• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reliability assessment of excavation-induced ground surface settlement with groundwater drawdown considering spatial variability

    2021-03-07 12:13:28TingqingWengng

    , , Tingqing, Wengng, 1

    1a. School of Civil Engineering; 1b.Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education, Chongqing University, Chongqing 400045, P. R. China; 2. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; 3. School of Civil Engineering, Chongqing Three Gorges University, Chongqing 404130, P. R. China)

    Abstract: For braced excavations in deep deposits of soft clays or residual soils, the ground surface settlement behind the excavation is correlated with the extent of basal heave as well as the wall deflections and is also affected by the magnitude of the groundwater drawdown behind the retaining system. Reliability analysis based on a recently developed simplified logarithm regression model for estimation of the maximum ground surface settlement is presented. The first-order reliability method implemented with a variance reduction technique while considering soil spatial variability is employed to investigate the probability that certain ground surface settlement threshold is exceeded. This paper presents the effects of spatial averaging and the influence of several key design parameters including the stiffness of the wall system, the magnitude of the threshold ground surface settlement, the coefficient of variation of the soil properties, and the magnitude of the groundwater drawdown on the ground surface settlement. It is concluded that soil spatial variability results in a higher probability of failure (i.e., a lower reliability index), without considering it would result in an unreliable design. A larger characteristic length results in a lower probability of failure and a higher reliability index. When the spatial variability of both the and E50/cu are considered, the influence on is more significant.

    Keywords: ground surface settlement; braced excavation; groundwater drawdown; spatial reliability; variance reduction

    1 Introduction

    Rapid urbanization and continuous development of infrastructure construction have led to an increased demand for deep braced excavations in urban built environments. One major concern with the construction of deep excavation support systems is the potential damage to nearby buildings and tunnels caused by excavation-induced ground movement. The ground movement behind the excavation is correlated with the extent of basal heaves and the magnitude of the wall deflections. Ground settlement is an important hydro-geological factor influencing the groundwater drawdown behind the excavation, due to possible leakage through the wall, flow along the wall interface, or poor connections between wall panels as a result of poor quality control. Therefore, assessing the distribution and magnitude of the ground surface settlement adjacent to a braced excavation is the most important consideration in the design phase. Numerical modeling is widely used, but it’s time-consuming and requires considerable computational effort, especially three-dimensional computation. The use of empirical/semi-empirical methods to predict excavation-induced ground movement is more convenient[1-10].

    Reliability-based analysis via the first-order reliability method (FORM) is increasingly employed in various geotechnical applications[11-13]to calculate the reliability index as well as the probability of failure. This method adopts the mean average and the standard deviation or the equivalent value to present uncertain parameters. The safety factor or safety margin is determined by measuring the shortest distance from the safety average to the directional standard deviation of the most likely failure combination of parameters on the limit state surface. However, natural soil properties vary spatially due to the complicated geological, environmental, and physical-chemical processes to which the soil has been subjected during its formation[14-15]. Several researchers have highlighted the effects of the spatial variation of soil properties on various geotechnical problems[16-21]. Reliability analysis considering spatial variability has been carried out by many researchers. Luo et al.[22]presented a simplified approach for the reliability analysis of basal heave in a braced excavation considering the spatial variability of the soil parameters using the first-order reliability method (FORM). Wang et al.[23]modeled the inherent spatial variability of the soil properties of drilled shafts by developing a reliability-based design (RBD) approach that integrated a Monte Carlo simulation (MCS)-based RBD with the random field theory. Cheon et al.[24]described the spatial variability of geotechnical properties for foundation design in deep water in the Gulf of Mexico, via a random field model that depicted spatial variations in the design of undrained shear strength. Li et al.[25]investigated the reliability of strip footing in the presence of spatially variable undrained shear strength with a non-stationary random field. Gong et al.[26]proposed a new framework considering the spatial variability of soil properties to analyze the probabilistic ability of a braced excavation in clay, which was modeled with the random field theory. Liu et al.[27]analyzed the reliability of slopes considering the spatial variability of the soil using a simplified framework that applied a strategy of variance reduction to enable more than one shear strength value to be considered in slope reliability problems based on Monte Carlo simulation and the multiple response surface method (MRSM). However, studies on the probabilistic assessment of ground surface settlement induced by the braced excavation that consider the uncertainties arising from the soil stiffness and strength parameters are limited. In addition, the influence of the spatial variability of soil properties, as well as the influence of groundwater drawdown, are scarcely investigated.

