• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag/Ag2MoO4/Bi2MoO6復(fù)合光催化劑的制備及其光催化性能

    2021-03-12 09:44:20馬帥帥黃承娟宗玉清顧建東葉招蓮薛金娟
    無機(jī)化學(xué)學(xué)報 2021年3期
    關(guān)鍵詞:工程學(xué)院光催化劑常州

    馬帥帥 黃承娟 宗玉清 顧建東 葉招蓮 薛金娟*,

    (1江蘇理工學(xué)院化學(xué)與環(huán)境工程學(xué)院,常州 213001)

    (2常州大學(xué)環(huán)境與安全工程學(xué)院,常州 213164)

    0 Introduction

    Recently,contamination of pharmaceutical compounds especially the antibiotics in wastewater and its harm to living ecosystem have attracted wide attention all over the world[1].Tetracycline(TC)has been widely used to prevent human and animal infections because of its antibacterial,bactericidal effect and low price[2-3].However,drug abuse seriously endangers the ecological environment,as TC could not be completely decomposed in the living,and their residues are detected in surface water,groundwater,and even treated drinking water,which causes the potential pressure on the human health and the safety of entire ecosystem[4-5].In order to effectively remove and degrade TC,various technologies have been developed,such as physical absorption, electrolysis, photocatalysis, microbial decomposition,electrochemical oxidation and membrane separation[6-8].Semiconductor photocatalysis,as an advanced oxidation technology,has become the research hotspot of TC residue treatment in recent years[9].From the perspective of solar energy utilization,visible light accounts for 44% of the total solar spectrum.Therefore,many people devote themselves to the development of superior visible-light driven photocatalysts.

    As a representative member of the Aurivillius family,Bi2MO6with a layered structure containing O2-sandwiched between layeredunits and perovskite-like slabs of MoO42-,is considered to be a promising photocatalyst due to the photostability and environmentally friendly features[10-11].However,the rapid recombination rate of photoinduced charges and inadequate utilization of visible light are still serious problems when using pristine Bi2MoO6as a photocatalyst[12-13].Tremendous efforts have thus been made to solve these problems,including the fabrication of heterojunction,doping metal and non-metal ions,and surface modification as well[14-17].

    Silver-based semiconductors,such ashave been proven to have excellent photocatalytic properties due to the surface plasmon resonance(SPR)effects of elemental silver and narrow band gap.Ag2MoO4,as a new silver-based semiconductor photocatalyst,has attracted extensive research interest in recent years due to its unique physicochemical properties and plasticity[24-25].The surface of Ag2MoO4tends to produce metal Ag when exposed to visible light like other Agbased semiconductors.However,due to the high band gap excitation of Ag2MoO4,simple binary Ag2MoO4based composite materials cannot meet the needs of high-efficiency photocatalysis.Therefore,it is reasonable to construct a ternary Ag/Ag2MoO4/Bi2MoO6heterojunction photocatalyst which has not been researched before.

    Herein,we have firstly synthesized the ternary Ag/Ag2MoO4/Bi2MoO6heterojunction photocatalystvia hydrothermal,chemical deposition andin-situphotoreduction method.The as-prepared Ag/Ag2MoO4/Bi2MoO6ternary composite exhibited remarkably improved photocatalytic activities in the degradation of representative antibiotic TC in comparison with pure Ag2MoO4and Bi2MoO6under visible light irradiation.Moreover,the stability of ternary Ag/Ag2MoO4/Bi2MoO6photocatalyst and the mechanism of improving photocatalytic efficiency under visible light were proposed.

    1 Experimental

    1.1 Preparation of the samples

    Pure Bi2MoO6was prepared via a simple hydrothermal process according to our previous work[26].Ag2MoO4/Bi2MoO6was prepared by chemical deposition.Typically,0.152 5 g Bi2MoO6(0.25 mmol)was ultrasonically dispersed in 50 mL of ultrapure water,and then a certain amount(2,4,6,8 mL)of AgNO3solution(0.05 mol·L-1)was dropped into the suspension.The mixture was stirred at a rate of 1 000 r·min-1for 30 min to make Ag+completely adsorbed on the Bi2MoO6surface.Then a certain amount(1,2,3,4 mL)of Na2MoO4solution(0.05 mol·L-1)was added dropwise,and stirred vigorously for 1 h under dark conditions to obtain Ag2MoO4/Bi2MoO6(AMO/BMO).Subsequently,AMO/BMO sample was irradiated under a 500 W xenon lamp equipped with an ultraviolet filter(>420 nm)for 10 min to change part of the Ag+into Ag to obtain Ag/AMO/BMO product.The products were collected,washed several times with deionized water and alcohol,and dried overnight at 65℃in vacuum.The theoretical mass fractions of AMO in the series of samples obtained were 12.3%,24.6%,37.0% and 49.2%,respectively,and the corresponding products were named as Ag/AMO/BMO-x(x=1,2,3,4,respectively).For comparison,pure Ag2MoO4(AMO),Ag/Ag2MoO4(Ag/AMO)and Ag/Bi2MoO6(Ag/BMO)were prepared by adopting the similar method.

