• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameterizations of drag coefficient and aerodynamic roughness length using the turbulence data collected during typhoons Hagupit and Chanthu*

    2021-03-25 10:27:48ZHANGXiaohuaBIXueyanGAOZhiqiuLIUChangweiPENGWenwuZENGZhihuaYANGNanLIYubin
    熱帶海洋學(xué)報(bào) 2021年2期

    ZHANG Xiaohua , BI Xueyan , GAO Zhiqiu , , LIU Changwei , PENG Wenwu , ZENG Zhihua , YANG Nan , LI Yubin

    1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Atmospheric physics, Nanjing University of Information Science and Technology, Nanjing 210044, China;

    2. Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510640, China;

    3. Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 510275, China;

    4. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;

    5. Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China

    Abstract: The drag coefficient and aerodynamic roughness length of the sea surface are essential in calculating momentum, heat and water-vapor exchanges between the air and sea. With the observations collected by eddy covariance systems during typhoons Hagupit and Chanthu, we investigated parameterization relationships of 10-m wind speed with friction velocity, drag coefficient, and aerodynamic roughness length of the sea surface. Results show parabolic relationships between drag coefficient and friction velocity, and between drag coefficient and 10-m wind speed; results also show exponential relationships between aerodynamic roughness length and friction velocity, and between aerodynamic roughness and 10-m wind speed. We found that the critical friction velocity is 0.83 m·s–1 and critical 10m wind speed is 23.69 m·s–1.

    Key words: aerodynamic roughness length; drag coefficient; parameterization; Typhoon Hagupit; Typhoon Chanthu

    The dependent relationships of drag coefficient (Cd) and aerodynamic roughness length (z0) on 10-m wind speed and wave parameters (significant wave height and wave phase velocity) under the moderate wind speed regime have been extensively investigated (e.g., Donelan, 1990; Donelan et al, 1993, 2012; Gao et al, 2006, 2012; Ming et al, 2016; Peng et al, 2019). There was an increasing interest in developing parameterization schemes for Cdunder typhoon conditions in the last 20 years. Powell et al (2003) found that the drag coefficient reached its peak when wind speed was about 40 m·s–1in their Global Positioning System sonde observations. Donelan et al (2004) found constant drag coefficients under high winds in their laboratory measurements. Troitskaya et al (2012) examined theoretically and experimentally laboratory saturation of the drag coefficient at wind speed exceeding 25 m·s–1; and other attempts were made on the topic, including Alamaro et al (2002), Makin (2005), Black et al (2007), Kudryavtsev et al (2007), Soloviev et al (2014), and Golbraikh et al (2016). As Donelan (2018) pointed out these studies explored the physics behind field or laboratory observations, but they did not provide a simple prescription that may be used in a fully coupled (atmosphere-wave-ocean) typhoon prediction model. Donelan (2018) revealed a similar Reynolds number dependence of the oceanic sheltering coefficient, and a drag coefficient function of Reynolds number, wave age, and wind speed. They showed that the drag coefficient reached its peak at wind speed of 30 m·s–1. However, the equations derived by Donelan (2018) involve many wave parameters, bringing more challenges to modeling efforts because these parameters keep changing and cannot be measured easily during typhoon events. Green et al (2013, 2014) proposed an empirical quadratic equation to parameterize Cdusing 10-m wind speed. Peng et al (2015) proposed a parabolic model of the drag coefficient for storm surge simulation in the South China Sea. It is obvious that there is no general agreement in the scientific community regarding parameterization of Cdunder high wind conditions (Anctil et al, 2010; Zachry et al, 2013).

    The objective of this paper is to develop new parameterization equations of Cdand aerodynamic roughness length (z0) under high wind conditions for use in an atmospheric typhoon model. To achieve this goal, we concentrated on analyzing the relationship between friction velocity and 10-m wind speed using turbulence data collected by Gill Wind-master Pro ultrasonic anemometers, which have a sampling frequency of 10 Hz and is quipped at a 100-m tower located at Zhizai Island during typhoons Hagupit and Chanthu. This tower was operated by the Guangdong Climate Center (Bi et al, 2015).

