• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    十次對(duì)稱二維準(zhǔn)晶含II 型Griffith 裂紋的動(dòng)力學(xué)問題

    2021-03-30 01:41:40周建敏李聯(lián)和王桂霞
    關(guān)鍵詞:呼和浩特師范大學(xué)內(nèi)蒙古

    周建敏, 李聯(lián)和, 王桂霞

    (內(nèi)蒙古師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,呼和浩特 010022)

    1 Introduction

    The quasicrystal was first observed by Shechtman et al[1]. The stability and service life of quasicrystals are decreased by defects that are inherent or caused by external loads. As commonly used functional and structural materials, the strength and malleability of quasicrystals have become an issue of concern. They are brittle at low temperatures and at room temperature,and the failure of brittle materials is related to the existence and propagation of cracks. Therefore, the study of the problem of fractures in quasicrystals is of great significance and has become the focus of experimental and theoretical research. A large number of meaningful results have been obtained in solving quasicrystal static problems with cracks, especially in the study of analytical solutions[2-9]. For dynamic study, Bak[10,11]believes that the motion mode of both the phonon and phason fields are fluctuation modes. However, Lubensky et al[12]believe that the motion mode of the phason field is a diffusion mode. Others believe that there are both fluctuation and diffusion characteristics in the phason field. Rochal and Lorman[13], for example, give a more general motion mode of the phason field, which has both fluctuation and diffusion terms. Specifically, the phonon field is described by the wave equation and the phason field is described by the telegraph equation,while the telegraph equation can be reduced to the wave equation and the diffusion equation[14].The advantage of the telegraph equation is that it provides the possibility of describing the phason dynamics of all the intermediate values of parameters of the phason. For a system of equations composed of multiple equations described by the wave equation and the telegraph equation,even if restrictions are appended,it is difficult to solve such a problem by general analytical methods.

    However, by using numerical methods, not only can the limiting condition of the studied problem be reduced, but also the practical problem can be simulated better.Based on the dynamic model given by Lubensky,Zhu and Fan[15],the wave propagation and diffusion and their interaction through a cracked sample with the finite difference method are revealed. Wang et al[16]used this model and method to study the dynamic response of an icosahedral Al-Pd-Mn quasicrystal with a Griffith crack to impact loading, particularly exploring the phason dynamics. With this dynamic model, Li[17]derived a general solution in terms of two introduced auxiliary functions. By introducing a new auxiliary function, Zhou and Li[18]analyzed a problem of the mode III crack in one-dimensional hexagonal quasicrystals subjected to anti-plane impact loading. Ma et al[19]used the finite difference method to study the dynamic problem of the octagonal two-dimensional quasicrystal with a mode II crack. Chen et al[20]used the finite difference method to study the fracture dynamics problem of the octagonal quasicrystal with a Griffith crack. Based on the dynamic model given by Bak,Hao[21]used the finite difference method to calculate the dynamic stress intensity factor (DSIF) of the mode II crack. Based on the dynamic model of wave-telegraph, Li[22]analyzed the elastohydrodynamics of decagonal quasicrystals and gave a general solution by introducing an auxiliary function. It is difficult, however, to give the conditions required for the general solution. The structural complexity of this kind of quasicrystal dynamic model leads to some difficulties in the process of a numerical solution.

    In this paper, based on the dynamic model of wave-telegraph, the finite difference method is used to solve numerically the dynamics problem of the decagonal symmetric two-dimensional quasicrystal materials with a mode II Griffith crack,that is,the initial boundary value problem of wave-telegraph equations. As a result, the numerical solutions are obtained for the DSIF of the phonon field and the displacement component of the phason field. Through modeling of the factors such as loading time, specimen size, and the phonon-phason coupling elastic constant, the physical natures and motion mechanisms of this model are discussed, with respect to the decagonal symmetric two-dimensional quasicrystal with a mode II Griffith crack.

    2 Basic dynamic equations of decagonal quasicrystals

    2.1 Motion equations

    According to the quasicrystal elasticity theory[23], we have the generalized Hooke’s law

    where Cijkl, Kijkl,Rijkland Rklijare the elastic constants of the phonon, phason and phonon-phason coupling,respectively;εkland wklare phonon strain tensor and phason strain tensor, respectively; the corresponding phonon stress tensor and phason stress tensor are σijand Hij, respectively; and the deformation geometry equation

    where uiand wiare the displacement vectors of the phonon and phason field, respectively. Collaborating arguments of [13,14], under linear and small deformation, the equations of the motion are

    where -κ?wi/?t is the density of phason bulk forces, ρ is the mass density of the quasicrystal,ρpis the phason mass density in the vertical space,and the friction coefficient κ = 1/Γw, in which Γwis the dissipative kinetic coefficient of the material. When ρp=ρ, κ=0, equation (3) reduces to the dynamic model in [10,11], and when ρp=0,equation (3) reduces to the dynamic model in [12].

