• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    苯胺基團(tuán)對一類Pt(Ⅱ)磷光發(fā)光材料非輻射躍遷調(diào)控的理論研究

    2021-03-12 09:44:32康國俊任雪峰唐洪渠
    關(guān)鍵詞:磷光中國礦業(yè)大學(xué)化工學(xué)院

    康國俊 李 珂 任雪峰 唐洪渠

    (中國礦業(yè)大學(xué)低碳能源研究院,化工學(xué)院,徐州 221008)

    0 Introduction

    Organometallic complexes of Pt(Ⅱ) and/or Ir(Ⅲ)play important roles on the phosphorescent organic light-emitting diodes(PhOLEDs).Due to the strong spin-orbit coupling(SOC)induced by the metal atoms,the singlet and triplet excitions contribute to the emission[1-4].For many years,many efforts have been made to synthesize highly efficient and stable materials[5-8].However,it is still a crucial task to work out detailed understanding of the deactivation mechanism because of the complicated intersystem crossing (ISC).Nowadays,density functional theory(DFT)and timedependent DFT(TD-DFT)calculations are the most widely used techniques to provide the relationship between structure and optical properties[9-13].Especially,a type of efficient Pt(Ⅱ)emitters is obtained by introducing the diphenylamine functional substitutions(1a~1c)as shown in Fig.1 a[14].These primary results show the functionalized diphenylamine moiety can tune the non-radiative process.However,the most important position(R2position of carbazole ring,as shown in Fig.1a),which is closed to biphenyl substitutions,may show greatly influence on reaching triplet metal centered(3MC)state.In particular,once populating in3MC state,it can return to the local minimum structure on T1surface(T1)or non-radiative decay process to S0state through the minimal energy crossing point(MECP)between T1and S0state.Therefore,these interesting prospects lead us to investigate this type pf Pt(Ⅱ)emitters(M1~M3)in order to set a firmer basis and obtain a deeper understanding of its properties.

    Fig.1 (a)Schematic structures with atomic labeling for metal-ligand bond of studied complexes M1~M3 and referenced complexes 1,1a~1c[14];(b)Optimized structures of M1~M3 in ground states

    1 Computational method

    In this work,the hybrid density functional,PBE0,was employed for all calculations using the program package in Gaussian 09 program package[15].The geometry optimizations of the ground-state(S0)and lowestlying triplet excited state(T1)were calculated using restricted and unrestricted DFT with hybrid-type Perdew-Burke-Ernzerh of exchange correlation functional(PBE0)[16-17].The effective core potential(ECP)basis sets of the Stuttgart group(SDD)[18-19]and 6-31G(d)basis set was used for Pt(Ⅱ)and non-metal atoms,respectively.Frequencies calculations were calculated at the same level to ensure that they were minimums on the potential energy surface.The stability calculations were performed for all these optimized geometries to confirm these wavefunctions were stable.Based on these optimized S0and T1geometries,the absorption and emission spectra of the investigated complexes were calculated by TDDFT/PBE0 and TDDFT/PBE38 in a CH2Cl2solution,respectively.The3MC states were computed by UPBE0 method.The transition state(TS)geometries between T1and3MC state were searched.The connection of T1and3MC state through the TS was confirmed by the intrinsic reaction coordinate(IRC)calculation.The minimalenergy crossing points(MECP)for T1/S0surface crossing were calculated by sobMECP program[20-21],which is modified version of Harvey′s MECP program and is performed with the Gaussian 09 program.Frequency calculations were run at the same level of theory and the absence of imaginary frequencies ascertained the nature of these points as minima.

    2 Results and discussion

    2.1 Ground statestructures and lowest-lying triplet state

    The molecular structures of complexes M1~M3 are depicted in Fig.1.The optimized geometries of these complexes in S0and T1state are collected in Table 1.As shown in Table 1,the N1—Pt—N2 and N1—Pt—C2 bond angles of M1 in S0state were 100.35°and 166.28°,respectively,while its N1—N2—C2—C1 angle was 14.95°.The N1—Pt—N2,N1—Pt—C2,as well as N1—N2—C2—C1 bond angles of M2 and M3 are similar with those of M1.Clearly,all the complexes adopt distorted square-planar coordination geometries around the metal center,which are similar with the referenced complexes 1 and 1a~1c[14].Compared with the synthesized molecule 1,the introduction ofdiphenylamine moiety can effectively strengthen theπ-conjugation interaction between the metal and ligand,and thus the metal bond lengths are shortened.Especially,the Pt—N1 and Pt—C1 bond of M2 and M3 were decreased byca.0.002 nm andca.0.004 nm,respectively,compared with complex 1[14].On going from S0state to T1state,the large structural modifications of these complexes happened on the same ligand.The Pt—N1 and Pt—C1 bonds of M2 and M3 were shortened byca.0.004 nm andca.0.006 nm,while the Pt—N1 and Pt—C1 of M1 were decreased byca.0.005 nm andca.0.002 nm,respectively.The strengthened metal-ligand interaction may raise the probability of charge transfer from the metal to the ligand,which will be further discussed in Section 2.2.