    1 Materials and Methods

    Fig. 1 Map of typhoons Hagupit and Chanthu along with the location of the observational tower. The black circles mark the radii to the tower of 50, 100, 150, 200, and 250 km [Drawing review No: GS(2019)3266]

    Tracks of typhoons Hagupit and Chanthu are shown in Fig. 1, along with the location of the observation tower. The tower, operated by the Guangdong Climate Centre, is on Zhizai Island (21°27′12″N, 111°22′28″E), which has an above- water area of approximately 90 m × 40 m covered by sand and sparse weeds. The tower is 10 m above the sea level (Wang et al, 2013). Gill Windmaster Pro ultrasonic anemometers with a sampling frequency of 10 Hz were placed on the 2.5-m booms at a height of 60 m during Typhoon Hagupit and at a height of 40 m during Typhoon Chanthu. The instruments were placed on the east side of the tower facing the sea to minimize flow distortion. Turbulent three-dimensional wind speed quality control was made (Bi et al, 2015). To eliminate the influence of different heights on result comparison, the 10-m wind speeds were extrapolated from wind speeds measured at the heights of 60 and 40 m using the logarithmic wind profile. The logarithmic wind profile method may have some uncertainty in typhoon environment, but there is no better method to our knowledge.

    Figure 2 shows the time series of neutral 10-m wind speed (V10n) and wind direction (α) of typhoons Hagupit (Fig. 2a) and Chanthu (Fig. 2b). The time intervals for both typhoons’ data are 10 minutes. It is obvious that the observed V10ndramatically increased (decreased) when the typhoon eye approached (departed from) the tower. The observed highest wind speed is 40.2 m·s–1for Typhoon Hagupit and 32.1 m·s–1for Typhoon Chanthu. The eye of Hagupit almost passed through the observation tower. On September 24, 2008, V10nreached 40.2 m·s–1at 4:30 local standard time (LST), and then dropped sharply to 10.8 m·s–1at 6:00 LST when the typhoon eye was the closest to the tower. With the typhoon eye moving away, V10nincreased rapidly, to 34.8 m·s–1at 7:00 LST. Typhoon Hagupit landed on 2008 September 24 as shown in Fig. 2a.

    Fig. 2 Time series of neutral 10-m wind speed (V10n) and wind direction (α) measured during Typhoon Hagupit (a) and Typhoon Chanthu (b)

    Under typhoon conditions, the surface layer is generally considered to be in neutral stratification. The neutral drag coefficient (Cdn) is defined as:

    The wind profile equation as:

    Then the surface aerodynamic roughness length (z0) is calculated as:

    where u*is the friction velocity (units: m·s–1), V10nis neutral 10-m wind speed (units: m·s–1), k is the von Karman constant (no units), and z0is the sea surface aerodynamic roughness length (units: m). u*and V10nare obtained from turbulent 3-D wind speed measurements.

    2 Results and Discussion

    2.1 Variation of friction velocity against 10-m wind speed

    Figure 3 is a scatterplot of friction velocity (u*) against 10-m wind speed (V10n). Overall, u*increased with increasing V10n. During the typhoon landing process, the change of typhoon underlying surface (switching from the sea surface to land surface) will lead to a sharp increase in friction velocity. Additionally, the data collected during the typhoon landing process is not comparable to the data collected before and after the landing, because of the different atmospheric stratification condition inside and outside of the eyewall. Therefore, we excluded the data collected during the landing process of Typhoon Hagupit in the following analysis (marked by a black dashed circle in Fig. 3). The landing site of Typhoon Chanthu was far away from the observation tower. Therefore, our sensor failed to capture the impact of typhoon landing process on wind speed and friction velocity. Figure 3 shows that most of our data were collected with the 10-m wind speed of less than 16 m·s–1during the two typhoons. Statistically, the non-uniformity of the sample distribution can affect statistical results, which means that if the data in Fig. 3 are used to regress the relationship between the friction velocity and 10-m wind speed, the relationship should be more representative when the wind speed is less than 16 m·s–1. Therefore, in Fig. 4 we group the data, with a 10-m wind speed range of 2 m·s–1per group. Figure 4 plots the median of each set of data, and we also label the number of samples for each set of data. For example, for groups with wind speeds greater than 10 m·s–1and less than or equal to 12 m·s–1, data samples for typhoons Hagupit and Chantha are 20 m·s–1and 44 m·s–1, respectively. Figure 4 shows the friction velocity (median) as a function of 10-m wind speed. The two curves are very close to each other. The slight differences between them may be caused by differences in wind direction, water depth and measurement footprints of the two typhoons. Considering that the number of data samples of the two typhoons decreased gradually with the increase of 10-m wind speed, and that the changes of frictional velocity with the 10-m wind speed are consistent in the two typhoons, we combine the observation data of the two typhoons, and show the medians of these observations in Fig. 4. The number of samples for each set of data is given in Fig. 4 as well.