    1.2 Characterization of the samples

    X-ray diffraction(XRD)data were obtained on an X-ray diffractometer(SmartLab,Rigaku)operated at 40 kV and 30 mA with CuKαX-ray radiation source,a nickel filter(λ=0.154 nm),and 2θrange of 20°~70°.The morphologies and microstructures of the samples were investigated by field emission scanning electron microscopy(FE-SEM,SUPRA55,SAPPHIRE,Zeiss)at the acceleration voltage of 5 kV.UV-Vis spectrophotometer(UV-3600,Shimadzu)equipped with an integrating sphere was used to investigate the UV-visible diffuse-reflectance spectra(UV-Vis DRS).The X-ray photoelectron spectra(XPS)were carried out on Thermo Scientific Escalab 250Xi,equipped with an AlKαmonochromatic X-ray source(hν=1 486.7 eV)with a line width of 0.20 eV in an analysis chamber at a bass pressure of less than 4.3×10-8Pa.The electrochemical measurement was performed with an electrochemical workstation (CHI660B, Chenhua Instruments,Shanghai,China).

    1.3 Photocatalytic activity

    The photocatalytic activities of the samples were evaluated by the degradation of TC aqueous solution under irradiation of a 500 W xenon lamp with a 420 nm cutoff filter.Typically,10 mg of as-prepared photocatalyst was suspended in a 50 mL of TC solution(10 mg·L-1)and stirred magnetically for 60 min in the dark to ensure the establishment of the adsorption/desorption equilibrium between the catalyst and the simulated pollutant.In the course of the experiment,1 mL of the sample was taken out every 5 min and PTFE syringe filter(0.22 μm)was used to remove the particles.Then the photodegradation rate(DR)of TC was tested by the high performance liquid chromatography(HPLC,Shimadzu LC-20A,Japan).

    2 Results and discussion

    2.1 Characterization of the samples

    The XRD analysis was conducted to determine the crystalline structures and the corresponding patterns of Ag/AMO/BMO-xsamples,and the results are demonstrated in Fig.1.The intensive diffraction angels 2θat 23.5°,28.3°,32.6°,33.1°,36.1°,39.7°,46.7°,47.2°,55.6°,56.3°and 58.5°can be assigned to(111),(131),(002),(060),(151),(042),(202),(062),(133),(191)and (262)crystallographic planes of orthorhombic Bi2MoO6(PDF No.72-1524).Meanwhile,other peaks at 2θ=27.1°,31.8°,33.3°,38.7°,47.8°,50.9°,55.8°,65.6°and 66.5°are assigned to the(220),(311),(222),(400),(422),(511),(440),(533)and(622)planes of cubic Ag2MoO4(PDF No.08-0473),respectively.With the increase of AMO content,the intensity of the cubic AMO peak gradually increased.Cubic/hexagonal Ag0peaks were difficult to find,which may be due to the low metallic Ag content and low crystallinity.

    Fig.1 XRD patterns of Ag/AMO/BMO-x(x=1,2,3,4)samples and standard XRD patterns of Bi2 MoO6(PDF No.72-1524)and Ag2 MoO4(PDF No.08-0473)

    The elemental compositions and the surface chemical states of AMO/BMO and Ag/AMO/BMO-2 were obtained by XPS spectra.As depicted in Fig.2a,the XPS survey spectra of AMO/BMO and Ag/AMO/BMO-2 illustrated that the prepared samples were composed of Bi,Mo,O and Ag elements.In Fig.2b~2d,no obvious difference was found about the high-resolution XPS spectra of Bi4f,Mo3dand O1sover AMO/BMO and Ag/AMO/BMO-2 samples.The Bi4fspectrum in Fig.2b for Ag/AMO/BMO-2 composite displayed two characteristic peaks at 159.4 and 164.8 eV attributed to Bi4f7/2and Bi4f5/2,revealing that Bi exist as the form of Bi3+[27].In Fig.2c,the peaks of Mo3d5/2and Mo3d3/2at 232.8 and 235.8 eV in the Mo3dspectrum can be attributed to the oxidation states of Mo6+[28].Generally,the O1speaks in Fig.2d can be divided into two different peaks at 530.3 and 531.2 eV,which should be attributed to the presence of Mo—O and surface—OH groups,respectively[29].The Ag3dspectrum shown in Fig.2e had two distinct peaks at 374.3 and 368.3 eV,which are connected to the Ag3d3/2and Ag3d5/2orbitals.The curves could be further divided into four peaks.The strong peaks of 368.3 and 374.3 eV can be attributed to Ag+,which proves that Ag+is the dominant species of Ag[30].As for Ag/AMO/BMO-2,the binding energies at 369.4 and 375.2 eV can be indexed to Ag NPs(nanopartides)[31],confirming the existence of a small amount of Ag0in Ag/AMO/BMO-2.

    Fig.2 XPS survey spectra(a),high resolution XPS spectra of Bi4f(b),Mo3d(c),O1s(d)and Ag3d(e)core level electrons of AMO/BMO and Ag/AMO/BMO-2 samples

    The FE-SEM images of AMO,Ag/AMO,BMO,Ag/AMO/BMO-2 and AMO/BMO are depicted in Fig.3.Pure AMO had an irregular cashew shape with a particle size of 2~3 μm and a smooth surface(Fig.3a).After being irradiated with visible light,some particles believed to be silver were deposited on the surface of AMO(Fig.3b).As shown in Fig.3c,BMO sample showed nanoplate-like morphology with side length of 100~200 nm.As indicated in Fig.3d and 3e,Ag/AMO/BMO-2 and AMO/BMO processed similar morphology.It can be seen that BMO nanoplates and irregular block AMO coexisted in the composite material,and most of them had good contact,which proves that the heterojunction photocatalyst has been successfully synthesized.Furthermore,we could also observe that the surface of AMO became rough after forming a heterojunction with BMO,thus increasing the contact area between each other.

