• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    極化碼在OFDM水聲通信中的應(yīng)用研究

    2021-03-10 07:58:58翟玉爽馮海泓李記龍
    聲學(xué)技術(shù) 2021年1期
    關(guān)鍵詞:信道編碼蒙特卡洛譯碼

    翟玉爽,馮海泓,李記龍

    (1. 中國(guó)科學(xué)院聲學(xué)研究所東海研究站,上海201815;2. 中國(guó)科學(xué)院大學(xué),北京100049)

    0 引 言

    水下信道普遍存在多途干擾嚴(yán)重、多普勒頻移、噪聲干擾大、聲傳播損耗、可用帶寬極為有限等因素,極大地制約了水聲通信的發(fā)展。正交頻分復(fù)用技術(shù)(Orthogonal Frequency Division Multiplexing, OFDM)可降低多途干擾,頻帶利用率高,并具有簡(jiǎn)化接收端信道均衡操作、可兼容其他信號(hào)處理技術(shù)等優(yōu)勢(shì),是實(shí)現(xiàn)高速穩(wěn)健水聲通信的有效方案[1]。為進(jìn)一步提高通信系統(tǒng)傳輸質(zhì)量,將現(xiàn)有的水聲通信技術(shù)與先進(jìn)信道編碼技術(shù)進(jìn)行結(jié)合,是目前水聲通信的一個(gè)新的研究熱點(diǎn)。

    初期數(shù)字水聲通信采用博斯-喬赫里-霍克文黑姆(Bose Chaudhuri Hocquenghem, BCH)碼、里德-所羅門(Reed-Solomon, RS)碼、卷積碼等傳統(tǒng)信道編碼方法[2]。近20年來(lái),Turbo碼與低密度校驗(yàn)(Low Density Parity Check, LDPC)碼得到廣泛研究和應(yīng)用,兩者具有優(yōu)越的糾錯(cuò)性能并接近香農(nóng)限[3]。2009年,土耳其學(xué)者Arikan[4]提出了極化碼的設(shè)計(jì)思想,首次以構(gòu)造性方法證明信道容量漸近可達(dá)。因其高可靠性、實(shí)用的線性編譯碼復(fù)雜度和理論上唯一可達(dá)香農(nóng)極限等特點(diǎn),極化碼成為信道編碼領(lǐng)域的熱門研究方向,并寫(xiě)入5G標(biāo)準(zhǔn)[5]。其編譯碼方法的研究已擴(kuò)展至眾多信道類型和應(yīng)用領(lǐng)域:

    (1) 編碼時(shí)碼字構(gòu)造方法的研究,Arikan[4]針對(duì)二進(jìn)制刪除信道(Binary Erasure Channels, BEC)提出巴氏參數(shù)法,Mori等[6]提出適用于所有類型的二進(jìn)制輸入離散無(wú)記憶信道(Binary Input Discrete Memoryless Channel, BDMC)的密度進(jìn)化(Density Evolution, DE)法,高斯信道(Additive White Gaussian Noise Channel, AWGNC)中,有高斯近似(Gaussian Approximation, GA)法[7]、蒙特卡洛逼近法[4]、巴氏參數(shù)界法[8]和Design-SNR[9]法等,另外部分序構(gòu)造法[10]以及極化度量(Polarization Weight, PW)法[11]等不依賴于信道條件的通用構(gòu)造法成為新的研究熱點(diǎn);(2) 極化碼譯碼算法的研究,Arikan的另一個(gè)重要貢獻(xiàn)是提出了串行抵消(Successive Cancellation, SC)譯碼算法[4],在平衡性能和計(jì)算復(fù)雜度的基礎(chǔ)上,串行抵消列表(Successive-Cancellation List,SCL)算法[12-13]、循環(huán)冗余校驗(yàn)碼輔助的SCL(Cyclic Redundancy Check Assisted SCL, CA-SCL)算法[14-15]、置信傳播(Belief Propagation, BP)算法[16]、軟輸出連續(xù)刪除(Soft Cancellation, SCAN)算法[17]等譯碼方法相繼產(chǎn)生;(3) 極化碼在并行通信、信源編碼、編碼調(diào)制技術(shù)以及物理層信息保密技術(shù)等相關(guān)理論研究領(lǐng)域的發(fā)展。目前,極化碼的應(yīng)用場(chǎng)景由最初的二進(jìn)制離散無(wú)記憶信道(Binary Discrete Memoryless Channel, B-DMC)向著其他信道拓展,如高斯信道[9]、衰落信道[18]等,但在水聲信道中的理論證明和應(yīng)用研究相對(duì)較少且滯后[19-20]。