    Fig. 3 Scattered plot of friction velocity (u*) against 10-m wind speed (V10n) measured during Typhoon Hagupit (diamonds) and Typhoon Chanthu (circles)

    Fig.4 The median values of friction velocity (u*) against 10-m wind speed (V10n) measured during Typhoon Hagupit and Typhoon Chanthu. The black diamonds and black circles are the medium friction velocities for typhoons Hagupit and Chanthu, respectively. The gray circles are the medium friction velocity for the combined data of typhoons Hagupit and Chanthu. The number of samples for each set of data is shown at the top (data samples for combined data of typhoons Hagupit and Chanthu, Hagupit and Chantha, respectively)

    2.2 Parameterizations of drag coefficient and aerodynamic roughness length

    The drag coefficient (Cdn) is calculated using Equation (1). Using the best approximation method, we regressed the relationship between Cdnand friction velocity (u*) as follows:

    and, the relationship between Cdnand V10nas follows:

    A quadratic (parabolic) relationship is found between Cdnand u*(Fig. 5a). Based on the maximum value of Cdnof around (32.00 ~ 33.00 m·s–1) in the field measurements of Powell et al (2003) and Jarosz et al (2007), Peng et al (2015) proposed a parabolic model of Cdn(Equation 6) for storm surge simulation in the South China Sea, and found that it outperforms traditional linear models.

    where a and c are regression coefficients. Comparison between Equations (5) and (6) shows that there is a quadratic (parabolic) relationship between Cdnand V10n(Fig. 5b), although the saturated wind speed and the regression coefficients are different in Equations (5 and 6).

    In the early studies of Cdnunder low to moderate wind speed (about 20 m·s–1) conditions, Cdnis considered to be a linear function of V10n, i.e., Cdnincreases linearly with increasing wind speed. This linear relationship can be confirmed by many experiments because the parabolic single (left) branch does exhibit more or less the linear growth behavior in Figs. 5a and 5b.

    We substituted the data in Fig. 4 into Equation (3) and calculated the aerodynamic rough length (z0) of the sea surface. Figure 5c shows z0as a function of u*, and Fig. 5d shows z0as a function of V10n. Using the error analysis method, Johnson et al (1998) showed in detail that Equation (3) means z0is extremely sensitive to measurement errors in both u*and V10n; so the distributions of the dots in Figs. 5c and 5d are very scattered. Even though z0depends on both u*and V10n, Fig. 5c only shows the change of z0with u*and Fig. 5d only shows the change of z0with V10n. This increases the scatter of the data distributions in Figs. 5c and 5d.

    Correspondingly, using the best approximation method, we regressed the relationship between z0and u*as follows:

    and, the relationship between z0and V10nas follows:

    Fig. 5 Relationships between neutral drag coefficient (Cdn) and friction velocity (u*) (a), relationships between neutral drag coefficient (Cdn) and V10n (b), relationships between aerodynamic roughness length (z0) and friction velocity (u*) (c), relationships between aerodynamic roughness length (z0) and neutral 10-m wind speed (V10n) (d), and, the data used are from Fig. 4 regression results are included

    It is obvious that the saturated u*is 0.83 m·s–1and the saturated V10nis 23.69 m·s–1.

    Previous studies (e.g., Yelland et al, 1996; Oost et al, 2002, 2004; Gao et al, 2006, 2012) showed that z0and Cdndepend not only on u*and V10n, but also on wave state. Our current study does not consider wave parameters (i.e., wave height or wave steepness, and wave period or wave age), which should be another reason why the data distribution in Fig. 5 appears to be scattered. Because of this, if we use the field observation data to verify the ability of our statistical Equations (4, 5) and (7, 8) to simulate the roughness and drag coefficient, these equations may have large errors. The advantage of Equations (4, 5) and (7, 8) is that they are capable of simulating roughness and drag coefficients under high wind conditions, which is useful for the atmospheric models that do not include any wave parameters.