    Table 1 Selected optimized electron geometries(bond length(nm),bond angle(°),dihedral angles(°))of M1~M3 at S0 and T1 states

    The spin density of T1state of studied complexes is shown in Fig.2.For M1~M3,the electron density was mainly located at the metal center and ligands,thus T1state of these complexes is MLCT characteristic.T1state with MLCT character is useful to tune spinorbitcoupling and therefore facilitates the ISC.Besides,a distinguish contribution from the diphenylamine moiety have been detected on M2 and M3,indicating that the photophysical properties can be well tuned by diphenylamine moiety.

    Fig.2 Spin density in the lowest-lying triplet states for M1~M3

    2.2 Absorption wavelength and emission spectra

    The calculated absorption wavelength(λ,nm),transition energy(E,eV),oscillator strengths(f),dominant configurations,and transition assignments of main absorption spectra are collected in Table 2.The simulated absorption spectra of these complexes are depicted in Fig.3,together with the absorption spectrum of synthesized compound 1[8].To analyze nature of these excitations,the molecular orbital composition and the characteristics of Ptdorbitals are shown in Fig.4.

    As depicted in Fig.3,complex M2 displayed intense high-energy absorption band(230~300 nm)and weaker band in the region of 450~550 nm,which can display similar curves to the absorption spectrum of experimental molecule 1[14].Especially,the absorption spectra of M1 and M3 were slightly blue-shifted and the absorption intensity were greatly enhanced.Therefore,the possibility of the intersystem crossing(ISC)from the singlet and triplet state may be well tuned by the introduction of diphenylamine groups.As listed in Table 2,the first strong absorption peak of M1 was at 442.7 nm.The dominant orbital transition is HOMO→LUMO.Because of the large contribution of Ptd(10.7%dxz),the absorption peak of M1 at 442.7 nm was 8.6% MLCT character.The largest absorption peak of M1 at 281.4 nm(S28state,7.84% MLCT)shared a similar transition character with that of synthesized 1 at 294 nm(S18state)with 9.6% MLCT.For M2,the largest absorption peaks were located at 305.3 and 277.8 nm.According to Table 2 and Fig.4,the peaks at 305.3 nm(15.1%)and 277.8 nm(7.49%)possessed large amounts of MLCT character.Clearly,introducing the diphenylamine at the R2position is more suitable for enhancing the light energy collection and singlettriplet transitions than at R1position.Besides,for M3,the distinguishable absorption peaks around 312.5 and 305.4 nm possessed 19.75% and 6.99% MLCT character,respectively.Obviously,the participation of MLCT in the absorption spectra can be increased by gradually increasing the amount of diphenylamine moiety.The increased amount of MLCT might be efficient to collect light energy participation of metals and increase the spin-orbital coupling effect.Meanwhile,the intensities of the absorption bands of M3 were much larger than those of M1,which may result in high intensity for the triplet excited states through the ISC procedure,and hence increasing the phosphorescence efficiency,which is consistent with the analyses of molecular geometry.

    Fig.3 (a)Simulated absorption spectra for M1~M3 in CH2Cl2 solution;(b)Absorption spectrum(left)of synthesized compound 1 measured in CH2Cl2 at room temperature and emission spectra(right)measured in CH2Cl2 at room temperature(solid line)and in 2-methyl-THF at 77 K(dash-dot line)

    Fig.4 Calculated components of Ptd for the main transition orbitals

    Table 2 Adsorption spectrum calculation results of M1~M3

    The emission energies and wavelength,transition characters are listed in Table 3.The calculated phosphorescent spectrum of M1 was 631.6 nm,demonstrat-ing that it is potential candidates for red emitting materials.Different from the referenced molecules(1a~1c)and M1,the calculated phosphorescent spectrum of complexes M2(615.6 nm)and M3(602.7 nm)were blue-shifted,which is caused by that the internal occupied orbitals are dominant transition orbitals,and the energy gaps of transition orbitals increased.In addition,due to the significant contribution of Ptdorbital in the transition orbital,the phosphorescence spectra of these compounds can be described as3MLCT/3LLCT character.As well accepted,the contribution of3MLCT in T1state will be beneficial to enhance the SOC and transition probability.The calculation results show that the introduction of the diphenylamine moiety at different position could influence the emission spectra,which can provide useful information for further designing highly efficient emitters.

