis closed.

    Let x→x and z∈Σxwith z→z.We prove that z ∈Σx.In fact,z∈Σx?Bimplies that there exists f∈P(x) satisfying,for every t ∈I,that

    According to (Hf)(ii),we obtain the boundedness of{f}.Due to the reflexivity of L(I;X),we can assume that f?f in L(I;X).As x→x ∈C(I;X) ?L(I;X),it follows from Lemmas 2.17 and 3.6 that

    Thus,Claim 5 is true.

    By Claims 4 and 5,the upper semicontinuity of Σis a direct result of Lemma 2.3.Therefore,from Claims 1 to 5,we know that Σ=Σ+Σis u.s.c.and condensing.

    4 An Example

    Let X=L([0,π]),X=R,and K=[2π,5π].Define an operator A:D(A) ?X→Xas Ax=xwith the domain D(A) defined by

    D(A)={x ∈X:x,xare absolutely continuous,x∈X,x(t,0)=x(t,π)=0}.According to [43],one can rewrite A as

    猜你喜歡
    雪松南京
    南京比鄰
    趙雪松書法作品
    詩(shī)潮(2023年11期)2023-12-01 23:24:36
    “南京不會(huì)忘記”
    基于改進(jìn)DBSCAN的異常電池識(shí)別
    趙雪松書法作品
    牛雪松教授簡(jiǎn)介
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會(huì) 又在大南京
    南京:誠(chéng)實(shí)書店開張
    趙雪松書法作品
    山花(2015年20期)2015-12-20 09:04:29
    久久人人爽av亚洲精品天堂| 一级a爱片免费观看的视频| 国产不卡一卡二| 国产熟女午夜一区二区三区| 久久伊人香网站| 一进一出抽搐gif免费好疼 | 色老头精品视频在线观看| 夜夜看夜夜爽夜夜摸 | 国产又爽黄色视频| 欧美av亚洲av综合av国产av| 这个男人来自地球电影免费观看| 窝窝影院91人妻| 精品一区二区三卡| 久热爱精品视频在线9| 亚洲av成人一区二区三| 一二三四在线观看免费中文在| 91成人精品电影| 亚洲av日韩精品久久久久久密| 久久人人爽av亚洲精品天堂| 一区二区三区国产精品乱码| 天堂中文最新版在线下载| 真人一进一出gif抽搐免费| 欧美亚洲日本最大视频资源| 久久狼人影院| 我的亚洲天堂| 女同久久另类99精品国产91| 国产黄色免费在线视频| 国产精品亚洲av一区麻豆| 亚洲中文日韩欧美视频| 国产有黄有色有爽视频| 性少妇av在线| 男女下面进入的视频免费午夜 | 一进一出好大好爽视频| 久久久久久久久中文| 在线观看66精品国产| 一a级毛片在线观看| 国产亚洲精品久久久久5区| 无限看片的www在线观看| 韩国精品一区二区三区| 少妇的丰满在线观看| 夜夜躁狠狠躁天天躁| 亚洲精品粉嫩美女一区| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利影视在线免费观看| 叶爱在线成人免费视频播放| 国产乱人伦免费视频| 亚洲伊人色综图| 国产97色在线日韩免费| 国产深夜福利视频在线观看| 亚洲国产中文字幕在线视频| 一区二区三区国产精品乱码| 大型av网站在线播放| a级毛片黄视频| 亚洲精华国产精华精| 亚洲人成电影观看| 大型黄色视频在线免费观看| 