    3 Summary

    Turbulent data were collected by an eddy variance system installed on a 100-m tower off the costal South China Sea during typhoons Hagupit and Chanthu. Using these date, we derived the parabolic relationship between drag coefficient and friction velocity, and between drag coefficient and 10-m wind speed; we also obtained the exponential relationship between aerodynamic roughness and friction velocity, and between aerodynamic roughness and 10-m wind speed. We found that the critical 10-m wind speed is 23.69 m·s–1and the critical friction velocity is 0.83 m·s–1.

    国产成人啪精品午夜网站| 国产日韩欧美亚洲二区| 在线观看三级黄色| 18在线观看网站| 成人免费观看视频高清| 天天躁狠狠躁夜夜躁狠狠躁| 久热爱精品视频在线9| 美女福利国产在线| 日日撸夜夜添| 亚洲一区二区三区欧美精品| 日韩熟女老妇一区二区性免费视频| 国产亚洲精品第一综合不卡| 欧美乱码精品一区二区三区| 久久久精品94久久精品| 成人国产麻豆网| 午夜福利网站1000一区二区三区| 成人亚洲欧美一区二区av| 久久久久久人妻| 午夜福利影视在线免费观看| 欧美精品av麻豆av| 精品久久蜜臀av无| 日本午夜av视频| 亚洲欧美一区二区三区黑人| 亚洲成av片中文字幕在线观看| 丝袜喷水一区| 超碰97精品在线观看| 色婷婷久久久亚洲欧美| 看免费av毛片| 午夜激情久久久久久久| 成人手机av| 国产免费福利视频在线观看| 伦理电影大哥的女人| 人妻 亚洲 视频| 日日啪夜夜爽| 999精品在线视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品久久久久久婷婷小说| 国产欧美亚洲国产| av视频免费观看在线观看| videos熟女内射| 国产精品久久久久久久久免| 9热在线视频观看99| av国产久精品久网站免费入址| 国产av国产精品国产| 欧美精品av麻豆av| √禁漫天堂资源中文www| 操美女的视频在线观看| 国产一区二区三区av在线| 岛国毛片在线播放| 日韩欧美一区视频在线观看| 国产日韩欧美在线精品| 久久久久久久大尺度免费视频| 欧美成人午夜精品| a 毛片基地| 久久青草综合色| 成人18禁高潮啪啪吃奶动态图| 丰满乱子伦码专区| 777米奇影视久久| 少妇被粗大猛烈的视频| 国产精品av久久久久免费| 国产淫语在线视频| 国产亚洲av片在线观看秒播厂| 超碰成人久久| 国产成人免费无遮挡视频| 制服人妻中文乱码| 久久久久精品久久久久真实原创| 国产福利在线免费观看视频| 一区二区日韩欧美中文字幕| 伊人久久国产一区二区| 一边摸一边抽搐一进一出视频| 国精品久久久久久国模美| 国产亚洲午夜精品一区二区久久| 狂野欧美激情性xxxx| 一区二区av电影网| 婷婷色麻豆天堂久久| 叶爱在线成人免费视频播放| 亚洲成人av在线免费| 国产免费现黄频在线看| 99国产精品免费福利视频| 另类亚洲欧美激情| 精品国产一区二区三区四区第35| 波多野结衣av一区二区av| 在线天堂最新版资源| 精品酒店卫生间| 99精国产麻豆久久婷婷| 久久精品人人爽人人爽视色| 久久精品国产亚洲av高清一级| 国产精品偷伦视频观看了| 可以免费在线观看a视频的电影网站 | av不卡在线播放| 免费黄色在线免费观看| 嫩草影院入口| 午夜免费鲁丝| 日本爱情动作片www.