    Table 3 Phosphorescence emission spectrum calculation results of M1~M3

    2.3 Deactivation pathway

    As described in the introduction,3MC excited state acts as a very efficient activated non-radiative channel for the deactivation to S0state,due to the presence of MECP between S0and3MC potential energy surface.In view of this,we attempt to optimize3MC state by increasing the metal-ligand bond lengths.The optimized geometries of the TS state between T1state and3MC state as well as T1state are also shown in Fig.5.The calculated IRCs for T1→3MC pathways of studied complexes are shown in Fig.6,together with the spin density distributions.

    Fig.5 Optimized geometries of T1,TS,MC,MECP states for M1~M3

    Fig.6 Energy levels of reaction path leading from triplet excited state T1 state to MECP state

    For M1,the metal-ligand bond length Pt—N1 of3MC state was largely stretched(0.444 nm),which was much larger than those of complex 1 and 1a[14].Coupled with the dissociation bond length,M1 showed large out of plane on the 4-phenylpyridine ligand.The intermolecular dihedral angleθ1between the carbazole and biphenyl moiety increased from 4.2°(T1)to 144.0°(3MC1),as shown in Fig.5.And the Pt—N1bond increased by 0.151 nm from TS1to T1state.Coupled with the large geometry conformation,the energy barrier from T1to3MC state was 147.0 kJ·mol-1for M1.And the MECP state of M1 was 67.0 kJ·mol-1higher than that of3MC,which was similar with that of 1[14].The spin densities of TS,3MC,and MECP state for these complexes with the typical feature of the large population at Pt atoms.Thus,the nonradiative deactivation pathway can be assigned to T1(MLCT/π→π*)→ TS(d-d)→3MC(d-d)→ MECP(d-d).Clearly,the introduction of diphenylamine moiety at R1position plays small effect on tuning the non-radiative decay process.

    For M2,because the large steric hindrance limited torsion of biphenyl moiety,the Pt—N1 bond length of T1-2(MLCT/d-d)state was 0.398 nm,which was shortenedca.0.05 nm relative to3MC1(d-d)state of M1.Therefore,the conjugation interaction between the metal center and ligand were still strong,and thus T1-2state still belonged to3MLCT character.The process of T1(MLCT/π→π*)→ TS1(d-d)→ T1-2(MLCT/d-d)needed to overcome a large energy barrier of 143.6 kJ·mol-1.Next,starting from T1-2state,the Pt—N2 bond was broken as well as the dihedralθ2between pyridine and carbazole rotated from T1-2to3MC1.The TS2connecting both T1-2and3MC1were optimized.The metal-ligand bonds Pt—N1 in TS2and3MC1became larger by 0.022 and 0.026 nm than those in T1-2state of M2,respectively,while Pt—N2 of M2 in TS2and3MC1became 0.033 and 0.138 nm relative to T1-2state.The activation barrier of the reaction T1-2→TS2→3MC1of M2 was 101.7 kJ·mol-1.Besides,the MECP of M2 was 60.7 kJ·mol-1,higher than that of3MC1and thus the nonradiative deactivation channels of M2 became much difficult.

    Similar with M2,the nonradiative deactivation channels of M3 followed two steps:one was T1(MLCT/π→π*)→ TS1(d-d)→ T1-2(MLCT/d-d)with 144.9 kJ·mol-1energy barrier;the other one was T1-2(MLCT/d-d)→ TS2(d-d)→3MC1(d-d)with 102.2 kJ·mol-1.For the first step,the Pt—N1 bond length of T1state for M3 was elongated and the intermolecular dihedral angleθ1was rotated.T1-2Thus,T1distortion opened up the first deactivation channel,which appeared for state of M3.T1-2state was connected to3MC1state via a TS2state.The MECP of M3 was found in 59.5 kJ·mol-1above3MC1minimum.Furthermore,the energy gap between T1and MECP of M2 and M3 wereca.206.7 kJ·mol-1,which were much higher than that of M1(192.0 kJ·mol-1).Thus,the high energy of MECP state of M2 and M3 makes its T1state more stable;a deactivation pathway via the MECP state could be difficult.Moreover,the introduction of phenylamine moiety at R2position could result in difficult nonradiative decay and possible increase of the quantum efficiency.