    In this paper, only point two-dimensional decagonal quasicrystals will be considered. We denote the periodic direction as the z-axis and the quasiperiodic plane as the x-y plane. Assume that a Griffith crack penetrates through the crack surface of the whole material along the periodic direction, that is, the z-axis. Then, the geometric properties of the material will not change with the periodic direction. In this case,from equation (3), and expressions (1) and (2), we obtain the motion equations of the decagonal quasicrystal as follows

    in which

    2.2 Boundary conditions

    Consider a decagonal quasicrystal specimen with a Griffith crack as shown in Figure 1. The boundary is subjected to the uniform mode II dynamic loading p(t) = p0f(t),in which f(t) is a Heaviside function and p0is a constant. The length and height of the specimen are 2L and 2H, respectively. The crack length, 2a0, is a constant.

    Figure 1 The specimen of a mode II Griffith crack

    Because of the symmetry of the specimen, only the upper right part is taken for analysis and calculation. The corresponding boundary condition should be satisfied

    2.3 Initial conditions

    The initial condition needs to be given for the problem of transient dynamics. This paper studies only the zero initial condition

    3 The finite difference scheme and its examination

    A grid is imposed on the upper right of the specimen shown in Figure 2[15,16,21,24-30].

    Figure 2 Schematic diagram of the specimen grid

    Both space step size Δx and Δy are denoted as h, which the divided mesh is set to square, and the time step size Δt is denoted as τ. The crack tip is located at the midpoint of the mesh interval and, for the stability condition, take c1τ/h = 0.8. The grid is extended by half a step due to the addition of four special grid lines x=-h/2,x=L+h/2, y =-h/2 and y =H+h/2, which form the grid boundaries. The central difference scheme is adopted in the internal domain. On the boundary, the non-central difference is used for the partial derivative perpendicular to the boundary, and the central difference is used for the partial derivative parallel to the boundary.

    The difference equations corresponding to the initial-boundary conditions and corner treatment can be referred to in [29]. The difference results corresponding to the equations of motion are as follows

    The decagonal symmetric quasicrystal Al-Ni-Co, as an example, is investigated in this paper, in which ρ = 4.186×10-3g/mm3, C11= 2.343×10-1g/mm·μs2, C12=0.5741×10-1g/mm·μs2,K1=1.22×10-1g/mm·μs2,K2=0.14×10-1g/mm·μs2,Γw=1/κ=4.8×10-7mm3·μs/g,which are obtained by resonant ultrasound spectroscopy[31-33].Select a0= 12mm, L = 52mm, H = 20mm, p0= 10MPa, ρp= 4.186×10-3g/mm3,and R = 0.01M, in subsequent calculations, unless otherwise specified, the above parameters are used.

    In this paper,the decagonal quasicrystal is degraded to the crystal. The time-dependent curve of normalized DSIF of the crystal is compared to the Hao’s solution[33],see Figure 3. The result shows that the curves correspond with each other.

    Figure 3 Normalized DSIF versus time for crystals

    It is understandable that there are some small differences between the different dynamic models because they are approximate solutions. This predicts that our method is a powerful one for solving problems of elastohydrodynamics of fracture dynamics of quasicrystalline materials.

    4 Results and discussion

    4.1 Effects of the loading time on the DSIF

    In practice,the external load is mostly pulse load,see Figure 4,and compared with the step load, the pulse load is closer to the actual situation. In the calculation, we assume that H is 20mm, and R is 0.01M. Results of the DSIF from pulse load with different loading times are shown in Figure 5.

    Figure 4 The rectangular pulse

    Figure 5 KII versus different loading times

    We can see from Figure 5 that, with the increase in loading time tc, the time of the arrival peak of the DSIF under pulse loads have become gradually longer, and gradually approximates the curve to step load. After the plate is end-loaded, the time required for the initial stress wave to propagate from the plate end to the crack surface is t0≈2.67μs. When t <t0, the DSIF is equal to zero because the stress wave of the plate end has not reached the crack tip. Therefore,the velocity of the wave propagation is v =H/t0=7.49mm·μs-1,which is just equal to the wave speed c1of the shear wave,where the mode II stress load is parallel to the end of the plate and perpendicular to the propagation direction of the wave, and this kind of wave is called a shear wave.This result indicates that,in the complex system of the coupling,the phonon field plays a dominate role in the wave propagation,precisely because the boundary of the phason field is not subjected to load. Because of the interaction between the initial wave and the crack tip, the DSIF changes at 2.67μs, and the DSIF reaches the local peak at different time points under the difference loading time tc. This phenomenon is caused by the shear wave from the interaction between the initial stress wave and the crack tip. After reaching the maximum value, it begins to decrease, which is caused by the shear wave from the interaction between the initial stress wave and the crack.