在线观看| 欧美精品av麻豆av| 亚洲精品乱久久久久久| 少妇被粗大猛烈的视频| 成人黄色视频免费在线看| 国产黄色免费在线视频| 色精品久久人妻99蜜桃| 亚洲人成77777在线视频| 国产精品.久久久| 在线天堂中文资源库| 不卡视频在线观看欧美| 人妻一区二区av| 亚洲,欧美,日韩| 国产不卡av网站在线观看| 一级爰片在线观看| 国产精品久久久av美女十八| 在线亚洲精品国产二区图片欧美| 国产成人欧美| 久久精品久久久久久久性| a级毛片黄视频| 咕卡用的链子| 久久精品国产综合久久久| 久久精品久久精品一区二区三区| 亚洲国产精品一区三区| 一级片'在线观看视频| 亚洲av成人精品一二三区| 亚洲,欧美,日韩| 亚洲成人国产一区在线观看 | 国产xxxxx性猛交| 久久久久久人妻| 一区二区三区激情视频| 一二三四在线观看免费中文在| 色婷婷久久久亚洲欧美| 美女国产高潮福利片在线看| 97人妻天天添夜夜摸| 2021少妇久久久久久久久久久| 啦啦啦视频在线资源免费观看| 国产亚洲最大av| 中文字幕色久视频| 国产成人免费观看mmmm| 免费在线观看黄色视频的| 汤姆久久久久久久影院中文字幕| 国产午夜精品一二区理论片| 一区二区日韩欧美中文字幕| 国产伦理片在线播放av一区| 国产一区二区三区综合在线观看| 看十八女毛片水多多多| 国产男女超爽视频在线观看| videosex国产| 啦啦啦 在线观看视频| 国产一区二区三区综合在线观看| 五月开心婷婷网| 亚洲av日韩精品久久久久久密 | 97人妻天天添夜夜摸| 国产精品免费视频内射| 国产成人欧美| 久久人人97超碰香蕉20202| 熟妇人妻不卡中文字幕| 日日啪夜夜爽| 亚洲少妇的诱惑av| 嫩草影视91久久| av线在线观看网站| 午夜影院在线不卡| 午夜免费观看性视频| 久久亚洲国产成人精品v| 国产不卡av网站在线观看| 日本黄色日本黄色录像| 亚洲成av片中文字幕在线观看| 国产精品二区激情视频| 欧美激情极品国产一区二区三区| 90打野战视频偷拍视频| 天天添夜夜摸| 国产福利在线免费观看视频| 日韩av在线免费看完整版不卡| 最新的欧美精品一区二区| av福利片在线| 狂野欧美激情性xxxx| 国产成人啪精品午夜网站| 搡老乐熟女国产| 综合色丁香网| 久久精品国产综合久久久| 一级毛片电影观看| 欧美国产精品一级二级三级| 新久久久久国产一级毛片| 最近手机中文字幕大全| 97人妻天天添夜夜摸| 美女视频免费永久观看网站| 97精品久久久久久久久久精品| 亚洲国产成人一精品久久久| videos熟女内射| 日韩视频在线欧美| 亚洲精品久久成人aⅴ小说| 19禁男女啪啪无遮挡网站| 久久精品人人爽人人爽视色| 国产伦人伦偷精品视频| 国产伦人伦偷精品视频| 制服丝袜香蕉在线| 大香蕉久久成人网| 久久这里只有精品19| 又粗又硬又长又爽又黄的视频| av天堂久久9| 亚洲婷婷狠狠爱综合网| 一本久久精品| 日韩 亚洲 欧美在线| 久久久久久免费高清国产稀缺| 97在线人人人人妻| 成人午夜精彩视频在线观看| 日本黄色日本黄色录像| 精品国产露脸久久av麻豆| 亚洲一码二码三码区别大吗| 久久久久久人妻| 夜夜骑夜夜射夜夜干| 最近的中文字幕免费完整| 久久精品久久久久久久性| 建设人人有责人人尽责人人享有的| 久久久久国产精品人妻一区二区| 亚洲专区中文字幕在线 | 51午夜福利影视在线观看| 成人毛片60女人毛片免费| 亚洲国产欧美一区二区综合| 如日韩欧美国产精品一区二区三区| 国产麻豆69| 国产视频首页在线观看| av卡一久久| 国产老妇伦熟女老妇高清| 