国产激情久久老熟女| 欧美精品亚洲一区二区| 亚洲 国产 在线| 成人三级做爰电影| 99re在线观看精品视频| 俄罗斯特黄特色一大片| 9热在线视频观看99| 亚洲伊人色综图| 国产精品自产拍在线观看55亚洲| 久久久久久亚洲精品国产蜜桃av| 日韩欧美在线二视频| 视频区图区小说| 欧美人与性动交α欧美软件| 女同久久另类99精品国产91| 夜夜夜夜夜久久久久| 亚洲伊人色综图| 久久久水蜜桃国产精品网| 美女福利国产在线| 99久久人妻综合| 国产97色在线日韩免费| 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 午夜福利,免费看| 日韩三级视频一区二区三区| 国产欧美日韩一区二区三| 别揉我奶头~嗯~啊~动态视频| 一级毛片高清免费大全| 99国产精品99久久久久| 日韩精品免费视频一区二区三区| 天堂影院成人在线观看| 日韩中文字幕欧美一区二区| www.www免费av| 999久久久国产精品视频| 80岁老熟妇乱子伦牲交| 久久午夜亚洲精品久久| 日本免费一区二区三区高清不卡 | 老司机午夜福利在线观看视频| 一本综合久久免费| 国产精品久久久久久人妻精品电影| 亚洲精品一卡2卡三卡4卡5卡| 国产精品av久久久久免费| 欧美日韩一级在线毛片| 激情在线观看视频在线高清| 黄片大片在线免费观看| 国产高清视频在线播放一区| 久久精品国产清高在天天线| 国产熟女xx| 麻豆av在线久日| 欧美另类亚洲清纯唯美| 一级a爱片免费观看的视频| 人人澡人人妻人| 久久久精品欧美日韩精品| 欧美日韩视频精品一区| avwww免费| 可以免费在线观看a视频的电影网站| 国产一区在线观看成人免费| 一夜夜www| 亚洲成人久久性| 首页视频小说图片口味搜索| 国产精品久久久久成人av| 亚洲人成电影观看| 亚洲成人久久性| 18禁国产床啪视频网站| xxxhd国产人妻xxx| 天堂中文最新版在线下载| 久99久视频精品免费| 美女高潮喷水抽搐中文字幕| 青草久久国产| 国产亚洲精品一区二区www| 黄片大片在线免费观看| 免费av中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 成熟少妇高潮喷水视频| 美女国产高潮福利片在线看| 琪琪午夜伦伦电影理论片6080| 夜夜夜夜夜久久久久| 男男h啪啪无遮挡| 视频区欧美日本亚洲| 不卡av一区二区三区| 丝袜在线中文字幕| 天天添夜夜摸| 国产日韩一区二区三区精品不卡| 天天躁夜夜躁狠狠躁躁| 欧美在线一区亚洲| 91大片在线观看| 999精品在线视频| 精品久久久久久久毛片微露脸| 大码成人一级视频| 动漫黄色视频在线观看| 淫秽高清视频在线观看| 国产精品久久电影中文字幕| 欧美+亚洲+日韩+国产| 日本a在线网址| 亚洲精品国产一区二区精华液| 丰满饥渴人妻一区二区三| 91精品三级在线观看| 欧美色视频一区免费| 丝袜美足系列| 少妇被粗大的猛进出69影院| 操美女的视频在线观看| 老司机亚洲免费影院| 国产精品国产av在线观看| 久久久国产成人免费| 亚洲精品av麻豆狂野| 99久久人妻综合| 人成视频在线观看免费观看| 中文字幕av电影在线播放| 国产成人系列免费观看| 欧美日韩视频精品一区| 激情在线观看视频在线高清| videosex国产| 久久午夜综合久久蜜桃| av天堂在线播放| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 天天躁狠狠躁夜夜躁狠狠躁| 成年人黄色毛片网站| 亚洲国产欧美网| 日韩欧美一区视频在线观看| av片东京热男人的天堂| av免费在线观看网站| 欧美黑人精品巨大| 中文字幕另类日韩欧美亚洲嫩草| 欧美+亚洲+日韩+国产| 亚洲第一青青草原| 免费少妇av软件| 亚洲精品粉嫩美女一区| a级片在线免费高清观看视频| 露出奶头的视频| 91国产中文字幕| 99久久精品国产亚洲精品| 夜夜躁狠狠躁天天躁| 又黄又爽又免费观看的视频| 欧美一区二区精品小视频在线| 久久精品国产清高在天天线| 51午夜福利影视在线观看| 亚洲少妇的诱惑av| 日韩欧美一区视频在线观看| 