    3 Conclusions

    A detailed theoretical study on Pt(Ⅱ)cyclometalated complexes with diphenylamine group were carried out by DFT and TDDFT methods.The absorption spectra and emission spectra of these complexes are significantly affected by the diphenylamine substituents and their positions.The potential energy profiles for the nonradiative decay from T1of studied complexes were explored to reveal the effect of nonradiative decay on phosphorescence.The calculated results show that the deactivation process is via MECP state.M2 and M3 have much higher energy of MECP state and larger energy barrier through the process of T1(MLCT/π→π*)→ TS1(d-d)→ T1-2(MLCT/d-d)→ TS2(d-d)→3MC1(d-d)than that of M1.Thus,a deactivation pathway of M2 and M3 via the MECP state could be diffi-cult.So,the introduction of phenylamine moiety at R2position could result in difficult nonradiative decay and possible increase of the quantum efficiency,which sheds light on a better understanding of the excitedstate behavior of this type of Pt emitters.

    Acknowledgments:This work is financially supported by the Fundamental Research Funds for the Central Universities(Grant No.2017XKQY065).We are grateful to the High Performance Computing Center of China University of Mining and Technology for the award of CPU hours to accomplish this work.

    猜你喜歡
    磷光中國礦業(yè)大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    SiO2包覆對SrAl2O4:Eu2+,Dy3+及其復(fù)合涂層發(fā)光性能影響*
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    基于Mn摻雜ZnS量子點(diǎn)磷光內(nèi)濾效應(yīng)檢測β—葡萄糖醛酸酶
    基于Mn摻雜ZnS量子點(diǎn)的室溫磷光傳感應(yīng)用的研究進(jìn)展
    《化工學(xué)報(bào)》贊助單位
    高校學(xué)生評教的問題與對策——以中國礦業(yè)大學(xué)為例
    中國礦業(yè)大學(xué)教育培訓(xùn)工作簡介
    LED 磷光噴印