    4.2 Effects of the loading location on the normalized DSIF

    The numerical results of the DSIF for plate end loading (see Figure 1) and crack surface loading, see Figure 6, are shown in Figure 7.

    Figure 6 Loading on the crack surface

    Figure 7 Normalized DSIF versus time under different loading modes

    We can see from Figure 7 that the two loading locations lead to different results of the normalized DSIF,indicating that the two modes can not be equivalent. For the plate end loading, the normalized DSIF is 0 for some time, indicating that the stress wave caused by the step load at the plate end has not reached the crack surface immediately.For crack surface loading, the normalized DSIF changes at the beginning, because the propagation time of the initial stress wave is related to the distance of the loading location to the crack tip. The normalized DSIF under crack surface loading maintains a small fluctuation near the initial value. The variation range of the normalized DSIF at the plate end loading is much more than that loaded on the crack surface. So the plate end loading is more likely to lead to the fracture of the material.

    4.3 Effects of the specimen width on the normalized DSIF

    In the calculation, the width H of the specimen is 20mm, 25mm, and 30mm;R=0.01M. The results of the normalized DSIF are shown in Figure 8.

    Figure 8 Normalized DSIF versus time under different specimen widths

    With the increase of the specimen width,the time t0for the stress wave to reach the crack tip is longer and longer. This trend is reflected in Figure 8, where t0= 2.888μs at H =20mm, t0=3.957μs at H =25mm, and t0=5.027μs at H =30mm. The peak times of the three curves are about 9.412μs,9.412μs,and 9.626μs,and the corresponding normalized DSIF values are 3.004,3.141,and 3.06,respectively. Therefore,we conclude that the time of the interaction between the stress wave and the crack tip changes with the width of the specimen, thus affecting the peak of the normalized DSIF.

    4.4 Effects of the R on displacement component wy

    In the calculation, we assume that H is 20mm. For different phonon-phason coupling elastic constants R, the variation situations of the displacement component wyof the phason field with time are shown in Figure 9.

    In Figure 9, when R /= 0, the displacement component wyof the phason field has a diffusion trend and is related to the size of the phonon-phason coupling constant R.When R=0, the displacement component of the phason field is equal to zero because the boundary of the phason field is not subjected to load. The force of the displacement component of the phason field comes from the phonon field, which shows that the phonon field plays a dominating role in the coupling. Compare the two curves corresponding to R = 0.01M and R = 0.02M. We can find that before t0= 3.208μs, the displacement components are all equal to zero, and it then presents a diffusion characteristic. The displacement component wycorresponding to R=0.02M is greater than that corresponding to R = 0.02M. That is, with the increase of the phonon-phason coupling constant R,the displacement component wyof the phason field also increases.

    Figure 9 wy versus time under different constants R

    4.5 Effects of the κ and ρp on displacement component wy

    The numerical results of the displacement component wyof the phason field at the crack tip are shown in Figure 10.

    We can see from (a) and (b) in Figure 10 that, when the friction coefficient is greater than the effective mass density, the effect of the latter on wycan be ignored.When the friction coefficient is less than the effective mass density, the latter changes the wyvalue size. From(a),(b),(c),and(d),the curve gradually presents a fluctuation characteristic with the decrease of the friction coefficient.

    5 Conclusions

    In this paper, a new model on dynamic response of quasicrystals based on [13,14]is formulated. This model is more complex than elasto/hydro-dynamics model for the material. Numerical procedure based on finite difference algorithm is developed.

    Figure 10 The displacements versus time for the different κ

    Dynamic stress intensity factors of the phonon field, influence factors of the displacement component of the phason field, and characteristics of the phason field wave propagation of the decagonal symmetric quasicrystal with a mode II Griffith crack are investigated by the finite difference method. The results are as follows. The DSIF size of the phonon field is related to the loading time and loading location of the pulse load and the specimen size. The displacement component size of the phason field is related to the phonon-phason coupling constant. The propagation characteristic of the phason field wave is related to the value selection of the friction coefficient and the effective mass density.