欧美日本中文国产一区发布| av在线天堂中文字幕 | 女人精品久久久久毛片| 亚洲av成人一区二区三| 777久久人妻少妇嫩草av网站| 欧美乱妇无乱码| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧美日韩在线播放| 免费不卡黄色视频| 国产亚洲欧美98| 国产1区2区3区精品| 亚洲国产欧美日韩在线播放| 亚洲熟妇中文字幕五十中出 | 欧美不卡视频在线免费观看 | 久久中文字幕人妻熟女| 国产成人一区二区三区免费视频网站| xxxhd国产人妻xxx| 久久婷婷成人综合色麻豆| 天堂动漫精品| 成人黄色视频免费在线看| 91老司机精品| 国产高清视频在线播放一区| 久久精品国产亚洲av高清一级| 欧美久久黑人一区二区| avwww免费| 一进一出抽搐动态| 妹子高潮喷水视频| 18禁美女被吸乳视频| 高潮久久久久久久久久久不卡| 天天影视国产精品| 色婷婷av一区二区三区视频| 黄网站色视频无遮挡免费观看| 少妇裸体淫交视频免费看高清 | 精品人妻在线不人妻| 热99re8久久精品国产| 久热爱精品视频在线9| 日韩视频一区二区在线观看| 免费在线观看日本一区| a级片在线免费高清观看视频| 国产区一区二久久| 不卡一级毛片| 久久久久国内视频| www日本在线高清视频| 久久精品影院6| 亚洲avbb在线观看| 亚洲国产毛片av蜜桃av| 免费在线观看亚洲国产| 黄色 视频免费看| 啪啪无遮挡十八禁网站| 男男h啪啪无遮挡| 国产一卡二卡三卡精品| 欧美中文综合在线视频| 亚洲国产精品sss在线观看 | 侵犯人妻中文字幕一二三四区| 久久久久久大精品| 可以在线观看毛片的网站| av在线播放免费不卡| 青草久久国产| 亚洲欧美日韩高清在线视频| 国产免费现黄频在线看| 国产一区在线观看成人免费| 免费高清在线观看日韩| 一进一出抽搐动态| 美国免费a级毛片| 色在线成人网| 国产成人精品久久二区二区91| 亚洲成a人片在线一区二区| 国产熟女xx| 日韩成人在线观看一区二区三区| 久久精品国产亚洲av高清一级| svipshipincom国产片| 丰满饥渴人妻一区二区三| 久久久水蜜桃国产精品网| 久久久精品国产亚洲av高清涩受| 午夜福利影视在线免费观看| 欧美在线黄色| 丝袜人妻中文字幕| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线| 久久久久久大精品| 少妇的丰满在线观看| av免费在线观看网站| 天堂√8在线中文| 99久久国产精品久久久| 国产精品久久久久成人av| 国产真人三级小视频在线观看| 国产av又大| 一级a爱视频在线免费观看| 俄罗斯特黄特色一大片| netflix在线观看网站| 亚洲男人天堂网一区| 亚洲男人的天堂狠狠| 男女午夜视频在线观看| 亚洲欧美激情综合另类| 99久久久亚洲精品蜜臀av| 最近最新免费中文字幕在线| 又黄又爽又免费观看的视频| 亚洲欧美一区二区三区黑人| 人人妻人人添人人爽欧美一区卜| 纯流量卡能插随身wifi吗| 欧美黄色片欧美黄色片| 一个人观看的视频www高清免费观看 | 亚洲一区二区三区欧美精品| 国内久久婷婷六月综合欲色啪| 成人特级黄色片久久久久久久| 成年人免费黄色播放视频| 国产精品秋霞免费鲁丝片| 国产免费男女视频| 在线永久观看黄色视频| 99精品久久久久人妻精品| 一本大道久久a久久精品| 在线永久观看黄色视频| 亚洲人成电影免费在线| 欧美国产精品va在线观看不卡| 国产免费av片在线观看野外av| 日本一区二区免费在线视频| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产 | 国产精品综合久久久久久久免费 | 日本精品一区二区三区蜜桃| 国产精品美女特级片免费视频播放器 | 午夜激情av网站| 欧美日韩中文字幕国产精品一区二区三区 | 黄色女人牲交| 久久久久九九精品影院| 国产精品 欧美亚洲| 日韩国内少妇激情av| 亚洲第一青青草原| 日本撒尿小便嘘嘘汇集6| 国产精品电影一区二区三区| 一进一出抽搐gif免费好疼 | 天堂影院成人在线观看| 