    Fig.3 FE-SEM images of AMO(a),Ag/AMO(b),BMO(c),Ag/AMO/BMO-2(d)and AMO/BMO(e)

    The optical properties of AMO,BMO,AMO/BMO and Ag/AMO/BMO-2 were investigated by UV-Vis DRS and the results are shown in Fig.4.Pure AMO only has obvious absorption in the ultraviolet region,and the absorption edge was around 380 nm(band gap:3.26 eV).It was observed that pure BMO had an adsorption edge at about 460 nm,which corresponds to the reported optical band gap of about 2.64 eV.The formation of the heterojunction between AMO and BMO broadened and increased the visible light absorption,and the wavelength thresholds of AMO/BMO sample was estimated to be about 475 nm,corresponding to the band gaps of 2.56 eV.Whereas compared with the absorptionspectrum of AMOandBMO,Ag/AMO/BMO-2 sample displayed a more intense absorption ranging from 300 to 700 nm and exhibited a broad absorption peak at around 530 nm which can be attributed to the SPR effect of Ag nanoparticles[32].Due to the expansion of the light absorption range and light intensity of Ag/AMO/BMO-2 photocatalyst,it is expected to achieve more effective utilization of the solar spectrum and show enhanced photocatalytic activity.

    Fig.4 UV-Vis absorption spectra of AMO,BMO,AMO/BMO and Ag/AMO/BMO-2

    The edge position can be determined by the following empirical equation[33]:EVB=X-E0+0.5Eg,ECB=EVB-Eg,whereEVBis the VB edge potential andXis the absolute electronegativity of the semiconductor;E0is the energy of free electrons on the hydrogen scale(~4.5 eV)andEgis the band gap energy of the semiconductor.TheXvalues for AMO and BMO were calculated to be 5.92 and 5.50 eV,respectively.Therefore,theEVBandECBvalues of AMO were determined to be 3.05 and-0.21 eV(vs NHE),and those of BMO were calculated to be 2.32 and-0.32 eV(vs NHE),respectively.

    In order to determine the separation efficiency of the carrier,the photochemical measurements were performed.Fig.5a displays the transient photocurrent responses of AMO,BMO,AMO/BMO and Ag/AMO/BMO-2 samples in several light on-off cycles.The intensity of photocurrent for AMO and BMO was weak,indicating pure photocatalyst is faced with the headache that the quantity and migration speed of charge carriers is low.AMO/BMO composites showed a higher transient photocurrent intensity compared with pure AMO and BMO,indicating that the heterojunction of AMO/BMO composites not only boost the generation but also accelerate separation of charges carriers.Obviously,it can be found that Ag/AMO/BMO-2 significantly enhanced the photocurrent performance compared to AMO/BMO,which indicates that the introduction of Ag NPs can further reduce the electron and hole recombination rate.Moreover,the charge migration rate was evaluated according to the arc radius in the EIS(electrochemical impedance spectroscopy).Fig.5b shows the EIS Nyquist plots of AMO,BMO,AMO/BMO and Ag/AMO/BMO-2 under the identical experimental conditions.Obviously,Ag/AMO/BMO-2 showed the minimum radius of curvature,indicating its highest electron-hole pairs separation and electrons transfer efficiency,which agreed well with the results of photocurrent response.

    Fig.5 Photocurrent response curves(a)and Nyquist plots(b)of AMO,BMO,AMO/BMO and Ag/AMO/BMO-2

    2.2 Photocatalytic activity

    The performance of degradation of TC by all synthesized samples under visible light irradiation are shown in Fig.6a,wherec0andcare the initial concentration of TC and the concentration remaining in the solution after the irradiation time(t),respectively.As shown in Fig.6a,TC was rarely degraded without photocatalysts in the control test,indicating that the self-photolysis of TC could be ignored.In Fig.6a,the degradation rates of TC over Ag/AMO/BMO-x(x=1,2,3,4)samples were higher than that of AMO,BMO,Ag/AMO,Ag/BMO and AMO/BMO,respectively.The photocatalytic activity of Ag/AMO/BMO composite first increased and then decreased with the increase of Ag/AMO content.Ag/AMO/BMO-2 showed the best photocatalytic performance,and the photodegradation rate of TC reached almost 100% after 20 min of irradiation.In addition,if the initial TC concentration is within the millimolar concentration range,photocatalytic degradation of organic pollutants generally follows pseudofirst-order kinetics and the kinetic model can be expressed by equation ln(c0′/c)=kt,wherec0′is the initial TC concentration at the beginning of photocatalitic degradation,andkis the kinetic rate constant[34-35].As depicted in Fig.6b,Ag/AMO/BMO-2 photocatalyst exhibited the highest rate constant(0.168 2 min-1)among all of the samples for the degradation of TC,which was 7.2 and 17.7 times higher than those of pure BMO(0.022 6 min-1)and Ag/AMO(0.009 2 min-1),respectively.The enhanced activity of Ag/AMO/BMO-2 can be attributed to the formation of heterojunctions that can effectively separate photocarriers,and the introduction of Ag NPs in the composite material also helps to expand the optical response range and realize more effective electron transfer.Furthermore,Table 1 list the photocatalytic performance of the reported photocatalysts compared to the as-prepared samples.As expected,Ag/AMO/BMO-2 photocatalyst toward TC degradation possessed distinct advantage over the reported Bi2MoO6-based catalysts.Although a direct comparison is difficult owing to the differences in photocatalytic reaction parameters,Ag/AMO/BMO-2 photocatalyst indeed displayed excellent visible-light-driven photocatalytic activity for TC degradation.Consequently,the results further proved that Ag/AMO/BMO-2 sample could be acted as a promising photocatalyst to remove the antibiotic pollutants in the aqueous solution.