    When the pulse load is the same size,the longer the loading time,the later the peak of mode II DSIF appears, and the curve gradually approximates the curve under step load. The plate end loading and crack surface loading are not equivalent. The variation range of the normalized DSIF of the former is larger than the latter,which corresponds with the fact that the plate end loading is more likely to lead to material fracture.With the increase of the specimen width, the time of the stress wave to reach the crack tip becomes long, and the normalized DSIF becomes small. When the phonon-phason coupling elastic constant is equal to zero, the load has no effect on the displacement of the phason field. On the contrary, the displacement component wypresents a diffusion characteristic,and increases with the increase of R,increasing in the negative direction.In the phason field, the friction coefficient plays a dominating role. When the friction coefficient is greater than the effective mass density, the effect of the latter on the wyvalue can be ignored, and the wave propagation presents a diffusion characteristic.When the friction coefficient is less than the effective mass density,the latter has effects on the wyvalue. When the effective mass density is not equal to zero, the wycurve characteristic gradually changes from diffusion to fluctuation with the decrease of the friction coefficient.

    AcknowledgementsThank“Technology Innovation Center for Ocean Telemetry,MNR” for funding this project.

    猜你喜歡
    呼和浩特師范大學(xué)內(nèi)蒙古
    呼和浩特之旅
    工商企業(yè)管理的知識(shí)與操作實(shí)例
    在內(nèi)蒙古,奶有一百種吃法
    這是美麗的內(nèi)蒙古
    草原歌聲(2019年2期)2020-01-06 03:11:12
    可愛的內(nèi)蒙古
    草原歌聲(2018年2期)2018-12-03 08:14:06
    Study on the harmony between human and nature in Walden
    長江叢刊(2018年8期)2018-11-14 23:56:26
    Balance of Trade Between China and India
    商情(2017年9期)2017-04-29 02:12:31
    呼和浩特
    草原歌聲(2017年4期)2017-04-28 08:20:43
    愛在內(nèi)蒙古
    草原歌聲(2017年3期)2017-04-23 05:13:44
    Courses on National Pakistan culture in Honder College