    本文針對(duì)具有明顯多途、多普勒擴(kuò)散和有限帶寬等復(fù)雜特性的水聲信道,對(duì) Arikan[4]提出的極化碼的碼字構(gòu)造可靠性估計(jì)方法和譯碼方法予以改進(jìn)和優(yōu)化,建立與水聲信道相匹配的極化碼信道編碼機(jī)制;并結(jié)合OFDM技術(shù)搭建水聲通信系統(tǒng),對(duì)提出的極化碼信道編碼機(jī)制在 OFDM 水聲通信中的性能表現(xiàn)進(jìn)行理論研究、仿真驗(yàn)證;同時(shí)針對(duì)不同水聲信道模型、信道參數(shù)以及不同極化碼參數(shù),研究極化碼在水聲通信中的性能變化,并與目前應(yīng)用成熟且性能優(yōu)越的LDPC碼、Turbo碼進(jìn)行對(duì)比。

    1 極化碼與水聲信道

    1.1 極化碼

    Polar碼的應(yīng)用基于信道極化定理[4]。給定的任意BDMC信道W:x→y,令W(y|x)為信道轉(zhuǎn)移概率。其信道容量I(W)表示能夠通過(guò)信道W無(wú)錯(cuò)誤傳輸?shù)淖畲笮畔⑺俾?,用以衡量信道傳輸速率。其巴氏參?shù)Z(W)為只傳輸0或者1的最大似然判決錯(cuò)誤概率的上限,用以衡量信道傳輸可靠性。

    若極化碼碼長(zhǎng)為N= 2n(n為任意正整數(shù)),則將BDMC信道的N個(gè)獨(dú)立副本W(wǎng)經(jīng)過(guò)信道合并與信道分離,得到N個(gè)極化子信道。當(dāng)N→∞時(shí),一部分子信道容量趨近于 1,即該信道為好的無(wú)噪聲信道,而另一部分子信道信道容量趨近于0,即差的完全噪聲信道。其中容量為1的信道占信道總數(shù)的比例正好是原 BDMC信道的信道容量I(W),這一現(xiàn)象稱作信道極化。在有限碼長(zhǎng)下,信道極化不完全, 隨著N增大,極化趨勢(shì)更明顯,以BEC信道為例,N=1 024時(shí)極化現(xiàn)象如圖1所示。

    圖1 碼長(zhǎng)N =1 024時(shí)BEC信道極化現(xiàn)象示意圖Fig.1 Schematic diagram of BEC channel polarization when N =1 024

    極化碼信道編碼的應(yīng)用流程分為極化子信道的可靠性估計(jì)即碼字構(gòu)造、編碼和譯碼3個(gè)步驟:

    (1) 基于信道極化現(xiàn)象,編碼前需根據(jù)碼字構(gòu)造方法,進(jìn)行極化子信道的可靠性估計(jì),挑選出K個(gè)較好的子信道A,用以放置K個(gè)信息比特uA,在其余較差的子信道AC上放置收發(fā)雙方都已知的(N-k)個(gè)固定凍結(jié)比特uAC,即可得到原始發(fā)送序列u1,N。碼率可表示為