    This paper adopts a framework combining a recently developed simplified LR model[28]to estimate the maximum ground surface settlement using the FORM EXCEL spreadsheet method to analyze the reliability. The variance reduction technique for considering soil spatial variability is employed to investigate the probability that a certain threshold ground surface settlement is exceeded. Some useful conclusions regarding the effects of spatial averaging, and the influence of several key design parameters such as the stiffness of the wall system, the magnitude of the threshold ground surface settlement, the coefficient of variation of the soil properties, as well as the magnitude of the groundwater drawdown are presented.

    2 Review of the developed logarithm regression (LR) model

    The developed logarithm regression (LR) model is a semi-empirical model proposed by Zhang et al.[28]for estimating the maximum ground surface settlement induced by the braced excavation considering groundwater drawdown in residual soils. It is based on the results of 746 plane strain finite element (FE) simulations using Plaxis 2D[29]. To reveal the increased stiffness of soils at small strain levels, the hardening small strain (HSS) model was adopted in the analysis. Many studies have utilized the HSS constitutive model in the modeling of excavation in soft/medium clay[30-32]. For the 746 FE model, the range of the excavation width (B) is 30~40 m, the excavation depth (He) is 14~20 m, the thickness of the soft clay (T) is 25~30 m, the system stiffness (lnS) is 7.3~8.8, the relative shear strength ratio of the soil (cu/σv′) is 0.25~0.35, the relative stiffness ratio of the soil is (E50/cu), and the groundwater drawdown (dw) is 0.3~12 m.

    For simplicity, the physical and geometrical model is not shown in this paper. The diaphragm wall was inserted 5 m into the stiff clay layer, which was found to be adequate against basal heave failure. More model details can be found in Zhang et al.[28].

    (1)

    The groundwater drawdown simulation in this paper is implemented by changing the horizontal/vertical permeability ratio of the soil,kx/ky. The numerical analysis performed via Plaxis considers fully coupled flow-deformation, in which the groundwater drawdown of 12.0 m, 6.0 m 0.3 m can be realized. The use of the relative shear strength ratio and the stiffness ratios is based on Kung et al.[3], Zhang et al.[32], Xuan[34]).

    A simple logarithm regression (LR) model based on the numerical results from 746 hypothetical cases[28], was developed to predict the maximum ground settlementδvm. It is validated by a total of 19 well-documented actual case histories from various sites. The equation forδvm(mm) with the coefficient of determinationR2=0.924 5 takes the following form:

    (E50/cu)-0.5479S-2.222 3(dw)0.101 3

    (2)

    The index for the drawdown in the LR analysis was only 0.101 3, which is relatively small compared to the excavation depth, the relative shear strength ratio, and the system stiffness value. Based on Eq. (2), when other parameters are kept constant, an increase ofdwfrom 0.3 m to 6.0 m will almost double the maximum ground surface settlement, which is consistent with the findings by Wen et al.[35].

    3 Reliability analysis considering spatial variability

    Since the FE analysis and the proposed LR estimation model are unable to take into account the inherent spatial variability of soil properties, this section introduces a reliability-based method to estimate the braced excavation induced ground surface settlement considering groundwater drawdown by adopting the FORM spreadsheet method and implementing the spatial factors.

    3.1 Brief introduction to spatial variability

    Spatial variability refers to the nonuniform distribution of basic soil properties such as permeability or the deformation modulus. The change in the spatial average of soil properties in a certain area is smaller than at a certain point, to some extent, and as the size of the area increases, the change in the soil properties decreases. A dimensionless variance reduction functionΓ2calculated by the scale of fluctuationθand the characteristic lengthL, as proposed by Vanmarcke[36], was used to quantify the reduction in the point variance under local averaging. It is subsequently adopted by Vanmarcke to reveal spatial averaging for reliability analysis[37], by means of which the soil parameter variances can be reduced by multiplying a factor less than the unity, i.e. the variance reduction factor. This variance reduction technique has been successfully applied using different constant, triangular, and exponential models[37-38], among which the latter is more commonly assumed for geotechnical random field modeling, expressed as:

    (3)

    (4)

    For reliability analysis using the variance reduction technique, the characteristic length is of most importance. Schweiger et al.[39]found that for the analysis of supported excavations, the characteristic length is correlated to the length of the sliding surface. Luo et al.[22]investigated the value ofLthat should be used and examined the influence of differentLon the probability of excavation-induced basal-heave failure. For simplicity, the commonly adopted scale of fluctuation valuesθof 2, 5, 20, 50, 100 m[40-41], and the characteristic lengthsL=19, 26, 72 m are considered, which are closely associated with the excavation depth, the diaphragm wall depth, and the final strut depth.