    Fig.6 Visible light photocatalytic activities(a)and pseudo-first-order kinetics linear fitting(b)for TC degradation over the as-prepared samples

    Photocatalytic stability and recyclability are the main parameters for the practical application of photocatalyst.Fig.7 shows the photocatalytic TC degradation performance of Ag/AMO/BMO-2 sample under visible light for five runs.It can be seen that after five cycles,the removal rate of TC remained at 89.8%,indicating that Ag/AMO/BMO-2 photocatalyst possesses good stability and can be used for repeated treatment of TC.The photodecomposition of Ag/AMO/BMO-2 and the formation of more Ag NPs may be the reason for the decrease of its photocatalytic activity.A small amount of Ag NPs can promote the visible light absorption and photocatalytic activity of the catalyst,while excessive Ag NPs deposited on the surface of the catalyst will block the incidence of light and reduce the photocatalytic performance[24,42].The XRD pattern of the used Ag/AMO/BMO-2 collected after the cycling runs showed small peaks at 2θ=38.1°,44.2°and 64.4°,corresponding to the(111),(200)and(220)facets of cubic Ag0(Fig.8),while the fresh Ag/AMO/BMO-2 had no obvious Ag0peaks.

    Fig.7 Cycling runs for photodegradation of TC over Ag/AMO/BMO-2

    Fig.8 XRD patterns of Ag/AMO/BMO-2 before and after five cycling runs

    In order to deeply investigate the active species involved in photocatalysis,a series of radical captured experiments were performed.In this study,EDTA-2Na(1 mmol·L-1),p-benzoquinone (1 mmol·L-1)andt-BuOH(1 mmol·L-1)were used to scavenge h+,·O-2and·OH,respectively[26].As shown in Fig.9,it is obvious that the degradation rate for TC significantly reduced after addition ofp-benzoquinone and EDTA-2Na,indicating the·O2-and h+play significant roles during the degradation process.However,little efficiency reduction with the addition oft-BuOH demonstrated that·OH might not the predominant active species.These facts confirm that h+is the main active species and·O2-plays a secondary role in the photocatalytic degradation process.

    Fig.9 Photocatalytic performance of Ag/AMO/BMO-2 in the presence of different scavengers

    On the basis of the results described above,we proposed a possible mechanism of degradation of TC over Ag/AMO/BMO-2 photocatalyst under visible light irradiation in Fig.10.From Fig.4,we know that AMO has no response to visible light due to its large energy gap,whereas BMO can be excited to produce photoelectrons(e-)and holes(h+)pairs on its surface due to the narrow energy gap.TheECBvalues of BMO was calculated to be-0.32 eV(vs NHE),which was lower than the standard redox potential of O2/·O2-(-0.33 eV)[43].However,in the above free radical trapping experiment,we confirmed that·O2-is the main active substance on Ag/AMO/BMO-2 photocatalyst,indicating that the formation of·O2-in the reaction is definite.The reason can be explained as follows:Ag NPs can absorb the visible light and generate electron-hole pairs due to SPR effect[44].With visible light irradiation,photogenerated electron-hole pairs are separated on the surface of Ag NPs.The energy of hot electrons waved around its own Fermi level and the range of the vibration is from 1.0 to 4.0 eV[45].Therefore,the excited electrons have enough energy to transfer from Ag NPs to CB of AMO and BMO.Subsequently,the electrons accumulated on the surface of AMO and BMO will be captured by absorbed O2to form·O2-,then further oxidized the organic contaminants.SinceECBof BMO was negative than that of AMO,the photogenerated electrons in BMO have a tendency to diffuse to the CB of AMO via the interface.This causes an efficient separation of photogenerated electrons and holes and the lifetime of the excited electrons and holes can be prolonged in the transfer process.On the other hand,because theEVBvalue of BMO(+2.32 eV(vs NHE))was lower than the standard redox potentials of·OH/H2O(+2.68 eV(vs NHE)),indicating that photoinduced holes on the VB of BMO cannot react with·OH/H2O to form·OH,hence h+on the VB of BMO would be consumed by directly decomposing TC.

    Fig.10 Proposed photocatalytic mechanism of Ag/AMO/BMO-2

    3 Conclusions

    In summary,the Ag/AMO/BMO composites with different Ag/AMO mass fractions were synthesized via hydrothermal,chemical deposition andin-situphotoreduction method.The as-prepared Ag/AMO/BMO-2 photocatalyst exhibited significantly enhanced photocatalytic activities toward antibiotic TC degradation and the degradation rate was nearly 7.2 and 17.7 times higherthan thatofpure BMO and Ag/AMO,respectively.The Ag SPR effect that enlarged the optical adsorption range combining with AMO to efficiently separate photogenerated charge carriers synergistically account for the enhancement of photocatalytic activity.The optimal photocatalyst showed reasonable stability during five successive runs.Part of the catalyst deactivation is due to the excessive reduction of Ag+to Ag0during exposure to visible light.The main active substances responsible for photocatalytic degradation are photoinduced holes and·O2-free radicals.