    1.2 水聲信道

    在實(shí)際系統(tǒng)中,該假設(shè)可在接收端估計(jì)測(cè)得信道邊信息(Channel Side Information, CSI)即信道增益H、噪聲方差σ2后,利用反饋鏈路告知發(fā)送端,本文利用信道估計(jì)和無(wú)信號(hào)傳輸時(shí)噪聲功率的測(cè)量分別獲得信道增益和噪聲方差值。

    2 水聲信道的極化碼信道編碼機(jī)制

    2.1 極化水聲信道的可靠性估計(jì)

    2.1.1 蒙特卡洛逼近法

    Arikan提出的蒙特卡洛法[4]基于統(tǒng)計(jì)特性對(duì)極化信道進(jìn)行可靠性估計(jì),被證明可應(yīng)用于多種類型信道[9],但此方法因式(19)符號(hào)集的指數(shù)型爆炸式增長(zhǎng)變得不實(shí)用,且精確度不夠高。

    可對(duì)R進(jìn)行大量仿真得其期望值Z(WN,i)。本優(yōu)化可將蒙特卡洛法的計(jì)算復(fù)雜度降至O(MNl og2N),其中M為蒙特卡洛模擬次數(shù)。

    (2) 在發(fā)射端,將所有子信道都看成不理想的信道,放置收發(fā)雙方已知的固定凍結(jié)比特,本文設(shè)為0,構(gòu)成原始信息比特序列u1,N。這種優(yōu)化方法一方面避免了每次模擬重復(fù)編碼,另一方面簡(jiǎn)化了SC譯碼時(shí)的似然判決部分,兩方面都進(jìn)一步降低了蒙特卡洛法的計(jì)算復(fù)雜度。

    (3) 似然比的計(jì)算改為在對(duì)數(shù)域進(jìn)行,同時(shí)結(jié)合水聲信道特征參數(shù)信道增益H、噪聲方差σ2,按式(18)改進(jìn)譯碼時(shí)初始對(duì)數(shù)似然比的計(jì)算。這種優(yōu)化方法進(jìn)一步降低了計(jì)算復(fù)雜度,并使其適合水聲信道,提高估計(jì)準(zhǔn)確性。

    優(yōu)化方法的流程圖如圖2所示。

    圖2 蒙特卡洛逼近法構(gòu)造極化碼流程圖Fig.2 Flowchart of the Monte Carlo estimation method for Polar code construction

    2.1.2 巴氏參數(shù)界法

    最早提出的經(jīng)典巴氏參數(shù)法[4],因其低復(fù)雜度O(Nl og2N)被廣泛應(yīng)用[9]。但該方法中的巴氏參數(shù)初始值Z1(W)是針對(duì) BDMC中最差誤碼率而被提出的0.5,且遞推公式中的式(22)上界僅在BEC中可達(dá)。

    本文在其基礎(chǔ)上進(jìn)行兩點(diǎn)優(yōu)化和改造,提高估計(jì)準(zhǔn)確性:

    (1) 根據(jù)水聲信道特征參數(shù)優(yōu)化巴氏參數(shù)初始值Z1(W)。結(jié)合信道增益和噪聲方差σ2,將式(16)和(17)代入式(2)即可得Z1(W)。

    (2) 依據(jù)文獻(xiàn)[8]中三種類型遞歸公式在瑞利衰落信道內(nèi)的性能研究結(jié)果,選用式(23)代替式(22)作為水聲信道內(nèi)的巴氏參數(shù)遞推計(jì)算公式:

    經(jīng)優(yōu)化,該方法的具體步驟如圖3所示。

    圖3 用巴氏參數(shù)上界法構(gòu)造極化碼流程圖Fig.3 Flowchart of the Bhattacharyya parameter bounds method for Polar code construction