    Fig.1 Schematic diagram of the slip surface for braced

    As shown in Fig. 1, the 1stL=19 m is the length ofod(the distance of the final strut to the bottom of the diaphragm wall), the 2ndL=26 m equals the length of the arccd, and the 3rdL=72 m is the length of the sliding surface (arcabcde). This method has been similarly adopted by Wu et al.[16]and Luo et al.[22].

    3.2 Developed Excel spreadsheet

    Fig.2 plots the FORM EXCEL Spreadsheet setup that implements the spatial variability for the calculation of the reliability indexand the probability of failurePfbased on the proposed estimation model of ground surface settlement. The spatial factors are inserted via Cells R3∶S5. The two variables ofcu/v′ andE50/cuare assumed to be normally distributed. Other parameters includingB,T,He, lnS, anddware assumed to be deterministic. In the example shown in Fig. 2,B=30 m,T=30 m, andHe=20 m are adopted in the spatial variability analysis for the detailed use of the developed spreadsheet[13]. The reliability indexis calculated in Cell O4, numerically expressed as Eq. (5)

    =

    (5)

    wherexis the vector of random variables;mis the vector of mean values;σis the vector of standard deviation;Ris the correlation matrix; andFis the failure region. Cellg(x) contains the expression ofδvm-δvm_cr, which indicates that if the induced maximum ground surface settlement is greater than the threshold valueδvm_cr, it would be regarded as a failure or unsatisfactory performance. The column labeledxicontains the design point. For spatial variance,SD=Mean×COV×, in whichSDis the standard deviation, Mean is the mean value, COV is the coefficient of variation,is the standard deviation reduction factor. For random variables, the off-diagonal terms are zero. For Gaussian-distributed random variables, a direct relationship exists betweenandPf, i.e.,Pf=1-Φ(), in whichΦis the cumulative normal density function.

    Fig.2 FORM EXCEL setup for evaluating the and

    3.3 Influence of the cu/v′ and E50/cu of the soil

    Fig.3 and Pf results from different spatial

    3.4 Influence of ln(S)

    Fig.4 shows the effects of ln(S) onandPffor the case ofB=30 m,He=20 m, ln(S)=8.176, anddw=4 m.increases as the system stiffness ln(S) becomes larger. It is reasonable thatincreases with a stiffer excavation supporting system. The system stiffness shows a significant influence onandPf; a larger ln(S) will result in a greaterand a smallerPf.

    Fig.4 Influence of the logarithmic system stiffness ln(S) on and Pf for the case of B=30 m, He=20 m,

    3.5 Influence of vm_cr

    In this section, the choice of the threshold (critical) maximum ground settlementvm_crfor service ability considerations is considered. Typically, the thresholdvm_cris chosen as 0.75%-1.0% ofHe. Fig. 5 plots the effects ofθandδvm_cronandPfforB=30 m,He=20 m, ln(S)=8.176 andL=19, 26, 72 m, respectively. It indicates that bothθandδvm_crsignificantly influence the value ofandPf. However, the effects ofθonandPfare not as remarkable as that ofδvm_cr, especially whenθis greater than 20.tends to increase withδvm_cr, while the probability of failure is much lower when a greater threshold is exceeded. In addition,decreases with the increase ofθ. Furthermore,slightly increases withL, as indicated in Fig.5(a) and (b).

    3.6 Influence of dw

    Fig.6 compares the influence of different groundwater drawdowndwonandPffor the case ofB=30 m,He=20 m, ln(S)=8.176, andδvm_cr=200 mm. Greaterdwresults in a smaller, indicating that the greater the groundwater drawdown, the greater the probability thatδvmexceeds the thresholdδvm_cr. The magnitude of the groundwater drawdowndwshows a significant influence onandPf.