    一个人免费在线观看的高清视频| 亚洲第一电影网av| 国内精品久久久久精免费| 免费一级毛片在线播放高清视频| 又黄又爽又免费观看的视频| 伊人久久大香线蕉亚洲五| 国产又色又爽无遮挡免费看| 19禁男女啪啪无遮挡网站| 成在线人永久免费视频| 国产又色又爽无遮挡免费看| 国产三级黄色录像| 又大又爽又粗| 国产成人av教育| 夜夜夜夜夜久久久久| 色精品久久人妻99蜜桃| 精品久久久久久久人妻蜜臀av| bbb黄色大片| 免费观看人在逋| 久久久精品欧美日韩精品| 日韩欧美三级三区| 日韩 欧美 亚洲 中文字幕| 色尼玛亚洲综合影院| 日韩av在线大香蕉| 欧美性猛交╳xxx乱大交人| 国产高清激情床上av| 精品高清国产在线一区| 九色国产91popny在线| 又爽又黄无遮挡网站| 无人区码免费观看不卡| bbb黄色大片| 久久性视频一级片| 久9热在线精品视频| 1024视频免费在线观看| 精品久久久久久久末码| 欧美成人一区二区免费高清观看 | 99国产精品99久久久久| 国产探花在线观看一区二区| 免费一级毛片在线播放高清视频| 亚洲精品国产一区二区精华液| 亚洲片人在线观看| 搡老岳熟女国产| 午夜精品一区二区三区免费看| 色播亚洲综合网| 天天躁夜夜躁狠狠躁躁| 欧美极品一区二区三区四区| 久久精品国产亚洲av高清一级| 丰满人妻一区二区三区视频av | 动漫黄色视频在线观看| av福利片在线观看| 亚洲国产精品合色在线| 国产精品亚洲美女久久久| 91在线观看av| 麻豆久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 他把我摸到了高潮在线观看| 啪啪无遮挡十八禁网站| 欧美色欧美亚洲另类二区| 欧美国产日韩亚洲一区| 国产亚洲精品av在线| 久久精品91蜜桃| 巨乳人妻的诱惑在线观看| 国产午夜精品久久久久久| 19禁男女啪啪无遮挡网站| 亚洲精品久久国产高清桃花| 午夜成年电影在线免费观看| 国内精品一区二区在线观看| 免费看a级黄色片| 国产av不卡久久| 国产精品久久视频播放| 国产v大片淫在线免费观看| 淫妇啪啪啪对白视频| 国产精品一区二区三区四区免费观看 | 亚洲午夜理论影院| 久久精品人妻少妇| 日本 av在线| 欧美性猛交╳xxx乱大交人| 国产欧美日韩一区二区精品| 久久午夜综合久久蜜桃| 色老头精品视频在线观看| 99久久久亚洲精品蜜臀av| 一a级毛片在线观看| 国产一区二区三区在线臀色熟女| 久久国产乱子伦精品免费另类| 在线视频色国产色| 精品久久久久久,| 成人三级做爰电影| 在线观看一区二区三区| 国内精品一区二区在线观看| 777久久人妻少妇嫩草av网站| 小说图片视频综合网站| 一边摸一边做爽爽视频免费| 成人特级黄色片久久久久久久| 不卡一级毛片| 日韩精品青青久久久久久| 激情在线观看视频在线高清| www日本在线高清视频| 欧美不卡视频在线免费观看 | 香蕉久久夜色| 日韩中文字幕欧美一区二区| 91老司机精品| av片东京热男人的天堂| 99国产精品一区二区蜜桃av| 性色av乱码一区二区三区2| 亚洲欧美日韩高清在线视频| 国产高清有码在线观看视频 | 欧美日韩国产亚洲二区| 亚洲第一欧美日韩一区二区三区| 99在线人妻在线中文字幕| 在线观看www视频免费| 亚洲av片天天在线观看| 色综合欧美亚洲国产小说| 欧美黑人巨大hd| 久久这里只有精品中国| 丰满的人妻完整版| 天堂√8在线中文| 天堂√8在线中文| 视频区欧美日本亚洲| 午夜福利免费观看在线| 亚洲一码二码三码区别大吗| 日韩高清综合在线| 最近最新中文字幕大全电影3| 国产精品一区二区精品视频观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品亚洲av一区麻豆| 久久国产精品人妻蜜桃| 亚洲国产高清在线一区二区三| 一a级毛片在线观看| 在线观看午夜福利视频| 成人精品一区二区免费| 在线观看一区二区三区| av福利片在线| 欧美精品啪啪一区二区三区| 岛国视频午夜一区免费看| 免费在线观看黄色视频的| 搡老熟女国产l中国老女人| 18禁黄网站禁片免费观看直播| 母亲3免费完整高清在线观看| 一本精品99久久精品77| 亚洲真实伦在线观看| 一夜夜www| 日本三级黄在线观看| 白带黄色成豆腐渣| 丁香欧美五月| 啪啪无遮挡十八禁网站| 亚洲精品国产一区二区精华液| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影视91久久| 国产午夜精品久久久久久| 国产av又大| 伦理电影免费视频| 老司机在亚洲福利影院| 精品电影一区二区在线| 一个人免费在线观看的高清视频| 夜夜夜夜夜久久久久| 久久精品国产综合久久久| 亚洲av成人不卡在线观看播放网| 国产欧美日韩一区二区三| 亚洲av熟女| 99久久综合精品五月天人人| 久久久久国产精品人妻aⅴ院| 99re在线观看精品视频| 欧美成人一区二区免费高清观看 | 色综合婷婷激情| 久久精品人妻少妇| 午夜亚洲福利在线播放| 欧美中文综合在线视频| 亚洲一区中文字幕在线| 18禁国产床啪视频网站| 后天国语完整版免费观看| 