    2.2 水聲信道的極化碼譯碼

    為研究極化碼在水聲信道中的譯碼方法,本文對(duì)SC、CA-SCL、BP、SCAN 4種譯碼算法進(jìn)行性能測(cè)試和對(duì)比。

    首先,結(jié)合水聲信道的特征參數(shù),按式(18)計(jì)算譯碼時(shí)初始對(duì)數(shù)似然比。

    其次,本文采用BP譯碼法時(shí)迭代次數(shù)設(shè)為50,SCAN算法迭代1次。這是由于BP法的消息傳遞采用“洪水”規(guī)則,SCAN采用類SC算法的串行消除規(guī)則,因此BP算法的譯碼延時(shí)低于SCAN算法,但是SCAN算法的收斂速度明顯好于BP算法。一般而言,BP算法需要40~50次的迭代過(guò)程[16],而SCAN算法1次迭代就能達(dá)到稍低于SC算法的性能[17]。

    3 信道仿真與性能測(cè)試

    3.1 OFDM水聲通信系統(tǒng)描述及參數(shù)設(shè)置

    搭建OFDM水聲通信仿真系統(tǒng),研究第2節(jié)的極化碼信道編碼機(jī)制在水聲通信中的性能表現(xiàn)。系統(tǒng)原理框圖如圖4所示,參數(shù)設(shè)置如表1所示。

    圖4 OFDM水聲通信系統(tǒng)基本原理框圖Fig.4 Block diagram of the OFDM underwater acoustic communication system

    表1 OFDM水聲通信系統(tǒng)參數(shù)Table 1 Simulation parameters of the OFDM underwater acoustic communication system

    表2 水聲時(shí)變信道參數(shù)Table 2 Simulation parameters of the UWA time-varying channel

    3.2 極化水聲信道的可靠性估計(jì)

    3.2.1 蒙特卡洛逼近法

    在碼長(zhǎng)N=256、碼率R=0.5時(shí),蒙特卡洛逼近法的誤碼率(Bit Error Rate, BER)隨模擬重復(fù)次數(shù)的變化情況,如圖5所示。

    圖5 水聲時(shí)變信道中不同重復(fù)次數(shù)的蒙特卡洛逼近法誤碼率性能隨信噪比的變化Fig.5 BERs of the Monte-Carlo estimation method with different repeat number in the UWA time-varying channel

    由圖5可知,蒙特卡洛逼近法在降低計(jì)算復(fù)雜度的基礎(chǔ)上,使得極化碼的誤碼率在信噪比為4dB時(shí)可達(dá) 10-4~10-5,滿足水聲通信的誤碼性能指標(biāo)和糾錯(cuò)需求。且隨著蒙特卡洛重復(fù)次數(shù)由200增加到2 000,性能越好,約有0.5~1 dB的性能增益,因此在實(shí)際使用該方法時(shí),重復(fù)次數(shù)M不需設(shè)置太大,避免過(guò)高的計(jì)算復(fù)雜度。

    3.2.2 巴氏參數(shù)界法

    在碼長(zhǎng)N=256,碼率R=0.5時(shí),優(yōu)化之后的巴氏參數(shù)初始值Z1(W)與原作者提出的0.5[3]相比,性能增益約為 4 dB,提高了估計(jì)準(zhǔn)確性,誤碼率在10 dB時(shí)達(dá)10-3。

    3.2.3 蒙特卡洛逼近法和巴氏參數(shù)界法的性能對(duì)比

    極化碼碼長(zhǎng)N=256,碼率R=0.5時(shí),蒙特卡洛逼近法重復(fù)次數(shù)M=2 000,兩者性能對(duì)比,結(jié)果如圖7所示,蒙特卡洛逼近法性能較巴氏參數(shù)上界法更好,性能增益約8 dB。在后續(xù)性能分析的過(guò)程中,采用蒙特卡洛逼近法作為極化碼碼字構(gòu)造方法。

    3.3 極化水聲信道的譯碼方法

    極化碼碼長(zhǎng)N=256,碼率R=0.5時(shí),在水聲信道中,對(duì)SC,CA-SCL,BP,SCAN 4種譯碼算法進(jìn)行性能測(cè)試和對(duì)比。其中,BP譯碼法迭代次數(shù)為50,SCAN算法迭代次數(shù)為1,SCL譯碼方法搜索路徑數(shù)分別設(shè)為 8 (記為 SCL8)和 16 (記為SCL16),循環(huán)冗余校驗(yàn)(Cyclic Redundancy Check,CRC)的碼字長(zhǎng)度為4,測(cè)試結(jié)果如圖8所示。