    3.7 Influence of the COV of E50/cu

    Fig.7 shows the influence of the coefficient of

    Fig.5 Influence of θ, vm-cr and L on (a)reliability index and

    Fig.6 Effects of dwon (a) and

    variation, the COV ofE50/cuonandPffor the case ofB=30 m,He=20 m,dw=4.0 m, ln(S)=8.176, andδvm_cr=200 mm. Both the COV ofE50/cuandLhave a significant influence onandPf. However, whenθis greater than 50, the influence of the COV ofE50/cuonandPfis not as significant as that ofL.decreases with the increase of the COV ofE50/cu.

    Fig.7 Effects of the COV of E50/cu on (a) and

    3.8 Influence of the COV of cu/v′

    Fig.8 Effects of the COV of on (a) and

    5 Summary and conclusions

    A reliability-based framework that considers the spatial averaging effect of soil properties is proposed to assess the probability that threshold maximum ground surface settlement is exceeded by combining the FORM spreadsheet and the LR model proposed previously by Zhang et al.[28]. It is concluded that soil spatial variability results in a higher probability of failure (i.e., a lower reliability index).

    For further study, a detailed characterization of geotechnical model uncertainties, especially from the perspective of the spatial variability of in situ soil properties, is indispensable. The authors are working on this by collecting borehole and bore log information regarding field instrumentation and tests.

    Acknowledgements

    The authors would like to acknowledge the financial support from National Natural Science Foundation of China (Grant No. 52078086), Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0632), Chongqing Engineering Research Center of Disaster Prevention & Control for Banks and Structures in Three Gorges Reservoir Area (No. SXAPGC18YB01).