中文字幕久久专区| 悠悠久久av| 午夜福利欧美成人| 麻豆av在线久日| 亚洲天堂国产精品一区在线| 午夜两性在线视频| 国产三级黄色录像| 亚洲一区高清亚洲精品| 亚洲欧美日韩东京热| 在线视频色国产色| 岛国在线免费视频观看| 精品久久久久久成人av| 精品国产超薄肉色丝袜足j| 国产高清视频在线观看网站| 丝袜人妻中文字幕| 欧美最黄视频在线播放免费| 亚洲精品在线观看二区| 日本免费a在线| 免费高清视频大片| 亚洲av美国av| 国产野战对白在线观看| 亚洲七黄色美女视频| 日韩三级视频一区二区三区| 国产午夜精品久久久久久| 舔av片在线| 成人午夜高清在线视频| 一本久久中文字幕| 两人在一起打扑克的视频| www.熟女人妻精品国产| 在线国产一区二区在线| 国产精品一区二区三区四区免费观看 | 国产精品电影一区二区三区| 午夜免费成人在线视频| 大型av网站在线播放| 亚洲欧洲精品一区二区精品久久久| 久久久久国产精品人妻aⅴ院| 草草在线视频免费看| 久久天躁狠狠躁夜夜2o2o| 免费在线观看成人毛片| 亚洲成a人片在线一区二区| 在线十欧美十亚洲十日本专区| 久热爱精品视频在线9| 成人永久免费在线观看视频| 九色国产91popny在线| 久久人妻av系列| 精品久久久久久久人妻蜜臀av| 精品人妻1区二区| 亚洲男人天堂网一区| 禁无遮挡网站| 人人妻人人看人人澡| 在线视频色国产色| 午夜免费激情av| 窝窝影院91人妻| 亚洲精品一区av在线观看| 亚洲aⅴ乱码一区二区在线播放 | 无限看片的www在线观看| 午夜福利欧美成人| 免费搜索国产男女视频| 一级毛片女人18水好多| 精品久久久久久,| 啪啪无遮挡十八禁网站| 人妻丰满熟妇av一区二区三区| 国内少妇人妻偷人精品xxx网站 | 免费在线观看亚洲国产| 亚洲九九香蕉| 午夜久久久久精精品| 日韩欧美国产一区二区入口| 香蕉国产在线看| 又黄又爽又免费观看的视频| 久久中文字幕一级| 亚洲 欧美一区二区三区| 国内揄拍国产精品人妻在线| 性欧美人与动物交配| 黄色 视频免费看| 欧美在线一区亚洲| 搞女人的毛片| 淫秽高清视频在线观看| 午夜精品一区二区三区免费看| www日本黄色视频网| 成人av在线播放网站| 国产乱人伦免费视频| 久久久久久大精品| 成人欧美大片| www.999成人在线观看| 亚洲第一欧美日韩一区二区三区| 午夜免费成人在线视频| 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区mp4| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 国产一区二区激情短视频| 亚洲第一电影网av| 午夜a级毛片| 非洲黑人性xxxx精品又粗又长| 麻豆成人av在线观看| 制服丝袜大香蕉在线| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 少妇人妻一区二区三区视频| 亚洲人成伊人成综合网2020| 亚洲全国av大片| 日本一二三区视频观看| 欧美精品亚洲一区二区| 大型av网站在线播放| 国产亚洲精品综合一区在线观看 | 看片在线看免费视频| 少妇被粗大的猛进出69影院| 亚洲精品国产一区二区精华液| 99国产极品粉嫩在线观看| 欧美乱妇无乱码| 日韩精品中文字幕看吧| 国产亚洲精品久久久久5区| 日韩大尺度精品在线看网址| 88av欧美| 亚洲欧洲精品一区二区精品久久久| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| ponron亚洲| 国产精华一区二区三区| 午夜两性在线视频| www.www免费av| 曰老女人黄片| 岛国在线免费视频观看| www日本在线高清视频| 国产精品爽爽va在线观看网站| 国产成人av激情在线播放| 亚洲美女视频黄频| 成年女人毛片免费观看观看9| 国产精品综合久久久久久久免费| 麻豆国产av国片精品| 变态另类成人亚洲欧美熟女| cao死你这个sao货| 国产精品国产高清国产av| 天天添夜夜摸| 亚洲中文日韩欧美视频| 国产亚洲欧美在线一区二区| 国产精品电影一区二区三区| 99精品欧美一区二区三区四区| 国产精品永久免费网站| 国产不卡一卡二| 夜夜夜夜夜久久久久| 亚洲全国av大片| 真人一进一出gif抽搐免费| 小说图片视频综合网站| 99riav亚洲国产免费| 免费无遮挡裸体视频| 黄频高清免费视频| 超碰成人久久| 制服丝袜大香蕉在线| 99久久99久久久精品蜜桃| 