    天天一区二区日本电影三级| 精品久久久久久久人妻蜜臀av| 欧美高清性xxxxhd video| 免费观看的影片在线观看| 国产成人福利小说| 神马国产精品三级电影在线观看| 18+在线观看网站| av黄色大香蕉| 一进一出抽搐动态| 日本爱情动作片www.在线观看 | 久久国内精品自在自线图片| 一级毛片电影观看 | 天美传媒精品一区二区| www.色视频.com| 啦啦啦观看免费观看视频高清| 久久久国产成人免费| 九九久久精品国产亚洲av麻豆| 国产乱人视频| av福利片在线观看| 麻豆一二三区av精品| 成人av在线播放网站| 亚洲七黄色美女视频| 波野结衣二区三区在线| 小蜜桃在线观看免费完整版高清| 日本在线视频免费播放| 欧美3d第一页| 日韩 亚洲 欧美在线| 午夜精品在线福利| 99久国产av精品国产电影| 国产黄a三级三级三级人| 精品久久久久久久久亚洲| 久久热精品热| av福利片在线观看| 久久久久免费精品人妻一区二区| 久久久久久久亚洲中文字幕| 极品教师在线视频| 能在线免费观看的黄片| 亚洲国产色片| 久久综合国产亚洲精品| 久久人人爽人人爽人人片va| 乱码一卡2卡4卡精品| 国产精品嫩草影院av在线观看| 亚洲七黄色美女视频| 女生性感内裤真人,穿戴方法视频| 欧美性猛交黑人性爽| 搡女人真爽免费视频火全软件 | 99久久精品热视频| 亚洲精品一区av在线观看| 国产精品亚洲一级av第二区| 亚洲丝袜综合中文字幕| 国产在视频线在精品| 成人二区视频| 熟女人妻精品中文字幕| 一夜夜www| 淫秽高清视频在线观看| 亚洲内射少妇av| 亚州av有码| 神马国产精品三级电影在线观看| 身体一侧抽搐| 中文亚洲av片在线观看爽| 日韩,欧美,国产一区二区三区 | 欧美精品国产亚洲| 精品国产三级普通话版| 精华霜和精华液先用哪个| 亚洲成人久久性| 看十八女毛片水多多多| 国产白丝娇喘喷水9色精品| 欧美色视频一区免费| 亚洲婷婷狠狠爱综合网| 日本爱情动作片www.在线观看 | 天堂网av新在线| 日本一本二区三区精品| 亚洲图色成人| 特大巨黑吊av在线直播| 在线看三级毛片| 久久久久九九精品影院| 最近2019中文字幕mv第一页| 欧美极品一区二区三区四区| 亚洲人与动物交配视频| 久久午夜亚洲精品久久| 日韩av在线大香蕉| 一级毛片久久久久久久久女| 成人特级av手机在线观看| 精品久久久久久久久亚洲| av中文乱码字幕在线| 高清午夜精品一区二区三区 | 国产探花在线观看一区二区| 如何舔出高潮| 欧美xxxx性猛交bbbb| 国产欧美日韩一区二区精品| 午夜福利视频1000在线观看| 岛国在线免费视频观看| 国产精品日韩av在线免费观看| 九九久久精品国产亚洲av麻豆| 国产真实伦视频高清在线观看| 1000部很黄的大片| av福利片在线观看| 网址你懂的国产日韩在线| 亚洲精华国产精华液的使用体验 | 99热这里只有精品一区| 欧美色视频一区免费| 春色校园在线视频观看| 欧美在线一区亚洲| 国产黄色小视频在线观看| 舔av片在线| 综合色av麻豆| 床上黄色一级片| 99久久中文字幕三级久久日本| 久久热精品热| 免费av观看视频| 免费人成在线观看视频色| 日韩欧美国产在线观看| 欧美成人精品欧美一级黄| 可以在线观看的亚洲视频| 性插视频无遮挡在线免费观看| 亚洲av一区综合| 变态另类丝袜制服| av国产免费在线观看| 亚洲精品日韩在线中文字幕 | 中国美白少妇内射xxxbb| 成人精品一区二区免费| 99精品在免费线老司机午夜| 成人欧美大片| 国产精品久久电影中文字幕| 国内少妇人妻偷人精品xxx网站| 十八禁国产超污无遮挡网站| 久久久久久久久久久丰满| 成年av动漫网址| 亚洲av电影不卡..在线观看| 内地一区二区视频在线| 亚洲精品乱码久久久v下载方式| 特大巨黑吊av在线直播| 尤物成人国产欧美一区二区三区| 免费看av在线观看网站| 99热这里只有是精品在线观看| 别揉我奶头~嗯~啊~动态视频| 男人和女人高潮做爰伦理| 色播亚洲综合网| а√天堂www在线а√下载| 欧美一区二区亚洲| 日本爱情动作片www.