    免费av观看视频| 国产一区二区在线av高清观看| 国产成人a∨麻豆精品| 亚洲人与动物交配视频| 99精品在免费线老司机午夜| 成人高潮视频无遮挡免费网站| 悠悠久久av| 色综合亚洲欧美另类图片| 精品免费久久久久久久清纯| 啦啦啦啦在线视频资源| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 国产精品人妻久久久影院| av卡一久久| 蜜桃亚洲精品一区二区三区| 黄色配什么色好看| 少妇人妻一区二区三区视频| 在线观看美女被高潮喷水网站| 午夜激情欧美在线| 97超碰精品成人国产| 国产精品综合久久久久久久免费| 亚洲内射少妇av| 午夜福利视频1000在线观看| 国产色婷婷99| 在线观看av片永久免费下载| 亚洲无线在线观看| 中文字幕精品亚洲无线码一区| 午夜久久久久精精品| 国产黄片美女视频| 亚洲综合色惰| 国产精华一区二区三区| 联通29元200g的流量卡| 又粗又爽又猛毛片免费看| 国产成人精品婷婷| 乱系列少妇在线播放| 国产成人精品一,二区 | 亚洲av熟女| 亚洲一区高清亚洲精品| 看免费成人av毛片| 亚洲欧美成人综合另类久久久 | 亚洲欧美精品综合久久99| 色5月婷婷丁香| 午夜福利在线在线| 在线观看美女被高潮喷水网站| a级毛色黄片| 看黄色毛片网站| 精品人妻偷拍中文字幕| 久久久精品欧美日韩精品| 热99re8久久精品国产| 国产欧美日韩精品一区二区| 2022亚洲国产成人精品| 国产黄色小视频在线观看| 夜夜夜夜夜久久久久| 国产精品不卡视频一区二区| 精华霜和精华液先用哪个| 一个人免费在线观看电影| 日本黄色片子视频| 亚洲色图av天堂| 最新中文字幕久久久久| 99riav亚洲国产免费| 精品久久久久久久久久久久久| 波野结衣二区三区在线| 国产高清视频在线观看网站| 能在线免费观看的黄片| 国产午夜精品论理片| 最好的美女福利视频网| 深爱激情五月婷婷| 久久韩国三级中文字幕| 久久久久网色| 青春草国产在线视频 | 亚洲国产日韩欧美精品在线观看| 成人永久免费在线观看视频| 国产精品乱码一区二三区的特点| 欧美区成人在线视频| 国产三级中文精品| 最新中文字幕久久久久| 亚洲内射少妇av| 日日干狠狠操夜夜爽| 午夜精品在线福利| 成年免费大片在线观看| 亚洲天堂国产精品一区在线| 伦精品一区二区三区| 日韩欧美精品v在线| 最近中文字幕高清免费大全6| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线观看播放| 亚洲精品日韩av片在线观看| 成人无遮挡网站| 日韩欧美国产在线观看| 国产乱人视频| 18禁在线播放成人免费| 欧洲精品卡2卡3卡4卡5卡区| 永久网站在线| 欧美性猛交╳xxx乱大交人| 干丝袜人妻中文字幕| 国产亚洲5aaaaa淫片| 听说在线观看完整版免费高清| 少妇熟女欧美另类| 三级经典国产精品| 精品午夜福利在线看| 国产淫片久久久久久久久| 国产激情偷乱视频一区二区| 91av网一区二区| 色播亚洲综合网| 色尼玛亚洲综合影院| 熟女电影av网| 哪里可以看免费的av片| 国产单亲对白刺激| 久久精品91蜜桃| 变态另类丝袜制服| 亚洲av不卡在线观看| 国产精品.久久久| 99热网站在线观看| 久久精品国产亚洲网站| 网址你懂的国产日韩在线| 日日撸夜夜添| 韩国av在线不卡| 欧美激情国产日韩精品一区| 99热只有精品国产| 桃色一区二区三区在线观看| 日韩成人伦理影院| www.色视频.com| 99久久精品国产国产毛片| 一级毛片aaaaaa免费看小| 日韩精品青青久久久久久| 我要搜黄色片| 午夜精品国产一区二区电影 | 少妇裸体淫交视频免费看高清| 极品教师在线视频| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久| 日韩 亚洲 欧美在线| 久久久久免费精品人妻一区二区| 亚洲av男天堂| 国产日本99.