    圖8 水聲時(shí)變信道中N=256,R=0.5時(shí),極化碼譯碼方法誤碼率對(duì)比Fig.8 BER comparison of different polar code decoding methods in UWA time-varying channel when N=256, R=0.5

    由圖8可知,在水聲時(shí)變信道中,CA-SCL譯碼法性能遠(yuǎn)好于其他三種算法,約有2~4 dB的性能增益,SC和SCAN算法性能相近,BP算法性能較差。同時(shí),CA-SCL譯碼法的搜索路徑數(shù)量越大,譯碼性能越好。

    因此,在后續(xù)的性能分析過(guò)程中,極化碼譯碼方法采用CA-SCL譯碼法,搜索路徑數(shù)設(shè)為8,CRC校驗(yàn)的碼字長(zhǎng)度為4。

    4 基于 OFDM 水聲通信的極化碼信道編碼性能測(cè)試

    4.1 Polar碼在不同水聲信道中的性能分析

    將第3節(jié)中極化碼信道編碼機(jī)制,即蒙特卡洛逼近法和CA-SCL譯碼法,運(yùn)用至OFDM水聲通信仿真系統(tǒng)。測(cè)試極化碼在水聲時(shí)不變信道、時(shí)變信道和快時(shí)變信道模型的性能,并與目前應(yīng)用成熟且性能優(yōu)越的LDPC碼、Turbo碼進(jìn)行對(duì)比。

    4.1.1 水聲信道模型

    (1) 時(shí)不變水聲信道

    本文建立水聲時(shí)不變信道模型[22],時(shí)不變水聲信道的沖激響應(yīng)可表示為

    Q條路徑具有獨(dú)立的幅值A(chǔ)q和時(shí)延τq,兩者為常量參數(shù),不隨時(shí)間發(fā)生變化,水聲時(shí)不變信道參數(shù)如表3所示。

    表3 水聲時(shí)不變信道參數(shù)Table 3 Simulation parameters of the UWA time-invariant channel

    (2) 快時(shí)變水聲信道

    本文借鑒[23]的快時(shí)變信道模型和信道估計(jì)與均衡方法,通過(guò)直接構(gòu)造隨機(jī)離散采樣快時(shí)變信道傳遞函數(shù)和OFDM傳輸矩陣,表征系統(tǒng)處于高速移動(dòng)時(shí),多普勒頻移擴(kuò)展令多個(gè)子載波不再正交,產(chǎn)生載波間干擾(Inter-Carrier Interference,ICI)的狀態(tài)。相較于第3節(jié)的時(shí)變信道,該信道的傳遞函數(shù)在一個(gè)OFDM符號(hào)內(nèi)是變化的,設(shè)一個(gè)OFDM符號(hào)內(nèi)的第l個(gè)子載波位置、第m個(gè)時(shí)間采樣點(diǎn)的信道傳遞函數(shù)為

    式中:多途數(shù)量Q= 3 ,多普勒頻移fq滿足 Jakes多普勒譜密度分布,隨機(jī)相位θq在0~2π間均勻分布,隨機(jī)歸一化時(shí)延τi/T在0~τmax/T間均勻分布。

    4.1.2 不同水聲信道模型下的Polar信道編碼

    設(shè)定極化碼N=256,R=0.5,針對(duì)不同水聲信道模型,進(jìn)行極化碼的性能測(cè)試,結(jié)果如圖9所示。

    由圖9可知,水聲信道環(huán)境的復(fù)雜性,以及現(xiàn)有水聲信道估計(jì)與均衡等技術(shù)的局限性,對(duì)極化碼的性能有一定影響。在時(shí)不變信道中,極化碼的誤碼率性能最優(yōu),時(shí)變信道次之,快時(shí)變信道最差。極化碼在時(shí)不變信道、時(shí)變信道中的誤碼率可達(dá)10-4~10-5,性能差異約為 1~1.5 dB??鞎r(shí)變信道中誤碼率為10-3量級(jí),極化碼在時(shí)變信道比快時(shí)變信道中的性能增益約為6 dB,時(shí)不變信道比快時(shí)變信道中的性能增益約為8 dB。