在线观看 | 淫妇啪啪啪对白视频| 亚洲欧美日韩高清在线视频| 成人鲁丝片一二三区免费| 久久久色成人| 简卡轻食公司| 麻豆成人午夜福利视频| 99热6这里只有精品| 精品无人区乱码1区二区| 免费看日本二区| 久久久国产成人精品二区| 欧美中文日本在线观看视频| 免费在线观看成人毛片| 日韩欧美免费精品| 国产精品国产三级国产av玫瑰| 男女边吃奶边做爰视频| 精品久久国产蜜桃| 欧美性感艳星| 欧美在线一区亚洲| 国产亚洲av嫩草精品影院| 俺也久久电影网| 日本欧美国产在线视频| 国产人妻一区二区三区在| 日本撒尿小便嘘嘘汇集6| 熟女人妻精品中文字幕| a级毛色黄片| 秋霞在线观看毛片| 九九爱精品视频在线观看| 国产综合懂色| 亚洲在线自拍视频| 中文字幕av在线有码专区| 欧美潮喷喷水| 日韩大尺度精品在线看网址| 亚洲性久久影院| 欧美最新免费一区二区三区| 身体一侧抽搐| 欧美+亚洲+日韩+国产| 欧美日本亚洲视频在线播放| 日本色播在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 久久国内精品自在自线图片| 国产精品美女特级片免费视频播放器| 久久久色成人| 午夜激情福利司机影院| 校园春色视频在线观看| 亚洲欧美精品综合久久99| 午夜精品国产一区二区电影 | 欧美区成人在线视频| 九九在线视频观看精品| 22中文网久久字幕| ponron亚洲| 插逼视频在线观看| 久久久久国产精品人妻aⅴ院| 国产激情偷乱视频一区二区| 久久久欧美国产精品| 国产精品99久久久久久久久| 大香蕉久久网| 你懂的网址亚洲精品在线观看 | 久久九九热精品免费| 日韩亚洲欧美综合| 国产成人aa在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲人成网站在线播| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩高清在线视频| 精品久久久久久久久久免费视频| 国产精品人妻久久久久久| 欧美激情久久久久久爽电影| 夜夜看夜夜爽夜夜摸| 日日啪夜夜撸| 国内揄拍国产精品人妻在线| 久久人人爽人人爽人人片va| 乱人视频在线观看| 欧美成人a在线观看| 国产成人aa在线观看| 极品教师在线视频| 国产大屁股一区二区在线视频| 成人精品一区二区免费| 观看美女的网站| 亚洲精品久久国产高清桃花| 一级毛片我不卡| 在线免费观看不下载黄p国产| 精品日产1卡2卡| 日韩大尺度精品在线看网址| 伦精品一区二区三区| 国产视频一区二区在线看| 国产三级中文精品| 国产男靠女视频免费网站| 成人国产麻豆网| 丰满人妻一区二区三区视频av| 色综合站精品国产| 午夜亚洲福利在线播放| 18禁裸乳无遮挡免费网站照片| 1024手机看黄色片| 一级av片app| 国产aⅴ精品一区二区三区波| 国内精品久久久久精免费| 日本熟妇午夜| 免费在线观看影片大全网站| 97人妻精品一区二区三区麻豆| www日本黄色视频网| 哪里可以看免费的av片| 亚洲七黄色美女视频| 国产成人影院久久av| 精品人妻熟女av久视频| 亚洲av不卡在线观看| 尤物成人国产欧美一区二区三区| 成人综合一区亚洲| 日韩精品中文字幕看吧| 国产精品亚洲一级av第二区| 国产乱人视频| 久久精品夜夜夜夜夜久久蜜豆| 国产国拍精品亚洲av在线观看| a级毛片a级免费在线| 亚洲性夜色夜夜综合| 99久久无色码亚洲精品果冻| 一本久久中文字幕| 欧美丝袜亚洲另类| 日韩欧美国产在线观看| 国产精品人妻久久久久久| 欧美不卡视频在线免费观看| 成年女人看的毛片在线观看| 自拍偷自拍亚洲精品老妇| 精品人妻视频免费看| 美女黄网站色视频| 少妇裸体淫交视频免费看高清| 国产亚洲精品久久久com| 最新在线观看一区二区三区| 亚洲精品乱码久久久v下载方式| 国产免费男女视频| av.在线天堂| 国产 一区精品| 日韩欧美三级三区| 两个人视频免费观看高清| 可以在线观看的亚洲视频| 欧美另类亚洲清纯唯美| 国产亚洲精品av在线| 国产午夜福利久久久久久| av中文乱码字幕在线| 亚洲av.av天堂| 亚洲七黄色美女视频| 可以在线观看的亚洲视频| 直男gayav资源| 真人做人爱边吃奶动态| 国产视频一区二区在线看| 欧美又色又爽又黄视频| 国产精品免费一区二区三区在线| 18禁在线播放成人免费| 能在线免费观看的黄片| 国内久久婷婷六月综合欲色啪| 人妻制服诱惑在线中文字幕| 国产精品综合久久久久久久免费| 国产精品一及| 精品免费久久久久久久清纯| 国产真实乱freesex| 内地一区二区视频在线| 亚洲成av人片在线播放无| 不卡一级毛片| 色噜噜av男人的天堂激情| 亚洲无线在线观看| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 精品久久久久久久久久久久久| 成人永久免费在线观看视频| 插逼视频在线观看| 色噜噜av男人的天堂激情| 日韩欧美免费精品| 国产黄色视频一区二区在线观看 | 又粗又爽又猛毛片免费看| 国产成人91sexporn| 最近中文字幕高清免费大全6| 国产精品一区www在线观看| 又爽又黄a免费视频| 人妻制服诱惑在线中文字幕| 悠悠久久av| 我的女老师完整版在线观看| av在线播放精品| 国产69精品久久久久777片| 