哪里可以看免费的av片| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 精品久久久久久成人av| 久久精品aⅴ一区二区三区四区| 性欧美人与动物交配| 婷婷精品国产亚洲av在线| 久久久国产成人免费| 欧美三级亚洲精品| 欧美成狂野欧美在线观看| 国产97色在线日韩免费| av福利片在线| 亚洲熟妇中文字幕五十中出| cao死你这个sao货| 久久久久精品国产欧美久久久| 妹子高潮喷水视频| 国产午夜精品久久久久久| 亚洲一区高清亚洲精品| av免费在线观看网站| 十八禁网站免费在线| e午夜精品久久久久久久| 国产乱人伦免费视频| 国产午夜精品久久久久久| 人妻久久中文字幕网| 三级国产精品欧美在线观看 | 亚洲av日韩精品久久久久久密| 精品午夜福利视频在线观看一区| 亚洲精品中文字幕在线视频| 国产精品av久久久久免费| 中文在线观看免费www的网站 | aaaaa片日本免费| 久久久久久久精品吃奶| 中文字幕高清在线视频| 90打野战视频偷拍视频| 91九色精品人成在线观看| 久久久久久大精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲av电影在线进入| 日韩欧美在线乱码| 免费看美女性在线毛片视频| 老司机深夜福利视频在线观看| 91av网站免费观看| 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 全区人妻精品视频| 国产亚洲av嫩草精品影院| 小说图片视频综合网站| 给我免费播放毛片高清在线观看| 国产一级毛片七仙女欲春2| 中亚洲国语对白在线视频| 国产精品99久久99久久久不卡| 夜夜爽天天搞| 三级男女做爰猛烈吃奶摸视频| 夜夜爽天天搞| 全区人妻精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 大型黄色视频在线免费观看| 国产区一区二久久| av国产免费在线观看| x7x7x7水蜜桃| 欧美成人午夜精品| 人妻夜夜爽99麻豆av| 在线观看www视频免费| 长腿黑丝高跟| 色精品久久人妻99蜜桃| 亚洲av电影不卡..在线观看| 亚洲成av人片在线播放无| 啦啦啦免费观看视频1| 制服丝袜大香蕉在线| 免费观看精品视频网站| 一区福利在线观看| 午夜激情福利司机影院| 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美在线一区二区| 亚洲国产精品久久男人天堂| 国产爱豆传媒在线观看 | 国内精品久久久久精免费| 男人舔女人下体高潮全视频| 亚洲人与动物交配视频| 欧美日韩精品网址| 精品久久久久久久毛片微露脸| 在线播放国产精品三级| 成人三级黄色视频| 国产麻豆成人av免费视频| 夜夜看夜夜爽夜夜摸| 亚洲成av人片免费观看| 日韩欧美 国产精品| 美女 人体艺术 gogo| 国产亚洲精品第一综合不卡| 国产v大片淫在线免费观看| avwww免费| 国产成人啪精品午夜网站| 久久99热这里只有精品18| 国产又黄又爽又无遮挡在线| 久久香蕉国产精品| 国产伦一二天堂av在线观看| 大型av网站在线播放| 在线观看66精品国产| 成人手机av| 人妻夜夜爽99麻豆av| 国产成人av教育| 亚洲乱码一区二区免费版| 少妇的丰满在线观看| 久久亚洲精品不卡| 91大片在线观看| 老汉色av国产亚洲站长工具| 久久久久久久久中文| 日本免费a在线| 白带黄色成豆腐渣| 成年人黄色毛片网站| 成人av一区二区三区在线看| 国产区一区二久久| 久久精品国产亚洲av香蕉五月| 两个人看的免费小视频| 国产精品九九99| 黑人操中国人逼视频| 黄频高清免费视频| 国产精品99久久99久久久不卡| 嫁个100分男人电影在线观看| 欧美日韩黄片免| 日本一区二区免费在线视频| 国产在线观看jvid| 亚洲国产精品久久男人天堂| 长腿黑丝高跟| 国产伦一二天堂av在线观看| 少妇熟女aⅴ在线视频| 久久中文字幕一级| 亚洲av五月六月丁香网| 久久九九热精品免费| 一区二区三区高清视频在线| e午夜精品久久久久久久| 男人舔女人下体高潮全视频| 日本一本二区三区精品| 精品久久久久久久毛片微露脸| 特级一级黄色大片| 99riav亚洲国产免费| 午夜视频精品福利| 少妇的丰满在线观看| 少妇被粗大的猛进出69影院| 成人欧美大片| 亚洲精品中文字幕一二三四区| 麻豆成人av在线观看| 午夜精品久久久久久毛片777| 人人妻人人澡欧美一区二区| 99热这里只有精品一区 | av有码第一页| 