    圖9 不同水聲信道模型下Polar信道編碼的誤碼率比較Fig.9 BER comparison of Polar codes in UWA time-invariant,time-varying and fast time-varying channels

    4.1.3 Polar碼與LDPC碼、Turbo碼在不同水聲信道模型下的性能對(duì)比

    本文在水聲時(shí)不變信道模型、時(shí)變信道模型以及快時(shí)變信道中,將極化碼與Turbo碼、LDPC碼進(jìn)行性能測(cè)試對(duì)比。仿真時(shí),借鑒文獻(xiàn)[22]構(gòu)造LDPC碼,采用隨機(jī)構(gòu)造的校驗(yàn)矩陣,LLR-BP譯碼算法,迭代次數(shù)為 25;借鑒文獻(xiàn)[1]構(gòu)造 Turbo碼,仿真時(shí)兩分量編碼器的生成矩陣均為(37,21),迭代次數(shù)為5。

    設(shè)定極化碼、LDPC碼、Turbo碼的碼長(zhǎng)、碼率均分別為N=256、R=0.5,結(jié)果如圖10、圖11、圖12所示。

    圖10 Polar碼、LDPC碼、Turbo碼在水聲時(shí)不變信道中的誤碼率比較Fig.10 BER comparison of Polar code, LDPC code and Turbo code in UWA time-invariant channel

    圖11 Polar碼、LDPC碼、Turbo碼在水聲時(shí)變信道中的性能Fig.11 BER comparison of Polar code, LDPC code and Turbo code in UWA time-varying channel

    圖12 Polar碼、LDPC碼、Turbo碼在水聲快時(shí)變信道中性能Fig.12 BER comparison of Polar code, LDPC code and Turbo code in UWA fast time-varying channel

    由圖 10可知,從總體看,在三種水聲信道模型下,Polar碼的誤碼率性能均優(yōu)于LDCP和Turbo碼,三種碼的誤碼性能均隨信噪比的增長(zhǎng)而逐漸優(yōu)化。同時(shí)在時(shí)不變信道中,三種碼的誤碼率性能最優(yōu),時(shí)變信道次之,快時(shí)變信道最差,其中,LDPC碼和Turbo碼的性能與文獻(xiàn)[1]中表現(xiàn)一致。在時(shí)不變信道和時(shí)變信道中,Polar碼的性能最優(yōu),LDCP碼次之,Turbo碼較差,誤碼率均可達(dá)10-4~10-5,Polar碼優(yōu)于LDCP碼0.5 dB左右,優(yōu)于Turbo碼1 dB左右。在快時(shí)變信道中,Polar碼的性能最優(yōu),Turbo碼次之,LDCP碼較差,誤碼率可達(dá)10-3,Polar碼較Turbo碼有 2 dB左右的性能增益,較 LDCP碼有6 dB左右的性能增益。

    4.2 極化碼性能隨極化碼參數(shù)變化的仿真分析

    進(jìn)一步研究碼長(zhǎng)N,碼率R等極化碼參數(shù)對(duì)極化碼性能的影響,仿真環(huán)境為水聲時(shí)變信道。

    4.2.1 Polar碼性能隨碼長(zhǎng)N的變化

    極化碼碼長(zhǎng)分別設(shè)為N=128、256、512,碼率為R=0.5,仿真結(jié)果如圖13所示。

    由圖13可知,極化碼性能隨碼長(zhǎng)N由128增大至512而變優(yōu),約有0.5~4 dB的性能增益,符合信道極化現(xiàn)象和定理。

    圖13 水聲時(shí)變信道中不同碼長(zhǎng)N時(shí)的極化碼性能Fig.13 BERs of Polar code with different code length N in UWA time-varying channel