国产精品野战在线观看| 日本黄色视频三级网站网址| 国产高清激情床上av| 免费观看人在逋| 最近的中文字幕免费完整| 免费观看精品视频网站| 婷婷亚洲欧美| 精品久久久久久久久亚洲| 国产精品一区二区三区四区久久| 69av精品久久久久久| 国产69精品久久久久777片| 久久久欧美国产精品| ponron亚洲| 久久久久久久久中文| 欧美最新免费一区二区三区| 国产精品久久久久久亚洲av鲁大| 哪里可以看免费的av片| 国产欧美日韩一区二区精品| 亚洲av不卡在线观看| 国产成人一区二区在线| 亚洲激情五月婷婷啪啪| 国产一区二区激情短视频| 性色avwww在线观看| 欧美成人精品欧美一级黄| 国产亚洲精品av在线| 日韩一本色道免费dvd| 亚洲av成人av| 高清毛片免费观看视频网站| 精品久久久久久久久久久久久| 黄色一级大片看看| www日本黄色视频网| 午夜精品在线福利| 国产成人a区在线观看| 黄色一级大片看看| 亚洲真实伦在线观看| 国产精品三级大全| 国产片特级美女逼逼视频| 日日摸夜夜添夜夜添小说| 欧美日韩一区二区视频在线观看视频在线 | 夜夜看夜夜爽夜夜摸| 日韩欧美一区二区三区在线观看| 成人漫画全彩无遮挡| 久久人人爽人人片av| 赤兔流量卡办理| 97碰自拍视频| 亚洲精品粉嫩美女一区| 国产精品美女特级片免费视频播放器| 精品一区二区三区av网在线观看| 国产熟女欧美一区二区| 亚洲国产欧洲综合997久久,| 最近手机中文字幕大全| 亚洲国产精品国产精品| 精品熟女少妇av免费看| 日韩欧美三级三区| 美女cb高潮喷水在线观看| 亚洲天堂国产精品一区在线| 精品熟女少妇av免费看| АⅤ资源中文在线天堂| 国产黄色视频一区二区在线观看 | 天堂动漫精品| 国产亚洲av嫩草精品影院| 亚洲精华国产精华液的使用体验 | 人人妻人人澡欧美一区二区| 日本a在线网址| 日本三级黄在线观看| 国产午夜福利久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美成人综合另类久久久 | 免费无遮挡裸体视频| 亚洲综合色惰| 久久国内精品自在自线图片| 99热精品在线国产| 亚洲av二区三区四区| 精品人妻视频免费看| 亚洲国产精品成人综合色| 别揉我奶头 嗯啊视频| 成人亚洲欧美一区二区av| 日韩欧美一区二区三区在线观看| 国产亚洲精品久久久com| 99久久精品一区二区三区| 亚洲精品一区av在线观看| 日日摸夜夜添夜夜爱| 久久人妻av系列| 人妻夜夜爽99麻豆av| a级毛片免费高清观看在线播放| aaaaa片日本免费| 久久久欧美国产精品| 国产 一区精品| 午夜福利在线观看吧| 中文字幕久久专区| 人人妻,人人澡人人爽秒播| av在线天堂中文字幕| 中出人妻视频一区二区| 在线观看66精品国产| 哪里可以看免费的av片| 国产视频内射| 免费无遮挡裸体视频| 色综合亚洲欧美另类图片| 国产片特级美女逼逼视频| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩av片在线观看| 中国美女看黄片| 国产探花在线观看一区二区| 国产男靠女视频免费网站| 狠狠狠狠99中文字幕| 国产色爽女视频免费观看| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 天堂影院成人在线观看| 国产高清视频在线播放一区| 中国国产av一级| 欧洲精品卡2卡3卡4卡5卡区| 日本-黄色视频高清免费观看| 久久中文看片网| 能在线免费观看的黄片| 成人一区二区视频在线观看| 欧美+亚洲+日韩+国产| 少妇裸体淫交视频免费看高清| 女的被弄到高潮叫床怎么办| 九九在线视频观看精品| 国产av不卡久久| a级毛色黄片| 欧美区成人在线视频| 亚洲精品国产成人久久av| 欧美另类亚洲清纯唯美| 日本黄大片高清| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 亚洲激情五月婷婷啪啪| 国产精品三级大全| 如何舔出高潮| 国产成人精品久久久久久| 国产一区二区三区在线臀色熟女| 色尼玛亚洲综合影院| av中文乱码字幕在线| 一进一出抽搐动态| 国内少妇人妻偷人精品xxx网站| 国产精品嫩草影院av在线观看| 小说图片视频综合网站| 亚洲aⅴ乱码一区二区在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 成人漫画全彩无遮挡| 18+在线观看网站| 女生性感内裤真人,穿戴方法视频| 欧美一级a爱片免费观看看| 亚州av有码| 男女那种视频在线观看| 国内揄拍国产精品人妻在线| 干丝袜人妻中文字幕| 午夜福利在线在线| 久久精品夜色国产| 一区二区三区高清视频在线| 