少妇人妻精品综合一区二区| 国产一级毛片在线| 在线观看人妻少妇| 久久毛片免费看一区二区三区| 亚洲男人天堂网一区| 国产熟女欧美一区二区| 久久久亚洲精品成人影院| 国产精品一国产av| 国产精品成人在线| 日本一区二区免费在线视频| 国产极品粉嫩免费观看在线| 操美女的视频在线观看| 欧美少妇被猛烈插入视频| 久久 成人 亚洲| 色婷婷久久久亚洲欧美| 欧美成人午夜精品| 国产xxxxx性猛交| 精品人妻熟女毛片av久久网站| 99国产综合亚洲精品| 一级,二级,三级黄色视频| 亚洲国产av影院在线观看| 国产成人啪精品午夜网站| 久久97久久精品| 一级a爱视频在线免费观看| 日韩制服丝袜自拍偷拍| 免费看不卡的av| 色网站视频免费| 国产精品久久久久久人妻精品电影 | 丝瓜视频免费看黄片| 精品一品国产午夜福利视频| av有码第一页| 久久人妻熟女aⅴ| 91aial.com中文字幕在线观看| 色婷婷av一区二区三区视频| 国产视频首页在线观看| 亚洲精品国产av成人精品| 亚洲精品中文字幕在线视频| 伊人久久国产一区二区| 午夜免费男女啪啪视频观看| 蜜桃在线观看..| 美女高潮到喷水免费观看| 老鸭窝网址在线观看| 日本午夜av视频| 夫妻午夜视频| 女人爽到高潮嗷嗷叫在线视频| 日韩中文字幕欧美一区二区 | 亚洲欧美精品综合一区二区三区| 18禁观看日本| 成年动漫av网址| 国产精品一区二区在线观看99| 亚洲精品日韩在线中文字幕| 只有这里有精品99| 少妇人妻久久综合中文| 搡老乐熟女国产| 中文乱码字字幕精品一区二区三区| 亚洲专区中文字幕在线 | 国产激情久久老熟女| 好男人视频免费观看在线| 国产免费又黄又爽又色| 赤兔流量卡办理| 看免费成人av毛片| 中文天堂在线官网| 亚洲国产av新网站| 欧美日韩视频高清一区二区三区二| 最近手机中文字幕大全| 欧美 日韩 精品 国产| av视频免费观看在线观看| 欧美最新免费一区二区三区| 亚洲天堂av无毛| 久久久久人妻精品一区果冻| 欧美人与性动交α欧美软件| 一区二区三区激情视频| 精品一区二区三卡| 亚洲人成77777在线视频| 街头女战士在线观看网站| 国产亚洲午夜精品一区二区久久| 国产成人免费无遮挡视频| 麻豆精品久久久久久蜜桃| 女人高潮潮喷娇喘18禁视频| 捣出白浆h1v1| 欧美精品人与动牲交sv欧美| 99热网站在线观看| 精品一区二区三区av网在线观看 | 国产成人啪精品午夜网站| 高清黄色对白视频在线免费看| 国产精品 国内视频| av片东京热男人的天堂| 亚洲色图综合在线观看| 国产精品免费视频内射| videos熟女内射| 女人久久www免费人成看片| 国产成人精品久久二区二区91 | 国产片内射在线| 日本欧美国产在线视频| 伊人久久大香线蕉亚洲五| 99国产精品免费福利视频| 超色免费av| 精品午夜福利在线看| 欧美乱码精品一区二区三区| 一级黄片播放器| 人人妻,人人澡人人爽秒播 | 国产免费一区二区三区四区乱码| 久久久精品区二区三区| 天天影视国产精品| 国产不卡av网站在线观看| 亚洲欧美一区二区三区黑人| 最近最新中文字幕免费大全7| 最近中文字幕高清免费大全6| 麻豆乱淫一区二区| 精品一区二区三卡| 精品国产乱码久久久久久男人| 亚洲美女视频黄频| 午夜免费鲁丝| 国产精品久久久久久精品古装| 国产又色又爽无遮挡免| 美女脱内裤让男人舔精品视频| 亚洲人成电影观看| 国产男女内射视频| 美国免费a级毛片| 久久久久久人妻| 黄色一级大片看看| 午夜av观看不卡| 成人漫画全彩无遮挡| 国产精品免费视频内射| 精品国产一区二区三区四区第35| av.