免费观看| 天天一区二区日本电影三级| 亚洲av成人av| 91精品国产九色| 精品不卡国产一区二区三区| 久久久精品欧美日韩精品| 国产v大片淫在线免费观看| 成人亚洲欧美一区二区av| 黑人高潮一二区| 最近的中文字幕免费完整| 国产探花极品一区二区| 五月玫瑰六月丁香| 韩国av在线不卡| 国产精品一区二区三区四区免费观看| АⅤ资源中文在线天堂| 一卡2卡三卡四卡精品乱码亚洲| 小说图片视频综合网站| 黄色视频,在线免费观看| 女的被弄到高潮叫床怎么办| 12—13女人毛片做爰片一| 欧美性猛交╳xxx乱大交人| 精品99又大又爽又粗少妇毛片| 九九在线视频观看精品| 偷拍熟女少妇极品色| 国产91av在线免费观看| 亚洲精品日韩在线中文字幕 | 午夜福利在线观看免费完整高清在 | 免费在线观看成人毛片| 亚洲欧美日韩东京热| 色吧在线观看| 免费看av在线观看网站| 日本黄大片高清| 成人漫画全彩无遮挡| 亚洲久久久久久中文字幕| 国产午夜福利久久久久久| 亚洲精品国产成人久久av| 成熟少妇高潮喷水视频| 一区二区三区高清视频在线| 国产精品精品国产色婷婷| 亚洲久久久久久中文字幕| 三级国产精品欧美在线观看| 校园人妻丝袜中文字幕| 丝袜喷水一区| 成人三级黄色视频| 亚洲精品久久国产高清桃花| 精品少妇黑人巨大在线播放 | 亚洲精品国产av成人精品| 看黄色毛片网站| 精品国产三级普通话版| 免费在线观看成人毛片| 91久久精品国产一区二区成人| 国产色爽女视频免费观看| 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 成人午夜精彩视频在线观看| 亚洲欧美成人综合另类久久久 | 欧美变态另类bdsm刘玥| www.色视频.com| 最近的中文字幕免费完整| 白带黄色成豆腐渣| 舔av片在线| 久久精品国产鲁丝片午夜精品| 99久久久亚洲精品蜜臀av| 国产精品日韩av在线免费观看| 特大巨黑吊av在线直播| 一个人看的www免费观看视频| 亚洲精品成人久久久久久| 亚洲最大成人av| 亚洲国产精品成人久久小说 | avwww免费| 69av精品久久久久久| 女的被弄到高潮叫床怎么办| 两性午夜刺激爽爽歪歪视频在线观看| 国产极品天堂在线| 黄色视频,在线免费观看| 久久99热6这里只有精品| 亚洲性久久影院| 亚洲自拍偷在线| 我要搜黄色片| 91精品国产九色| 国产精品国产高清国产av| 黄片wwwwww| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久v下载方式| 三级男女做爰猛烈吃奶摸视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产99精品国产亚洲性色| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件| 成人一区二区视频在线观看| 亚洲一级一片aⅴ在线观看| 欧美丝袜亚洲另类| 麻豆久久精品国产亚洲av| а√天堂www在线а√下载| 免费人成在线观看视频色| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 中国国产av一级| 尤物成人国产欧美一区二区三区| 亚洲精品日韩av片在线观看| 久久人人爽人人片av| 人体艺术视频欧美日本| 亚洲av第一区精品v没综合| 亚洲三级黄色毛片| 久久久久久伊人网av| 日本撒尿小便嘘嘘汇集6| 日本黄色视频三级网站网址| 夜夜爽天天搞| 国产探花极品一区二区| 青春草亚洲视频在线观看| 国产又黄又爽又无遮挡在线| av国产免费在线观看| 午夜爱爱视频在线播放| 亚洲欧美精品自产自拍| 一边摸一边抽搐一进一小说| 老熟妇乱子伦视频在线观看| 天美传媒精品一区二区| 免费av观看视频| 99热只有精品国产| 99久久成人亚洲精品观看| 亚洲欧美精品专区久久| 亚洲成人久久爱视频| 女同久久另类99精品国产91| 久久6这里有精品| 麻豆一二三区av精品| 亚洲综合色惰| 极品教师在线视频| 中文欧美无线码| 一本一本综合久久| 全区人妻精品视频| 在线观看午夜福利视频| 伦理电影大哥的女人| 国产一区二区三区在线臀色熟女| 一卡2卡三卡四卡精品乱码亚洲| 免费av不卡在线播放| 精品午夜福利在线看| 三级毛片av免费| 国产成人一区二区在线| avwww免费| 日本一二三区视频观看| 可以在线观看毛片的网站| 国产三级在线视频| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 22中文网久久字幕| 一个人免费在线观看电影| 色尼玛亚洲综合影院| 国产成人精品久久久久久| 丰满乱子伦码专区| 免费看日本二区| 夜夜看夜夜爽夜夜摸| 成人特级av手机在线观看| 嘟嘟电影网在线观看| 免费av不卡在线播放| 一边亲一边摸免费视频| 日本撒尿小便嘘嘘汇集6| 白带黄色成豆腐渣| 精品午夜福利在线看| 日韩一区二区三区影片| 亚洲精品亚洲一区二区| 精品人妻熟女av久视频| 日韩欧美 国产精品| 男插女下体视频免费在线播放| 国产精品国产高清国产av| 99九九线精品视频在线观看视频| 亚洲精华国产精华液的使用体验 | av在线亚洲专区| 精品久久国产蜜桃| 精品国内亚洲2022精品成人| 