• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanisms of ammonium removal from digested piggery wastewater by Oedogonium sp. assessed via isotope mass balance analysis

    2021-03-06 02:46:12,,,
    土木與環(huán)境工程學報 2021年1期

    , , ,

    1.Changsha Environmental Protection College, Changsha 410004, P. R. China; 2.Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, P. R. China; 3.School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China)

    Abstract: Nutrient removal from digested piggery wastewater (DPW) using microalgae is of increasing interest as a secondary treatment prior to discharge to avoid environmental contamination. In this study, we investigated the main mechanisms involved in ammonium removal from DPW by Oedogonium sp. using the15N mass balance approach with a focus on the relationship between algal growth and ammonium removal and the dominant ammonium removal pathway. We noted 96.2% ammonium removal and 0.04~0.15 specific growth rate of Oedogonium sp. in the diluted autoclaved DPW during the incubation period and 94.1 % ammonium removal and -0.14~0.13 specific growth rate in the diluted raw DPW. Aeration provided a significant benefit to ammonium removal via the stripping effect, which was favored by the high pH in the experimental conditions. Isotope mass balance analysis indicated that bacteria present in the initial DPW had little effect on ammonium removal in the experiment. Algal uptake and gaseous loss were the dominant pathways for NH4—N removal from the diluted DPW using Oedogonium sp. cultures and accounted for 40.97% and 32.59% of the total 15N amount, respectively. Regression and path analyses between NH4—N removal and its main influencing factors indicated that to improve NH4—N removal efficiency, the levels of Oedogonium sp. and dissolved oxygen (DO) should be increased under weakly alkaline conditions.

    Keywords:piggery wastewater; Oedogonium sp.; ammonium removal; mass balance; algal uptake

    Anaerobic digestion by mesophilic or thermophilic bacteria is traditionally used as a primary treatment for piggery wastewater to reduce organic matter, waste volume, and odors and to recover biogas[1]. However, nutrient levels (especially ammonium) are not reduced during anaerobic digestion because the microorganisms employed are generally incapable of sufficient autotrophic metabolism of inorganic nitrogen[2]. The discharge of digested but otherwise untreated piggery wastewater results in excessive nutrient transport and induces aquatic eutrophication, groundwater contamination, and soil degradation[3]. For these reasons, many studies have focused on effective secondary treatments to remove nutrients from digested piggery wastewater (DPW) prior to disposal.

    Most of the nitrogen retained in DPW after anaerobic digestion is in the form of ammonium nitrogen, which is readily available for use by algae in photosynthesis[4-5]. Previous studies have demonstrated that many genera of microalgae, such asChlorella,ScenedesmusandNeochloris, are capable of nutrient removal from digested livestock effluent via uptake into cells[6-7]. For example, ammonium at an initial concentration between 81 and 178 mg/L was completely removed within 21 days from digested and diluted dairy manure and then used as a nutrient supplement for the cultivation ofChlorellasp.[8].Scenedesmussp. removes ammonium at rates of 5.20~6.46 mg/(L·d) when seeded at a concentration range of 0.5~1.5 g/L in anaerobically digested livestock waste effluent[9].Neochlorisoleoabundansassimilates 90%~95% of the initial nitrate and ammonium in effluent after six days[10].

    The reported NH4—N removal efficiencies vary by algae species, initial nutrient concentration, and environmental conditions. A comparison of the abilities of four green microalgae (HydrodictyaceaereticulatumLag.,Scenedesmusobliquus,Oedogoniumsp., andChlorellapyrenoidosa) and three blue-green algae (Anabaenaflos-aquae,OscillatoriaamoenaGom., andSpirulinaplatensis) to remove nutrients from diluted DPW suggests thatOedogoniumsp. is very effective at removing nutrients, especially NH4—N, which is present at an initial concentration of approximately 55 mg/L[11]. The use of microalgae for wastewater treatment offers other advantages, such as low cost, the possibility of recycling nutrients assimilated into algal biomass as fertilizer, and the discharge of oxygenated effluent into water bodies[3].

    Although anOedogoniumsp.-based secondary wastewater treatment process provides great potential for NH4—N removal from DPW, the main mechanisms involved require further investigation to optimize the design of the treatment system utilizing this alga. The stable isotope15N has been traditionally used to evaluate ammonium transformation pathways in ecosystems, such as wetlands, in situ mesocosms, and laboratory microcosms[12-13]. Thus, in this study, we used the15N mass balance approach to investigate the main mechanisms by whichOedogoniumsp. removes ammonium from DPW. We describe here the relationship between algal growth and ammonium removal, the influence of bacteria initially present in DPW upon ammonium removal, and the dominant ammonium removal pathway.

    1 Materials and methods

    1.1 Algae strain

    Algal strains ofOedogoniumsp. were obtained from the Freshwater Microalgae Culture Collection of the Institute of Hydrobiology (FACHB-Collection), Chinese Academy of Sciences, China. Cells were grown in culture media[14]at 25±2 ℃ in an incubator with a 12-h photoperiod. Cells in the exponential growth phase were filtered and then used in the experiments.