    Acknowledgements:This work was supported by the National Natural Science Foundation of China (Grants No.21808019,41772240),the Natural Science Foundation of Jiangsu Province(Grants No.BK20181048,BK20180958),the Science and Technology Bureau of Changzhou(Grant No.CJ20190074),and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No.18KJB150014).

    猜你喜歡
    工程學(xué)院光催化劑常州
    福建工程學(xué)院
    常州的早晨
    小讀者之友(2022年4期)2022-05-20 13:19:36
    福建工程學(xué)院
    常州非遺 燦爛多彩
    華人時刊(2019年19期)2020-01-06 03:23:08
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    福建工程學(xué)院
    福建工程學(xué)院
    Pr3+/TiO2光催化劑的制備及性能研究
    BiVO4光催化劑的改性及其在水處理中的應(yīng)用研究進(jìn)展
    g-C3N4/TiO2復(fù)合光催化劑的制備及其性能研究
    av.在线天堂| 肉色欧美久久久久久久蜜桃| 日本午夜av视频| 成人漫画全彩无遮挡| av女优亚洲男人天堂| 国产深夜福利视频在线观看| 亚洲在久久综合| 成人毛片a级毛片在线播放| 一级毛片 在线播放| 亚洲精品av麻豆狂野| 少妇人妻精品综合一区二区| 在线观看免费视频网站a站| 免费观看av网站的网址| 黑人高潮一二区| 国精品久久久久久国模美| 性色av一级| 80岁老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 日本猛色少妇xxxxx猛交久久| 嫩草影院入口| 极品少妇高潮喷水抽搐| 制服丝袜香蕉在线| 777米奇影视久久| 国产在视频线精品| 欧美97在线视频| 老司机影院毛片| 国产国语露脸激情在线看| 日韩成人av中文字幕在线观看| 亚洲精品成人av观看孕妇| 久久这里有精品视频免费| 高清黄色对白视频在线免费看| 亚洲精品乱久久久久久| 我要看黄色一级片免费的| 精品人妻一区二区三区麻豆| 国产免费福利视频在线观看| 九色成人免费人妻av| 国内精品宾馆在线| 免费少妇av软件| 日本-黄色视频高清免费观看| 亚洲国产精品专区欧美| 亚洲综合精品二区| 日韩电影二区| 亚洲精品亚洲一区二区| 久久综合国产亚洲精品| 97精品久久久久久久久久精品| 成人二区视频| 欧美性感艳星| 色吧在线观看| 青春草亚洲视频在线观看| 亚洲精品久久午夜乱码| 久久午夜福利片| 成年人午夜在线观看视频| 久久精品国产a三级三级三级| 久久av网站| 亚洲国产精品一区二区三区在线| freevideosex欧美| 一区二区三区精品91| 国产av码专区亚洲av| 国产精品久久久久成人av| 中文字幕av电影在线播放| 黄色怎么调成土黄色| 国产综合精华液| 丝袜美足系列| 亚洲国产精品成人久久小说| 亚洲欧美中文字幕日韩二区| 国产视频内射| 久久精品国产鲁丝片午夜精品| 亚洲三级黄色毛片| 在线播放无遮挡| 性高湖久久久久久久久免费观看| 国产男女超爽视频在线观看| 三级国产精品欧美在线观看| 少妇人妻 视频| 校园人妻丝袜中文字幕| 香蕉精品网在线| 成年人免费黄色播放视频| 免费观看a级毛片全部| 欧美性感艳星| 久久精品国产鲁丝片午夜精品| 美女脱内裤让男人舔精品视频| 一本色道久久久久久精品综合| 午夜福利影视在线免费观看| 成人午夜精彩视频在线观看| 亚洲天堂av无毛| 啦啦啦中文免费视频观看日本| 亚洲国产成人一精品久久久| 最近中文字幕2019免费版| 中国三级夫妇交换| 亚洲人与动物交配视频| 亚洲无线观看免费| 久久久久精品久久久久真实原创| 热re99久久国产66热| 国产在线一区二区三区精| 大陆偷拍与自拍| 十分钟在线观看高清视频www| 丰满少妇做爰视频| 欧美成人精品欧美一级黄| 一区二区日韩欧美中文字幕 | 日日摸夜夜添夜夜添av毛片| 各种免费的搞黄视频| 久久韩国三级中文字幕| 成人综合一区亚洲| 18在线观看网站| 亚洲av电影在线观看一区二区三区| 亚洲av综合色区一区| 国产一区二区三区综合在线观看 | 国产高清有码在线观看视频| 极品少妇高潮喷水抽搐| 91久久精品电影网| 最近中文字幕高清免费大全6| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 