中文精品一卡2卡3卡4更新| 日本三级黄在线观看| 亚洲精品日韩av片在线观看| a级毛色黄片| 久久热精品热| 1024手机看黄色片| 高清午夜精品一区二区三区 | 我的老师免费观看完整版| 97热精品久久久久久| 91狼人影院| 久久久精品94久久精品| 看片在线看免费视频| 黑人高潮一二区| 高清在线视频一区二区三区 | АⅤ资源中文在线天堂| 啦啦啦观看免费观看视频高清| av免费在线看不卡| 国产 一区 欧美 日韩| 午夜a级毛片| 一级av片app| av天堂在线播放| 一进一出抽搐动态| 亚洲精品自拍成人| 乱系列少妇在线播放| 身体一侧抽搐| 成人av在线播放网站| 久久精品91蜜桃| 性色avwww在线观看| 国语自产精品视频在线第100页| а√天堂www在线а√下载| 亚洲性久久影院| 最近视频中文字幕2019在线8| 99精品在免费线老司机午夜| 国产亚洲91精品色在线| 欧美潮喷喷水| 国产一区二区亚洲精品在线观看| 成人午夜精彩视频在线观看| 亚洲精品国产成人久久av| 久久这里有精品视频免费| 中文精品一卡2卡3卡4更新| 十八禁国产超污无遮挡网站| 免费不卡的大黄色大毛片视频在线观看 | 日日摸夜夜添夜夜爱| 国产成人freesex在线| 久久久久久久午夜电影| 亚洲国产精品国产精品| 日本与韩国留学比较| 国产亚洲av嫩草精品影院| av在线亚洲专区| 日韩欧美三级三区| 国产亚洲欧美98| 欧美日韩综合久久久久久| 成年女人永久免费观看视频| 国产91av在线免费观看| 欧美一区二区精品小视频在线| 亚洲欧美日韩卡通动漫| 欧美最黄视频在线播放免费| eeuss影院久久| 亚洲欧美中文字幕日韩二区| 国产精品1区2区在线观看.| 观看美女的网站| 欧美潮喷喷水| 婷婷六月久久综合丁香| 非洲黑人性xxxx精品又粗又长| 亚洲成人av在线免费| 青青草视频在线视频观看| 国产大屁股一区二区在线视频| 久久99精品国语久久久| 久久久久九九精品影院| 国产免费男女视频| 长腿黑丝高跟| 欧美极品一区二区三区四区| 国产精品综合久久久久久久免费| 国产成人a∨麻豆精品| 在线播放无遮挡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美一区二区亚洲| 丝袜喷水一区| 国产 一区精品| av女优亚洲男人天堂| .国产精品久久| 欧美性猛交╳xxx乱大交人| 99热这里只有是精品50| 深夜a级毛片| 男人和女人高潮做爰伦理| 婷婷亚洲欧美| 欧美一区二区国产精品久久精品| 一本精品99久久精品77| 亚洲一区高清亚洲精品| 一级黄色大片毛片| 欧美性猛交╳xxx乱大交人| 国产成人精品一,二区 | 尾随美女入室| 一区二区三区四区激情视频 | 成人性生交大片免费视频hd| 日产精品乱码卡一卡2卡三| 成年免费大片在线观看| 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 久久精品影院6| 国产av麻豆久久久久久久| 综合色av麻豆| 天天一区二区日本电影三级| 国产精品久久视频播放| 成年女人看的毛片在线观看| 亚洲人与动物交配视频| 深夜a级毛片| 欧美极品一区二区三区四区| 国产精品一及| 一级毛片aaaaaa免费看小| 亚洲精品国产成人久久av| 中国美白少妇内射xxxbb| 搡老妇女老女人老熟妇| 人人妻人人澡人人爽人人夜夜 | 波多野结衣高清作品| 免费人成在线观看视频色| 九九热线精品视视频播放| 色5月婷婷丁香| av在线播放精品| 波野结衣二区三区在线| 亚洲最大成人手机在线| 日本免费一区二区三区高清不卡| 国产视频内射| 亚洲欧美成人综合另类久久久 | 国产成人精品久久久久久| 乱系列少妇在线播放| 久久99精品国语久久久| 亚洲久久久久久中文字幕| 国产精品一及| 看片在线看免费视频| 一级二级三级毛片免费看| 久久鲁丝午夜福利片| 久久午夜福利片| 日本-黄色视频高清免费观看| 在线免费十八禁| 2022亚洲国产成人精品| 亚洲人成网站在线播| 免费av毛片视频| 亚洲av成人精品一区久久| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 欧美xxxx黑人xx丫x性爽| 午夜福利在线观看免费完整高清在 | 欧美最新免费一区二区三区| 好男人在线观看高清免费视频| 大型黄色视频在线免费观看| 如何舔出高潮| 在线免费观看的www视频| 国产精品电影一区二区三区| 少妇裸体淫交视频免费看高清| 国产白丝娇喘喷水9色精品| 久久久久九九精品影院| 此物有八面人人有两片| 边亲边吃奶的免费视频| 精品一区二区三区视频在线| 