欧美精品啪啪一区二区三区| 国产精华一区二区三区| 婷婷精品国产亚洲av在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲男人天堂网一区| 看黄色毛片网站| 亚洲精品中文字幕一二三四区| 精品少妇一区二区三区视频日本电影| 国产成人aa在线观看| 国产在线观看jvid| 国产又黄又爽又无遮挡在线| or卡值多少钱| 激情在线观看视频在线高清| 久9热在线精品视频| 久久人人精品亚洲av| 色尼玛亚洲综合影院| 变态另类丝袜制服| 亚洲自偷自拍图片 自拍| 又大又爽又粗| 波多野结衣高清无吗| 一卡2卡三卡四卡精品乱码亚洲| 深夜精品福利| 欧美乱色亚洲激情| 一边摸一边抽搐一进一小说| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产一区二区精华液| 亚洲国产欧洲综合997久久,| 熟妇人妻久久中文字幕3abv| 俺也久久电影网| 成人国产一区最新在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产欧美日韩精品亚洲av| 亚洲专区字幕在线| 久久性视频一级片| 久久人人精品亚洲av| 亚洲欧洲精品一区二区精品久久久| 久久香蕉国产精品| 亚洲精品国产精品久久久不卡| 国产熟女xx| 免费看美女性在线毛片视频| 国产伦在线观看视频一区| 亚洲性夜色夜夜综合| av在线天堂中文字幕| 欧美久久黑人一区二区| 香蕉av资源在线| 国产人伦9x9x在线观看| 国产真人三级小视频在线观看| 久久久久久亚洲精品国产蜜桃av| 天天躁夜夜躁狠狠躁躁| av福利片在线| www.自偷自拍.com| 黄色片一级片一级黄色片| 亚洲全国av大片| 99热6这里只有精品| 日本五十路高清| 桃色一区二区三区在线观看| 色在线成人网| 人妻久久中文字幕网| 日韩精品免费视频一区二区三区| www.精华液| 91麻豆精品激情在线观看国产| xxx96com| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲av成人一区二区三| 亚洲人成77777在线视频| 91在线观看av| 久久人妻福利社区极品人妻图片| 一级黄色大片毛片| 国产视频内射| 88av欧美| 少妇熟女aⅴ在线视频| 给我免费播放毛片高清在线观看| 国产在线观看jvid| 99精品在免费线老司机午夜| 亚洲黑人精品在线| www.自偷自拍.com| 亚洲天堂国产精品一区在线| 久久人妻福利社区极品人妻图片| 妹子高潮喷水视频| 欧美成人免费av一区二区三区| 九色成人免费人妻av| 欧美精品啪啪一区二区三区| 日韩有码中文字幕| 久久这里只有精品中国| 9191精品国产免费久久| 99riav亚洲国产免费| 欧美又色又爽又黄视频| 伦理电影免费视频| 香蕉丝袜av| 身体一侧抽搐| 99热这里只有精品一区 | 91麻豆精品激情在线观看国产| 91九色精品人成在线观看| 禁无遮挡网站| 国产真人三级小视频在线观看| 亚洲精品av麻豆狂野| 亚洲精华国产精华精| av中文乱码字幕在线| 国产在线精品亚洲第一网站| 岛国在线免费视频观看| 久久精品人妻少妇| 久久午夜综合久久蜜桃| 黄频高清免费视频| 国产精品综合久久久久久久免费| 99热这里只有精品一区 | 国产精品 国内视频| 午夜福利在线在线| 精品久久久久久久久久免费视频| 国产成人精品久久二区二区91| 老熟妇仑乱视频hdxx| 在线播放国产精品三级| 我要搜黄色片| 一进一出抽搐gif免费好疼| 熟女少妇亚洲综合色aaa.| 老汉色av国产亚洲站长工具| 国产精品99久久99久久久不卡| 在线看三级毛片| 五月玫瑰六月丁香| 亚洲av五月六月丁香网| 久久久久性生活片| 免费av毛片视频| 欧美绝顶高潮抽搐喷水| 在线观看免费午夜福利视频| 久久天堂一区二区三区四区| 99国产精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久亚洲精品不卡| 啦啦啦观看免费观看视频高清| 亚洲熟妇中文字幕五十中出| 国产99久久九九免费精品| av在线播放免费不卡| 久久中文字幕一级| 欧美乱码精品一区二区三区| 亚洲人成77777在线视频| 亚洲午夜理论影院| 18禁美女被吸乳视频| 特级一级黄色大片| 免费高清视频大片| 国产精品一区二区免费欧美| 天堂动漫精品| 搞女人的毛片| 十八禁人妻一区二区| 久久精品91蜜桃| 精品无人区乱码1区二区| 在线视频色国产色| 国产在线精品亚洲第一网站| 啪啪无遮挡十八禁网站|