亚洲综合色惰| 国产成人aa在线观看| 国产精品不卡视频一区二区| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 久久婷婷青草| 五月伊人婷婷丁香| 中文乱码字字幕精品一区二区三区| 精品人妻在线不人妻| 2022亚洲国产成人精品| 国产精品久久久久久av不卡| 亚洲第一av免费看| 午夜av观看不卡| 久久国产亚洲av麻豆专区| 国产乱人偷精品视频| 天堂中文最新版在线下载| 亚州av有码| 黄色视频在线播放观看不卡| 日韩,欧美,国产一区二区三区| 精品国产一区二区久久| 精品一区二区三区视频在线| 免费大片黄手机在线观看| 搡女人真爽免费视频火全软件| 午夜福利影视在线免费观看| 少妇的逼水好多| 黄片无遮挡物在线观看| 久久久久久久精品精品| 国产高清三级在线| 黄片无遮挡物在线观看| 99久国产av精品国产电影| av视频免费观看在线观看| 中文欧美无线码| 久久 成人 亚洲| 在线观看人妻少妇| 一区二区三区精品91| 国产精品久久久久久av不卡| 久久婷婷青草| 亚洲精品日韩av片在线观看| 女性被躁到高潮视频| 国产午夜精品一二区理论片| 观看av在线不卡| 国模一区二区三区四区视频| 国产精品国产av在线观看| 亚洲熟女精品中文字幕| av国产久精品久网站免费入址| 日韩电影二区| 亚洲欧美成人综合另类久久久| 99久久精品国产国产毛片| 亚洲精品久久成人aⅴ小说 | 少妇人妻精品综合一区二区| 99视频精品全部免费 在线| 2018国产大陆天天弄谢| 午夜精品国产一区二区电影| 久久99一区二区三区| 一级二级三级毛片免费看| 免费黄网站久久成人精品| 久久人妻熟女aⅴ| 久久ye,这里只有精品| 久久久久久久国产电影| 亚洲av中文av极速乱| 一区二区三区四区激情视频| 日本91视频免费播放| 婷婷色麻豆天堂久久| 亚洲,一卡二卡三卡| 久久久a久久爽久久v久久| 最新的欧美精品一区二区| 91精品伊人久久大香线蕉| 欧美一级a爱片免费观看看| 国产黄频视频在线观看| 免费观看的影片在线观看| 亚洲精品一二三| 最新中文字幕久久久久| 99热6这里只有精品| 国产精品人妻久久久久久| 亚洲精品aⅴ在线观看| 欧美人与性动交α欧美精品济南到 | 欧美日韩综合久久久久久| 99热国产这里只有精品6| 免费大片18禁| 欧美精品亚洲一区二区| 亚洲国产毛片av蜜桃av| 亚洲经典国产精华液单| 日本与韩国留学比较| av天堂久久9| 国产精品99久久99久久久不卡 | 成年美女黄网站色视频大全免费 | 中文字幕人妻熟人妻熟丝袜美| 女性生殖器流出的白浆| 国产熟女午夜一区二区三区 | 一级爰片在线观看| 午夜福利影视在线免费观看| 天堂俺去俺来也www色官网| 精品亚洲成a人片在线观看| 亚洲国产精品999| 一级,二级,三级黄色视频| 久久久国产一区二区| 中文字幕精品免费在线观看视频 | 亚洲国产欧美日韩在线播放| 欧美激情国产日韩精品一区| 久久99精品国语久久久| 久久久久人妻精品一区果冻| 97精品久久久久久久久久精品| 午夜视频国产福利| 国产永久视频网站| 午夜久久久在线观看| 51国产日韩欧美| 国产成人午夜福利电影在线观看| 日产精品乱码卡一卡2卡三| 国产精品三级大全| 欧美 日韩 精品 国产| 午夜福利网站1000一区二区三区| videossex国产| 赤兔流量卡办理| 草草在线视频免费看| 亚洲欧美一区二区三区国产| 寂寞人妻少妇视频99o| 亚洲精品久久午夜乱码| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 人妻系列 视频| 97超碰精品成人国产| 少妇丰满av| 少妇 在线观看| 99视频精品全部免费 在线| 亚洲情色 制服丝袜| 在线观看一区二区三区激情| 少妇人妻 视频| 99热6这里只有精品| 国产av码专区亚洲av| 综合色丁香网| 欧美老熟妇乱子伦牲交| 97超视频在线观看视频| 99久久人妻综合| 欧美日韩成人在线一区二区| 老司机亚洲免费影院| 精品酒店卫生间| 亚州av有码| 久久久久久久国产电影| 午夜av观看不卡| 欧美日韩av久久| 色网站视频免费| 人人澡人人妻人| 精品亚洲乱码少妇综合久久| 亚洲天堂av无毛| 久久久久精品性色| 老司机影院毛片| 亚洲情色 制服丝袜| 亚洲第一av免费看| 国产极品粉嫩免费观看在线 | 国产av码专区亚洲av| 人人妻人人添人人爽欧美一区卜| 国产成人午夜福利电影在线观看| 国产国拍精品亚洲av在线观看| 嘟嘟电影网在线观看| 亚洲精品aⅴ在线观看| 99久久综合免费| 国产精品人妻久久久久久| 十分钟在线观看高清视频www| 妹子高潮喷水视频| 视频在线观看一区二区三区| 国产免费一区二区三区四区乱码| 精品少妇黑人巨大在线播放| av天堂久久9| 国产色婷婷99| av免费在线看不卡| 九九爱精品视频在线观看| 国产精品成人在线| 日韩一区二区三区影片| 亚洲一区二区三区欧美精品| 日韩亚洲欧美综合| 国产有黄有色有爽视频| 精品卡一卡二卡四卡免费| 亚洲,欧美,日韩| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 菩萨蛮人人尽说江南好唐韦庄| 另类精品久久| 黄片无遮挡物在线观看| 久久99热6这里只有精品| 男女免费视频国产| 高清欧美精品videossex| 国产精品.