在线天堂| 少妇人妻 视频| 丁香六月欧美| 如何舔出高潮| 精品人妻在线不人妻| 美女大奶头黄色视频| 国产成人欧美在线观看 | 久久久久久久久久久免费av| 亚洲美女黄色视频免费看| 男女边吃奶边做爰视频| 女性被躁到高潮视频| 日韩 欧美 亚洲 中文字幕| 亚洲欧美一区二区三区黑人| 免费不卡黄色视频| 亚洲精品av麻豆狂野| 悠悠久久av| 日本黄色日本黄色录像| 久久久久精品久久久久真实原创| 一区二区三区四区激情视频| 女人被躁到高潮嗷嗷叫费观| 在线精品无人区一区二区三| 亚洲av国产av综合av卡| 国产成人欧美在线观看 | 亚洲精品美女久久av网站| av有码第一页| 成人黄色视频免费在线看| 欧美少妇被猛烈插入视频| 国产精品99久久99久久久不卡 | 一级毛片 在线播放| 人妻人人澡人人爽人人| 天天躁夜夜躁狠狠躁躁| 岛国毛片在线播放| 成人黄色视频免费在线看| 日本猛色少妇xxxxx猛交久久| 老司机亚洲免费影院| 亚洲成人免费av在线播放| 欧美激情极品国产一区二区三区| 99香蕉大伊视频| 久久久久久久精品精品| 国产无遮挡羞羞视频在线观看| 久久久久精品人妻al黑| 美女视频免费永久观看网站| 国产毛片在线视频| 欧美人与性动交α欧美精品济南到| 在线观看国产h片| 欧美成人午夜精品| 黄片小视频在线播放| av在线观看视频网站免费| 中国国产av一级| 久久久久久久大尺度免费视频| 精品酒店卫生间| 亚洲美女视频黄频| 中文字幕高清在线视频| 自线自在国产av| 黄色视频不卡| 精品国产乱码久久久久久小说| 亚洲色图综合在线观看| 成年av动漫网址| 国产av精品麻豆| 国产97色在线日韩免费| av不卡在线播放| 在线观看免费视频网站a站| 久久久亚洲精品成人影院| 中国国产av一级| 国产精品久久久久久久久免| 国产成人精品福利久久| 亚洲国产av影院在线观看| 日韩免费高清中文字幕av| 国产日韩欧美在线精品| 精品福利永久在线观看| 精品午夜福利在线看| 久久久久久久久免费视频了| 久久久久久久国产电影| 黑丝袜美女国产一区| 日韩大片免费观看网站| 亚洲国产欧美网| 精品亚洲成a人片在线观看| 免费女性裸体啪啪无遮挡网站| 2018国产大陆天天弄谢| 久久人人爽人人片av| 欧美激情 高清一区二区三区| av网站免费在线观看视频| 国产成人啪精品午夜网站| 久热爱精品视频在线9| 宅男免费午夜| 观看av在线不卡| 99久久99久久久精品蜜桃| 日本91视频免费播放| 电影成人av| 黑人欧美特级aaaaaa片| 丰满饥渴人妻一区二区三| 亚洲久久久国产精品| 视频区图区小说| 天美传媒精品一区二区| 亚洲少妇的诱惑av| 亚洲欧美一区二区三区黑人| 一级毛片电影观看| 国产无遮挡羞羞视频在线观看| 亚洲,欧美精品.| 一区二区三区精品91| 久久99热这里只频精品6学生| 国产欧美日韩一区二区三区在线| 亚洲人成77777在线视频| e午夜精品久久久久久久| a级毛片黄视频| 亚洲在久久综合| 日韩大片免费观看网站| 国产精品久久久久久精品电影小说| 国产成人午夜福利电影在线观看| 国产精品一区二区在线观看99| 精品国产一区二区久久| 欧美国产精品va在线观看不卡| 国产亚洲精品第一综合不卡| 亚洲人成电影观看| 久久青草综合色| 新久久久久国产一级毛片| 亚洲国产欧美一区二区综合| 人人澡人人妻人| 丁香六月天网| 日韩一本色道免费dvd| 天美传媒精品一区二区| 日本欧美视频一区| 一级片免费观看大全| 人人澡人人妻人| 嫩草影视91久久| 母亲3免费完整高清在线观看| 两个人看的免费小视频| 九九爱精品视频在线观看| 人成视频在线观看免费观看| 最近中文字幕高清免费大全6| 亚洲成人一二三区av| 老司机影院毛片| 欧美少妇被猛烈插入视频| 黄色 视频免费看| 大话2 男鬼变身卡| 久久影院123| 人人妻,人人澡人人爽秒播 | 在线观看一区二区三区激情| 亚洲国产欧美一区二区综合| 亚洲情色 制服丝袜| 18禁观看日本| 中文天堂在线官网| 观看美女的网站| 国产色婷婷99| 中文欧美无线码| 老司机影院成人| 