    4.2.2 Polar碼性能隨碼率R的變化

    極化碼碼率分別設(shè)為R=0.2,0.5,0.8,碼長(zhǎng)N=256,結(jié)果如圖14所示。

    由圖14可知,極化碼性能隨碼率R由0.8減小至0.2而變優(yōu),約有0.3~5 dB的性能增益。碼率越低,冗余越多,在譯碼端輔助譯碼的凍結(jié)比特越多,性能越好。

    圖14 水聲時(shí)變信道中不同碼率R時(shí)的極化碼性能Fig.14 BERs of Polar code with different code rate R in UWA time-varying channel

    4.3 極化碼性能隨信道參數(shù)的變化

    在OFDM水聲通信系統(tǒng)中,仿真環(huán)境為水聲時(shí)變信道,觀察信道變化的參數(shù)(多途數(shù)量Q、最大多途時(shí)延τmax以及最大多普勒頻移fmax)對(duì)極化碼性能特性的影響。設(shè)極化碼的碼長(zhǎng)N=256,碼率R=0.5。

    4.3.1 Polar碼隨信道多途數(shù)量的變化

    研究信道多途數(shù)量變化對(duì)極化碼性能的影響,設(shè)最大多普勒頻移fmax=1 0-3F,最大多途時(shí)延τmax=T/4,多途的數(shù)量分別取2、4、6、8、10,在OFDM水聲通信系統(tǒng)中測(cè)試Polar 碼的性能。結(jié)果圖15所示。

    由圖 15中結(jié)果可知,隨著多途數(shù)量的增加,極化碼的性能逐漸下降4~5 dB。當(dāng)多途數(shù)量小于8時(shí),誤碼率均可達(dá)10-4~10-5,多途數(shù)量為10時(shí),誤碼率可達(dá) 10-3~10-4,可滿足水聲通信的誤碼指標(biāo)要求。

    圖15 水聲時(shí)變信道中不同多途數(shù)量Q時(shí)的極化碼性能Fig.15 BERs of Polar code with different number of multipaths in UWA time-varying channel

    4.3.2 Polar碼隨信道最大多途時(shí)延的變化

    研究信道最大多途時(shí)延τmax變化對(duì)極化碼性能的影響,設(shè)水聲信道多途的數(shù)量Q=6,最大多普勒頻移設(shè)為fmax=10-3F,最大多途時(shí)延τmax以及歸一化時(shí)延τmax/T如表4所示。通信過(guò)程中,要保證循環(huán)前綴長(zhǎng)度足夠長(zhǎng),循環(huán)前綴長(zhǎng)度應(yīng)大于等于最大多途時(shí)延τmax。測(cè)試結(jié)果如圖16所示。

    表4 水聲時(shí)變信道最大多途時(shí)延參數(shù)Table 4 Maximum multipath delay parameters in the UWA time-varying channel

    由圖 16中結(jié)果可知,最大多途時(shí)延取值范圍為(T/8)~10T,隨著最大多途時(shí)延增加,極化碼的性能逐漸下降2~3 dB,誤碼率均可達(dá)10-3~10-4,可以滿足水聲通信的誤碼率指標(biāo)要求。

    圖16 水聲時(shí)變信道中不同最大多途時(shí)延τ的極化碼性能Fig.16 BERs of Polar code with different maximum multipath delay in UWA time-varying channel

    4.3.3 極化碼性能隨信道最大多普勒頻移的變化

    為研究信道最大多普勒頻移變化對(duì)極化碼性能的影響,設(shè)水聲信道多途數(shù)量Q=6,最大多途時(shí)延τmax=T/4。最大多普勒頻移的選取以及歸一化最大多普勒頻移 (fmax/F)如表5所示,測(cè)試結(jié)果如圖17所示。