亚洲成人免费电影在线观看| 午夜福利免费观看在线| 亚洲男人的天堂狠狠| 国产成人欧美| 国产av精品麻豆| 精品第一国产精品| 亚洲成人精品中文字幕电影 | 欧美日韩黄片免| 午夜免费激情av| 欧美精品亚洲一区二区| 麻豆av在线久日| 欧美日韩av久久| 男女下面插进去视频免费观看| 超碰成人久久| 亚洲七黄色美女视频| 咕卡用的链子| 男女之事视频高清在线观看| 成人永久免费在线观看视频| 日本a在线网址| 欧美 亚洲 国产 日韩一| 亚洲狠狠婷婷综合久久图片| 9191精品国产免费久久| 亚洲九九香蕉| 免费日韩欧美在线观看| 亚洲黑人精品在线| 一级黄色大片毛片| 成人手机av| 欧美成人午夜精品| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼 | 黄网站色视频无遮挡免费观看| 五月开心婷婷网| 老司机午夜福利在线观看视频| 亚洲欧美日韩另类电影网站| 精品人妻在线不人妻| 国产欧美日韩综合在线一区二区| 激情在线观看视频在线高清| 天堂动漫精品| 精品日产1卡2卡| 每晚都被弄得嗷嗷叫到高潮| 中亚洲国语对白在线视频| 色老头精品视频在线观看| 亚洲av熟女| 欧美激情久久久久久爽电影 | 一级片'在线观看视频| 日本欧美视频一区| 欧美成人免费av一区二区三区| 波多野结衣av一区二区av| 操美女的视频在线观看| 天天影视国产精品| 夫妻午夜视频| 日韩欧美三级三区| 亚洲 欧美一区二区三区| 国产午夜精品久久久久久| 日日摸夜夜添夜夜添小说| 久久香蕉国产精品| 韩国av一区二区三区四区| 国产精品av久久久久免费| 国产成+人综合+亚洲专区| 久久中文字幕一级| 香蕉久久夜色| 久久久久久久精品吃奶| 岛国在线观看网站| 黑丝袜美女国产一区| 91麻豆av在线| 一级片免费观看大全| 久久人妻av系列| 国产一区在线观看成人免费| 99香蕉大伊视频| 欧美激情久久久久久爽电影 | 日韩免费高清中文字幕av| 香蕉丝袜av| 中文字幕精品免费在线观看视频| 免费搜索国产男女视频| 午夜两性在线视频| 成人黄色视频免费在线看| 久久久久久人人人人人| 两人在一起打扑克的视频| 最好的美女福利视频网| 国产亚洲欧美精品永久| 国产精品免费一区二区三区在线| 中文字幕最新亚洲高清| 丁香欧美五月| 大陆偷拍与自拍| 国产一区二区三区在线臀色熟女 | 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 性少妇av在线| 成人精品一区二区免费| 亚洲国产精品999在线| 一a级毛片在线观看| 国产一区二区三区在线臀色熟女 | 婷婷精品国产亚洲av在线| a在线观看视频网站| 在线十欧美十亚洲十日本专区| 久久久水蜜桃国产精品网| 久久久久精品国产欧美久久久| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 视频在线观看一区二区三区| 丝袜在线中文字幕| 精品国产一区二区久久| 波多野结衣av一区二区av| 国产亚洲欧美精品永久| 日韩欧美三级三区| 真人做人爱边吃奶动态| 18禁美女被吸乳视频| 欧美精品亚洲一区二区| 日韩人妻精品一区2区三区| 欧美性长视频在线观看| 成人免费观看视频高清| 黑人猛操日本美女一级片| 99久久人妻综合| 午夜精品在线福利| 久久久久久久久中文| 婷婷六月久久综合丁香| 一级作爱视频免费观看| 水蜜桃什么品种好| 国产亚洲精品久久久久5区| 色综合婷婷激情| 深夜精品福利| 国产人伦9x9x在线观看| 黄色视频不卡| 久久精品国产综合久久久| 少妇裸体淫交视频免费看高清 | 一个人免费在线观看的高清视频| 亚洲专区字幕在线| 18美女黄网站色大片免费观看| 夜夜看夜夜爽夜夜摸 | 亚洲 欧美 日韩 在线 免费| 久99久视频精品免费| 色在线成人网| 成人影院久久| 亚洲av日韩精品久久久久久密| 亚洲自偷自拍图片 自拍| 国产精品久久视频播放| 欧美一区二区精品小视频在线| 国产区一区二久久| 在线永久观看黄色视频| 国产1区2区3区精品| 黄频高清免费视频| 中文亚洲av片在线观看爽| 99热国产这里只有精品6| 亚洲成人精品中文字幕电影 | 日本欧美视频一区| 黑人欧美特级aaaaaa片| 极品教师在线免费播放| 一级a爱视频在线免费观看| 欧美人与性动交α欧美精品济南到| av中文乱码字幕在线| www.