国产三级在线视频| 久久久久久久久久久丰满| 中文精品一卡2卡3卡4更新| kizo精华| 亚洲五月天丁香| 国产极品精品免费视频能看的| 最近2019中文字幕mv第一页| 哪个播放器可以免费观看大片| 久久久久久久久久久丰满| 国产av不卡久久| 尾随美女入室| 国模一区二区三区四区视频| 中文字幕av成人在线电影| 蜜桃亚洲精品一区二区三区| 亚洲一级一片aⅴ在线观看| 精品久久久久久久人妻蜜臀av| 嫩草影院新地址| 国产高清不卡午夜福利| 国产美女午夜福利| 色噜噜av男人的天堂激情| 精品久久久久久久久久免费视频| 一级二级三级毛片免费看| 久久久久久久久久久免费av| 国产淫片久久久久久久久| 日韩欧美精品v在线| 精品久久久久久久久久久久久| 有码 亚洲区| 内射极品少妇av片p| 日韩高清综合在线| 神马国产精品三级电影在线观看| 久久精品国产亚洲av天美| 久久精品影院6| 熟妇人妻久久中文字幕3abv| 插阴视频在线观看视频| 国产av在哪里看| 国产精品永久免费网站| 久久久久久国产a免费观看| 日本熟妇午夜| 久久九九热精品免费| 2021天堂中文幕一二区在线观| 日本在线视频免费播放| 欧美一区二区国产精品久久精品| 免费无遮挡裸体视频| 最近手机中文字幕大全| 免费看a级黄色片| 如何舔出高潮| 男人舔女人下体高潮全视频| 日本在线视频免费播放| 亚洲综合色惰| av黄色大香蕉| 国产精品一及| 丝袜喷水一区| 爱豆传媒免费全集在线观看| 亚洲欧美成人精品一区二区| 97热精品久久久久久| 欧美+亚洲+日韩+国产| 午夜精品国产一区二区电影 | 老女人水多毛片| 久久久精品欧美日韩精品| av福利片在线观看| 热99re8久久精品国产| 搡女人真爽免费视频火全软件| 99精品在免费线老司机午夜| 亚洲欧美日韩卡通动漫| 国产高潮美女av| 蜜桃亚洲精品一区二区三区| 亚洲av成人av| www.av在线官网国产| 国产精品嫩草影院av在线观看| 欧美日韩在线观看h| 国产精品麻豆人妻色哟哟久久 | 色哟哟·www| 成人高潮视频无遮挡免费网站| 国产精品嫩草影院av在线观看| 少妇人妻一区二区三区视频| 亚洲人成网站高清观看| 日本av手机在线免费观看| 欧美三级亚洲精品| 国产精品伦人一区二区| 亚洲av成人av| 色综合色国产| 最近的中文字幕免费完整| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩高清在线视频| 又粗又硬又长又爽又黄的视频 | 网址你懂的国产日韩在线| 夜夜爽天天搞| 国语自产精品视频在线第100页| 亚洲国产精品成人综合色| 国产精品一区二区三区四区免费观看| 男女视频在线观看网站免费| 日本成人三级电影网站| 午夜精品在线福利| 91午夜精品亚洲一区二区三区| 夜夜夜夜夜久久久久| 精品久久久久久久久亚洲| 别揉我奶头 嗯啊视频| 免费电影在线观看免费观看| 亚洲欧美日韩高清在线视频| 一级毛片电影观看 | 乱码一卡2卡4卡精品| 波多野结衣高清作品| 精品久久久久久久人妻蜜臀av| 美女xxoo啪啪120秒动态图| 特级一级黄色大片| 日韩av在线大香蕉| 亚洲人成网站在线播放欧美日韩| 1024手机看黄色片| 波多野结衣高清无吗| 极品教师在线视频| 精品一区二区免费观看| 精品久久久噜噜| 九九热线精品视视频播放| 特级一级黄色大片| 性插视频无遮挡在线免费观看| 夜夜看夜夜爽夜夜摸| 国产淫片久久久久久久久| 午夜福利在线在线| 亚洲欧美精品综合久久99| 少妇丰满av| 久久久久久久久久久丰满| 久久中文看片网| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 国产探花极品一区二区| 日韩高清综合在线| 国产成人精品久久久久久| 国产视频内射| 亚洲欧洲国产日韩| 欧美高清性xxxxhd video| 亚洲av.av天堂| 天堂影院成人在线观看| 男女下面进入的视频免费午夜| 日韩欧美国产在线观看| av又黄又爽大尺度在线免费看 | 免费看av在线观看网站| 国产高清激情床上av| 亚洲在线自拍视频| 我要看日韩黄色一级片| 婷婷亚洲欧美| 男人和女人高潮做爰伦理| 国产极品天堂在线| 亚洲久久久久久中文字幕| 国产成年人精品一区二区| 免费av观看视频| 少妇猛男粗大的猛烈进出视频 | 精品午夜福利在线看| 欧美变态另类bdsm刘玥| 搡老妇女老女人老熟妇| 波野结衣二区三区在线| 麻豆国产av国片精品| 久久人人精品亚洲av| 高清毛片免费看| 国产亚洲91精品色在线| 国产伦在线观看视频一区| 日韩欧美精品免费久久| 亚洲激情五月婷婷啪啪|