亚洲国产日韩一区二区| 亚洲av福利一区| 亚洲精品中文字幕在线视频| 国产精品av久久久久免费| 制服人妻中文乱码| 老熟女久久久| 日韩一本色道免费dvd| 中文字幕高清在线视频| 国产淫语在线视频| 又大又黄又爽视频免费| 欧美人与性动交α欧美软件| 黄片小视频在线播放| bbb黄色大片| 国产精品久久久久久精品电影小说| 欧美日本中文国产一区发布| 成年女人毛片免费观看观看9 | 亚洲成国产人片在线观看| 不卡av一区二区三区| 亚洲第一av免费看| 老司机靠b影院| 中文欧美无线码| 黄色视频在线播放观看不卡| 亚洲,欧美,日韩| 91aial.com中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 伊人久久国产一区二区| 午夜福利一区二区在线看| 亚洲国产欧美一区二区综合| 中国国产av一级| 国产深夜福利视频在线观看| videosex国产| 欧美中文综合在线视频| 婷婷色综合www| 久久精品熟女亚洲av麻豆精品| 欧美精品人与动牲交sv欧美| 欧美少妇被猛烈插入视频| 性色av一级| 看免费成人av毛片| 亚洲欧洲国产日韩| 欧美乱码精品一区二区三区| 免费看不卡的av| 亚洲国产av影院在线观看| 中文乱码字字幕精品一区二区三区| 亚洲国产精品999| 亚洲av成人精品一二三区| 亚洲一区中文字幕在线| 不卡视频在线观看欧美| 最新在线观看一区二区三区 | √禁漫天堂资源中文www| 日日啪夜夜爽| 亚洲熟女精品中文字幕| 国产精品一区二区精品视频观看| 精品国产露脸久久av麻豆| 亚洲精品久久午夜乱码| 久久婷婷青草| 亚洲免费av在线视频| 国产精品久久久久久精品古装| 亚洲av欧美aⅴ国产| 亚洲国产欧美网| 精品少妇黑人巨大在线播放| 夫妻午夜视频| 亚洲成人免费av在线播放| 如日韩欧美国产精品一区二区三区| 在线 av 中文字幕| 久久久久久久久久久免费av| 欧美日韩视频高清一区二区三区二| 国产一区有黄有色的免费视频| 一区在线观看完整版| 国产精品国产三级国产专区5o| 天堂中文最新版在线下载| 亚洲婷婷狠狠爱综合网| 免费在线观看完整版高清| 美女扒开内裤让男人捅视频| 精品人妻一区二区三区麻豆| 欧美日韩视频精品一区| 中文乱码字字幕精品一区二区三区| 亚洲人成77777在线视频| 两个人看的免费小视频| 秋霞伦理黄片| 精品一区二区免费观看| 女人被躁到高潮嗷嗷叫费观| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| 欧美激情高清一区二区三区 | 成人午夜精彩视频在线观看| 少妇的丰满在线观看| 熟妇人妻不卡中文字幕| 日本色播在线视频| 久久人人爽人人片av| 国产成人精品久久久久久| 午夜日韩欧美国产| 精品人妻熟女毛片av久久网站| 国产视频首页在线观看| 国产精品香港三级国产av潘金莲 | 黄色毛片三级朝国网站| 国产精品免费大片| 熟妇人妻不卡中文字幕| 欧美日韩视频精品一区| 黄网站色视频无遮挡免费观看| 永久免费av网站大全| 精品久久久精品久久久| 波野结衣二区三区在线| 久久综合国产亚洲精品| 国产午夜精品一二区理论片| xxx大片免费视频| 国产成人系列免费观看| 精品久久久久久电影网| 久久久精品区二区三区| 一级,二级,三级黄色视频| 国产老妇伦熟女老妇高清| 久久人妻熟女aⅴ| 精品卡一卡二卡四卡免费| 女人久久www免费人成看片| 日韩成人av中文字幕在线观看| 亚洲视频免费观看视频| 国产精品欧美亚洲77777| 巨乳人妻的诱惑在线观看| 亚洲精品乱久久久久久| 亚洲少妇的诱惑av| 精品一区二区三区四区五区乱码 | 日本av手机在线免费观看| 精品视频人人做人人爽| 又粗又硬又长又爽又黄的视频| 国产精品久久久av美女十八| 最新在线观看一区二区三区 | 黄色毛片三级朝国网站|