久久久| 欧美日韩视频高清一区二区三区二| 日韩一区二区视频免费看| 亚洲一级一片aⅴ在线观看| 99热这里只有精品一区| 五月伊人婷婷丁香| 如何舔出高潮| 欧美日韩精品成人综合77777| 最近的中文字幕免费完整| 中文字幕人妻丝袜制服| 一本大道久久a久久精品| 久久久国产精品麻豆| 免费大片18禁| 人人妻人人爽人人添夜夜欢视频| 18禁在线播放成人免费| 亚洲国产精品999| 免费av中文字幕在线| 久久国产精品男人的天堂亚洲 | 99九九在线精品视频| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 一本色道久久久久久精品综合| 自线自在国产av| 亚洲熟女精品中文字幕| 久热久热在线精品观看| 3wmmmm亚洲av在线观看| 中文字幕亚洲精品专区| 欧美精品一区二区免费开放| 欧美丝袜亚洲另类| 欧美日韩视频精品一区| 久热久热在线精品观看| 看非洲黑人一级黄片| 日本黄色片子视频| 免费高清在线观看视频在线观看| 国产视频内射| 国产午夜精品久久久久久一区二区三区| 午夜激情福利司机影院| 欧美日韩一区二区视频在线观看视频在线| 欧美另类一区| 成人无遮挡网站| 天堂8中文在线网| 国产精品一二三区在线看| 国产免费现黄频在线看| 中文精品一卡2卡3卡4更新| 日本黄色片子视频| 人体艺术视频欧美日本| 成人影院久久| 亚洲图色成人| 国产永久视频网站| 日日摸夜夜添夜夜爱| 青春草视频在线免费观看| 国产精品秋霞免费鲁丝片| 精品一区二区三区视频在线| 不卡视频在线观看欧美| 大码成人一级视频| 婷婷成人精品国产| 肉色欧美久久久久久久蜜桃| 中国国产av一级| 国产在线一区二区三区精| 国产精品国产三级专区第一集| av卡一久久| 免费大片黄手机在线观看| 免费大片18禁| 看免费成人av毛片| 啦啦啦视频在线资源免费观看| 欧美日本中文国产一区发布| av在线播放精品| 成年人免费黄色播放视频| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看| videossex国产| 色网站视频免费| 能在线免费看毛片的网站| 免费av不卡在线播放| 好男人视频免费观看在线| 久久久久久久久久久免费av| 久久韩国三级中文字幕| 亚洲丝袜综合中文字幕| 国产有黄有色有爽视频| 精品人妻熟女毛片av久久网站| 2022亚洲国产成人精品| 国产高清有码在线观看视频| 97在线人人人人妻| 久久99精品国语久久久| 一区二区三区四区激情视频| h视频一区二区三区| 国产极品粉嫩免费观看在线 | 国产深夜福利视频在线观看| 久久久午夜欧美精品| 一本久久精品| 国产在线视频一区二区| 男女边吃奶边做爰视频| 精品人妻一区二区三区麻豆| 国产黄频视频在线观看| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产色婷婷电影| 少妇精品久久久久久久| 国产一区二区在线观看日韩| 51国产日韩欧美| 高清午夜精品一区二区三区| 国产成人精品在线电影| 性色avwww在线观看| 夜夜看夜夜爽夜夜摸| av不卡在线播放| 纵有疾风起免费观看全集完整版| 少妇 在线观看| 超色免费av| 亚洲av综合色区一区| 日韩中字成人| 国产亚洲精品第一综合不卡 | 女性被躁到高潮视频| 男的添女的下面高潮视频| 狂野欧美白嫩少妇大欣赏| 婷婷色麻豆天堂久久| 啦啦啦啦在线视频资源| 搡女人真爽免费视频火全软件| 精品人妻一区二区三区麻豆| 五月玫瑰六月丁香| 热99久久久久精品小说推荐| 日本av手机在线免费观看| av有码第一页| 最近手机中文字幕大全| 边亲边吃奶的免费视频| 久久人人爽人人片av| 国产黄频视频在线观看| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 精品人妻一区二区三区麻豆| 欧美精品国产亚洲| 久久精品熟女亚洲av麻豆精品| 成人国语在线视频| 高清毛片免费看| 久久久午夜欧美精品| 午夜激情av网站| 狠狠婷婷综合久久久久久88av| 91久久精品国产一区二区成人| 高清视频免费观看一区二区| 免费观看性生交大片5| 女性生殖器流出的白浆| 国内精品宾馆在线| 亚洲精品日韩在线中文字幕| 国产精品久久久久久久久免| 一级毛片 在线播放| 大又大粗又爽又黄少妇毛片口| 国产黄色免费在线视频| 