精华液| 88av欧美| 日韩免费高清中文字幕av| 色精品久久人妻99蜜桃| 天天躁夜夜躁狠狠躁躁| 欧美日韩亚洲国产一区二区在线观看| 国产精品影院久久| aaaaa片日本免费| 怎么达到女性高潮| 亚洲精品在线美女| 国产伦人伦偷精品视频| 91九色精品人成在线观看| 国产亚洲欧美在线一区二区| 国产成人欧美在线观看| 美女大奶头视频| 无人区码免费观看不卡| 黄色 视频免费看| 黄片大片在线免费观看| 亚洲成人免费电影在线观看| 高清毛片免费观看视频网站 | 777久久人妻少妇嫩草av网站| 日本a在线网址| 日韩免费高清中文字幕av| 99国产精品一区二区蜜桃av| 久热爱精品视频在线9| 亚洲人成电影观看| 亚洲成人免费电影在线观看| 久久精品成人免费网站| av免费在线观看网站| 久久性视频一级片| 国产99白浆流出| 国产av又大| 嫩草影视91久久| 99久久国产精品久久久| 亚洲av成人不卡在线观看播放网| 69精品国产乱码久久久| 日韩精品青青久久久久久| 国产单亲对白刺激| 丁香欧美五月| 女人精品久久久久毛片| 亚洲伊人色综图| 女人被狂操c到高潮| 一区二区日韩欧美中文字幕| 在线播放国产精品三级| 亚洲熟妇中文字幕五十中出 | videosex国产| 人人妻人人添人人爽欧美一区卜| 女性生殖器流出的白浆| 欧美人与性动交α欧美软件| 夜夜爽天天搞| 亚洲午夜精品一区,二区,三区| 麻豆av在线久日| 午夜视频精品福利| 国产97色在线日韩免费| 国产高清激情床上av| 黄色a级毛片大全视频| 国产黄a三级三级三级人| 国产成人av激情在线播放| 日本黄色日本黄色录像| 亚洲色图综合在线观看| 亚洲av美国av| 国产成人精品久久二区二区免费| 亚洲欧美一区二区三区黑人| 精品少妇一区二区三区视频日本电影| 亚洲国产精品一区二区三区在线| 女性被躁到高潮视频| 亚洲黑人精品在线| 精品少妇一区二区三区视频日本电影| 超色免费av| 免费在线观看影片大全网站| 免费在线观看黄色视频的| 精品人妻1区二区| 老司机午夜福利在线观看视频| 国产高清激情床上av| 亚洲情色 制服丝袜| 视频区欧美日本亚洲| 欧美日韩瑟瑟在线播放| 久久精品成人免费网站| 三上悠亚av全集在线观看| 欧美丝袜亚洲另类 | 欧美精品一区二区免费开放| 999精品在线视频| 国产麻豆69| 亚洲欧美日韩无卡精品| 成人三级做爰电影| 国产一卡二卡三卡精品| 久久青草综合色| 日韩视频一区二区在线观看| 在线十欧美十亚洲十日本专区| av网站免费在线观看视频| 成人特级黄色片久久久久久久| 香蕉国产在线看| 国产欧美日韩一区二区三区在线| 操出白浆在线播放| 国产精品综合久久久久久久免费 | 51午夜福利影视在线观看| 欧美不卡视频在线免费观看 | 精品久久久久久电影网| 波多野结衣高清无吗| 欧美一级毛片孕妇| 国产蜜桃级精品一区二区三区| 9色porny在线观看| 五月开心婷婷网| 国产精品久久久久成人av| 亚洲精华国产精华精| 亚洲精品中文字幕在线视频| 少妇的丰满在线观看| 久久香蕉国产精品| 又紧又爽又黄一区二区| 久久精品国产99精品国产亚洲性色 | 国产男靠女视频免费网站| 久久午夜综合久久蜜桃| 亚洲精品中文字幕一二三四区| 精品电影一区二区在线| 制服人妻中文乱码| 在线看a的网站| 欧美另类亚洲清纯唯美| 欧美激情极品国产一区二区三区| 久久国产精品影院| 国产单亲对白刺激| 亚洲精品国产精品久久久不卡| 一级黄色大片毛片| 久久久久国产一级毛片高清牌| 女性生殖器流出的白浆| 日韩中文字幕欧美一区二区| 精品日产1卡2卡| 久久久精品欧美日韩精品| 身体一侧抽搐| 免费av中文字幕在线| 欧美日韩乱码在线| 男人舔女人的私密视频| 伦理电影免费视频| 日日干狠狠操夜夜爽| 亚洲伊人色综图| 一级毛片女人18水好多| 欧美日韩乱码在线| 男人舔女人的私密视频| 亚洲情色 制服丝袜|