最后的刺客免费高清国语| 色综合色国产| 狠狠狠狠99中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看午夜福利视频| 男女啪啪激烈高潮av片| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区视频9| 天堂网av新在线| 亚洲性夜色夜夜综合| 国产黄片美女视频| 成人av在线播放网站| 国产一区二区三区av在线 | 欧美绝顶高潮抽搐喷水| 亚洲精品国产av成人精品 | 亚洲美女搞黄在线观看 | 一个人看视频在线观看www免费| 久久久久国内视频| 波多野结衣高清无吗| 欧美另类亚洲清纯唯美| 少妇的逼好多水| 亚洲性久久影院| 一边摸一边抽搐一进一小说| 男人舔奶头视频| 精品久久久久久成人av| 久久人人爽人人爽人人片va| 伊人久久精品亚洲午夜| 禁无遮挡网站| 午夜福利18| 国产综合懂色| 99九九线精品视频在线观看视频| 成人亚洲欧美一区二区av| 国产黄色视频一区二区在线观看 | 人人妻,人人澡人人爽秒播| 亚洲久久久久久中文字幕| 国产国拍精品亚洲av在线观看| 搞女人的毛片| 99久国产av精品国产电影| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久久久久久| 一级毛片电影观看 | 欧美成人免费av一区二区三区| 亚洲精品色激情综合| 国产伦在线观看视频一区| 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 国内揄拍国产精品人妻在线| 国产探花极品一区二区| 男女啪啪激烈高潮av片| 国产真实乱freesex| 国产精品久久久久久久电影| 可以在线观看的亚洲视频| 波多野结衣高清无吗| 国产麻豆成人av免费视频| 无遮挡黄片免费观看| 久久99热6这里只有精品| 国内揄拍国产精品人妻在线| 一级毛片aaaaaa免费看小| 免费大片18禁| 亚洲色图av天堂| 国内精品宾馆在线| 亚洲美女黄片视频| 国产综合懂色| 亚洲无线在线观看| 亚洲av五月六月丁香网| 1024手机看黄色片| 久久国产乱子免费精品| 天堂影院成人在线观看| 综合色av麻豆| 亚洲av二区三区四区| 国产欧美日韩一区二区精品| 亚洲色图av天堂| 天美传媒精品一区二区| 免费看av在线观看网站| 女的被弄到高潮叫床怎么办| 国产极品精品免费视频能看的| 美女xxoo啪啪120秒动态图| 欧美另类亚洲清纯唯美| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 美女被艹到高潮喷水动态| 18禁黄网站禁片免费观看直播| 国产片特级美女逼逼视频| 婷婷亚洲欧美| а√天堂www在线а√下载| 国产精品亚洲美女久久久| 国产国拍精品亚洲av在线观看| av黄色大香蕉| 久久久久久伊人网av| 国产v大片淫在线免费观看| 一区福利在线观看| 午夜免费男女啪啪视频观看 | a级一级毛片免费在线观看| 欧美成人a在线观看| 国产免费一级a男人的天堂| 国产v大片淫在线免费观看| 亚洲内射少妇av| 国产精品一区二区三区四区免费观看 | 欧美xxxx性猛交bbbb| 婷婷色综合大香蕉| 精品一区二区三区av网在线观看| 美女xxoo啪啪120秒动态图| 日本-黄色视频高清免费观看| 干丝袜人妻中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 一区福利在线观看| 赤兔流量卡办理| 国模一区二区三区四区视频| 亚洲真实伦在线观看| 久久久久久久亚洲中文字幕| 一区二区三区四区激情视频 | 久久人人爽人人爽人人片va| 又黄又爽又免费观看的视频| 可以在线观看的亚洲视频| 久久婷婷人人爽人人干人人爱| 欧美日本视频| 最近手机中文字幕大全| 一级a爱片免费观看的视频| 免费人成在线观看视频色| 免费搜索国产男女视频| 久久久午夜欧美精品| 国产乱人偷精品视频| 俄罗斯特黄特色一大片| 亚洲欧美精品自产自拍| 日韩成人伦理影院| 色吧在线观看| 我要看日韩黄色一级片| 又黄又爽又刺激的免费视频.| 菩萨蛮人人尽说江南好唐韦庄 | 欧美极品一区二区三区四区| 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| 亚洲成人中文字幕在线播放| 国产v大片淫在线免费观看| 亚洲乱码一区二区免费版| 成年av动漫网址| a级毛片a级免费在线| 欧美日韩一区二区视频在线观看视频在线 | 久久综合国产亚洲精品| 国内精品美女久久久久久| 免费看美女性在线毛片视频| 身体一侧抽搐| 别揉我奶头 嗯啊视频| 哪里可以看免费的av片| 不卡视频在线观看欧美|