免费日韩欧美在线观看| 91精品一卡2卡3卡4卡| www.av在线官网国产| 男女边吃奶边做爰视频| av在线老鸭窝| 91aial.com中文字幕在线观看| 亚洲国产色片| 成人毛片60女人毛片免费| 成年人午夜在线观看视频| 纵有疾风起免费观看全集完整版| 99久国产av精品国产电影| 亚洲精品美女久久av网站| 丰满乱子伦码专区| 91成人精品电影| 国产精品秋霞免费鲁丝片| 国产精品久久久久久精品古装| 亚洲av欧美aⅴ国产| 一本大道久久a久久精品| 久久av网站| 一级毛片电影观看| 日本欧美视频一区| 最黄视频免费看| 亚洲av综合色区一区| 亚洲精品视频女| 亚洲人与动物交配视频| av福利片在线| 久久久久久久亚洲中文字幕| 国产片内射在线| www.av在线官网国产| 美女cb高潮喷水在线观看| 天天躁夜夜躁狠狠久久av| 欧美丝袜亚洲另类| 桃花免费在线播放| 18+在线观看网站| 黄色毛片三级朝国网站| 三级国产精品欧美在线观看| 成人二区视频| 一本色道久久久久久精品综合| 欧美变态另类bdsm刘玥| 国产免费视频播放在线视频| 成人毛片60女人毛片免费| 丰满饥渴人妻一区二区三| 日本wwww免费看| 国产一区有黄有色的免费视频| a级毛片免费高清观看在线播放| 欧美日本中文国产一区发布| 99久国产av精品国产电影| 免费人妻精品一区二区三区视频| 亚洲国产精品国产精品| 日本猛色少妇xxxxx猛交久久| 在线精品无人区一区二区三| 高清欧美精品videossex| 国产精品国产三级专区第一集| 欧美成人午夜免费资源| √禁漫天堂资源中文www| 伦精品一区二区三区| 午夜91福利影院| 国产在线视频一区二区| 人人妻人人添人人爽欧美一区卜| 99久久精品一区二区三区| 人妻 亚洲 视频| 亚洲怡红院男人天堂| 亚洲国产欧美日韩在线播放| 亚洲av中文av极速乱| 亚洲欧美一区二区三区国产| 日韩伦理黄色片| 亚洲三级黄色毛片| 国产高清有码在线观看视频| 高清黄色对白视频在线免费看| 另类精品久久| 日韩中文字幕视频在线看片| 91精品三级在线观看| 亚洲精品国产av成人精品| 欧美亚洲 丝袜 人妻 在线| 伊人久久国产一区二区| av天堂久久9| 亚洲成人av在线免费| 亚洲欧美一区二区三区国产| 亚洲美女视频黄频| 少妇的逼水好多| 亚洲成人手机| 亚洲精品日韩在线中文字幕| 国产在线一区二区三区精| 男女高潮啪啪啪动态图| 免费高清在线观看日韩| 亚洲欧美日韩另类电影网站| 少妇人妻久久综合中文| 国产精品不卡视频一区二区| 一本久久精品| 制服诱惑二区| 久久狼人影院| 91精品国产国语对白视频| 天天操日日干夜夜撸| 国产精品久久久久久久久免| 2018国产大陆天天弄谢| 女人久久www免费人成看片| 欧美精品亚洲一区二区| 亚洲国产av影院在线观看| 欧美变态另类bdsm刘玥| 午夜91福利影院| 蜜臀久久99精品久久宅男| 精品亚洲成a人片在线观看| 青春草亚洲视频在线观看| 全区人妻精品视频| 在线观看www视频免费| av免费在线看不卡| 国产精品99久久久久久久久| 国产老妇伦熟女老妇高清| 日韩伦理黄色片| 成人午夜精彩视频在线观看| videossex国产| 一区二区三区精品91| 久久久a久久爽久久v久久| 日韩成人av中文字幕在线观看| 在线看a的网站| 成人二区视频| 久久人人爽人人爽人人片va| av有码第一页| 久久人人爽人人片av| 日韩大片免费观看网站| 精品人妻熟女毛片av久久网站| 国产片特级美女逼逼视频| 精品久久久久久久久亚洲| 秋霞伦理黄片| 国模一区二区三区四区视频| 国产黄频视频在线观看| 夜夜爽夜夜爽视频| 毛片一级片免费看久久久久| 这个男人来自地球电影免费观看 | 日本wwww免费看| kizo精华| 大片免费播放器 马上看| 男女边摸边吃奶| videos熟女内射| 人人妻人人添人人爽欧美一区卜| 国产女主播在线喷水免费视频网站| 18禁动态无遮挡网站| 男女国产视频网站| 中文字幕人妻丝袜制服| 特大巨黑吊av在线直播| 精品午夜福利在线看| 国产成人午夜福利电影在线观看| 综合色丁香网| 免费av不卡在线播放| 性色avwww在线观看| 国产免费一级a男人的天堂| 久久久久网色| 久久这里有精品视频免费| 亚洲精品视频女| 久久人人爽人人片av| 国产 一区精品| 国产爽快片一区二区三区| 亚洲欧洲国产日韩| 久久久a久久爽久久v久久| 欧美另类一区| 色5月婷婷丁香| 日本爱情动作片www.在线观看| 国产男女超爽视频在线观看| 成人亚洲欧美一区二区av| 日韩免费高清中文字幕av| 久久免费观看电影| 欧美成人精品欧美一级黄| 国产一区亚洲一区在线观看| 蜜桃在线观看..| 午夜免费鲁丝| 国产高清不卡午夜福利| 欧美日韩av久久| 街头女战士在线观看网站| 99热这里只有是精品在线观看| 亚洲天堂av无毛| 少妇精品久久久久久久| 制服人妻中文乱码|