    表5 水聲時(shí)變信道最大多普勒頻移參數(shù)Table 5 Maximum Doppler frequency shift parameters in the UWA time-varying channel

    設(shè)定SNR為4 dB,觀察BER隨信道最大多普勒頻移的變化情況,研究極化碼容錯(cuò)性,結(jié)果如圖18所示。

    圖18 水聲時(shí)變信道中不同歸一化多普勒頻移時(shí)的極化碼性能Fig.18 BERs of Polar code with different channel normalized Doppler frequency shifts in UWA time-varying channel when SNRis 4 dB

    由圖18可知,當(dāng)歸一化多普勒頻移 (fmax/F)<0.01 ,極化碼的誤碼率可達(dá)10-3~10-4,可滿足水聲通信的誤碼率指標(biāo)要求,且隨著最大多普勒頻移的增加,極化碼的性能下降約4 dB。歸一化多普勒頻移 (fmax/F)≥0.01 ,極化碼無(wú)法發(fā)揮其作用。SNR=4 dB,歸一化多普勒頻偏≥9× 1 0-3時(shí),誤碼率大于 10-2,極化碼失效,在實(shí)際應(yīng)用中,應(yīng)保證。

    5 結(jié) 論

    本文在現(xiàn)有的極化碼理論原理和應(yīng)用研究的基礎(chǔ)上,結(jié)合水聲信道特征和水聲通信技術(shù),對(duì)蒙特卡洛逼近法和巴氏參數(shù)界法進(jìn)行優(yōu)化和仿真性能測(cè)試;對(duì)SC,CA-SCL,BP,SCAN 4種譯碼算法進(jìn)行性能測(cè)試和對(duì)比;并選用性能較為優(yōu)越的蒙特卡洛逼近法和CA-SCL法,建立了與水聲信道相匹配的極化碼信道編碼機(jī)制;結(jié)合OFDM技術(shù)搭建水聲通信系統(tǒng),對(duì)提出的極化碼信道編碼機(jī)制在OFDM 水聲通信中的性能表現(xiàn)進(jìn)行理論研究和仿真驗(yàn)證;同時(shí)針對(duì)不同水聲信道模型、信道參數(shù)以及不同極化碼參數(shù),研究極化碼在水聲通信中的性能變化。由本文的結(jié)果可知,極化碼信道編碼機(jī)制可滿足水聲通信的誤碼率指標(biāo)要求,能有效提高水聲通信的可靠性,且性能優(yōu)于LDPC碼和Turbo碼。

    猜你喜歡
    信道編碼蒙特卡洛譯碼
    基于校正搜索寬度的極化碼譯碼算法研究
    如何提升計(jì)算機(jī)在信道編碼的處理應(yīng)用效率
    征服蒙特卡洛賽道
    5G信道編碼技術(shù)相關(guān)分析
    華為:頒獎(jiǎng)Polar碼之父
    利用控制變量方法縮減蒙特卡洛方差
    從霍爾的編碼譯碼理論看彈幕的譯碼
    新聞傳播(2016年3期)2016-07-12 12:55:27
    蒙特卡洛模擬法計(jì)算電動(dòng)汽車充電負(fù)荷
    衛(wèi)星數(shù)字電視信號(hào)部分信道編碼的軟件實(shí)現(xiàn)
    基于蒙特卡洛的非線性約束條件下的優(yōu)化算法研究
    砚山县| 克拉玛依市| 新和县| 赞皇县| 平陆县| 禹州市| 南宁市| 白城市| 讷河市| 华宁县| 东丽区| 林甸县| 封开县| 广宗县| 万载县| 蛟河市| 海晏县| 城口县| 白城市| 江都市| 肃北| 白河县| 景宁| 舞钢市| 安仁县| 温泉县| 八宿县| 绥宁县| 巴彦淖尔市| 土默特右旗| 松滋市| 香格里拉县| 平谷区| 禹城市| 盖州市| 阳西县| 娄烦县| 平定县| 新野县| 东乌珠穆沁旗| 惠水县|