    1.2 Wastewater

    The DPW was collected from a piggery in Changsha, China; it contained 401 mg/L chemical oxygen demand (COD), 50.36 mg/L total phosphorus (TP), 525.4 mg/L total nitrogen (TN), and 508 mg/L ammonia nitrogen (NH4—N). Pretreatment in an autoclave reduced the COD, TP, TN, and NH4—N to 369, 17.88, 169.7, and 110 mg/L, respectively. Before being used as culture media, the raw and autoclaved DPW samples were diluted with distilled water at factors of 9.2 and 2, respectively, to reduce the toxic influence of the ammonia on algal growth and obtain initial ammonia concentrations of 55 mg/L.

    1.3 Experimental operation

    The experiment was carried out in an incubator set at 25±2 ℃ with a 12-h photoperiod.Oedogoniumsp. cells were cultivated in 2 L flasks with a total working volume of 1 L. Cultures were continuously agitated by atmospheric air bubbling (0.5 L/min). To investigate the fate of ammonium in theOedogoniumsp. microcosm and the effect of initial bacteria in wastewater on ammonium removal, 0.67 mg15N (as ammonium sulfate) was added with the diluted raw (DRW) or diluted autoclaved (DAW) DPW. To eliminate isotopic effects, the DRW or DAW treatments without the addition of15N were also arranged in triplicate. The initial inoculum density ofOedogoniumsp. was in the range of 300 mg/L dry weight for all treatments. DRW or DAW withoutOedogoniumsp. was prepared as the control in triplicate.

    1.4 Analytical procedures

    During the 9 days incubation period, 50 mL samples were taken for assay on days 0, 1, 3, 5, 7, and 9, and water evaporation losses were supplemented with distilled water before sample collection. NH4—N, pH, and dissolved oxygen (DO) analyses were performed following standard methods[15]. The cells were collected by centrifugation at 4 000 rpm for 10 min and then transferred into a 10 mL tube for algal Chl-a content (mg/L) analysis[16]. The specific growth rate, μ (day-1), was determined on the basis of the Chl-a content[16]. At the end of the experiment, a mass spectrometer (Thermo Scientific MAT 253, USA) was used to measure the15N composition of TN in water and dried cells after filtration. As algal uptake, stripping volatilization, and microbial removal are the three main N removal processes in theOedogoniumsp. microcosm, the15N mass balance analysis was expressed using equations modified from Zhang et al.[12].

    Ms=Mi-(Mw+Mm+Ma)

    (1)

    Mm=Mc-Ma

    (2)

    whereMiis the initial15N load in wastewater,Mwis the final15N load in DRW wastewater,Msis the estimated15N loss by stripping volatilization in DRW,Mcis the15N uptake by the cells (algal and bacterial) in DRW,Mais the15N uptake by the algae in DAW, andMmis the estimated microbial N removal.

    The regression and path analyses relating NH4—N removal in DAW and the independent variables were performed using SPSS 13.0 (SPSS Inc., Chicago, IL, USA).

    2 Results and discussion

    2.1 Algal growth and ammonium removal efficiencies

    During the incubation period,NH4—N concentrations decreased from the initial 55 mg/L to 3.2 mg/L (DRW) and 2.1 mg/L (DAW), and the NH4—N concentrations in the DRW and DAW controls decreased to 28.1 and 32.0 mg/L on day 9, respectively (Fig.1(a)). Meanwhile, the Chl-a content increased from 1.07 to 3.35 mg/L (DRW) and 1.29 to 4.13 mg/L (DAW) (Fig.1(b)). Data related to the growth rate ofOedogoniumsp. and the ammonium removal rate are summarized in Table 1. Most of the NH4—N was removed during the first five days, accounting for 64.1%~70.4% of NH4—N removal in both treatments. By day 9, 96.2% (DAW) and 94.1% (DRW) of NH4—N was removed. After an initial adjustment to the new growth conditions, after day 3Oedogoniumsp. grew rapidly and at a steady, specific growth rate.

    Fig.1 Changes in NH4—N concentration and Chl-a content of DRW and DAW over time

    Table 1 Specific growth rates of Oedogonium sp. and ammonium removal rates during the incubation period

    Nitrogen often exists as ammonium in anaerobically digested wastewater[17]; thus, we focused our investigation of microalgal nitrogen removal on ammonium. Algal growth and ammonium removal rates were higher for DAW than for DRW, which could be due to the relatively higher initial concentration of P in DAW than in DRW, while both treatments had similar initial NH4-N levels. In the case ofNannochloropsissp. cultivated in nutrient media, a lower N∶P supply ratio favors biomass productivity and nutrient removal[18]. It is worth noting that 41.8%~48.9% of the ammonium removed was observed on day 9 in the DRW and DAW controls without algal uptake.

    2.2 Changes in pH and DO concentration

    From an initial pH value of 9.0, the pH of the DRW and DRW controls decreased to 8.3 and 8.4 on day 9, respectively. The pH of DAW decreased from 9.3 to 8.0 on day 3 and reached a pH of 7.7 on day 9. The DAW control followed a similar trend, reaching a pH of 7.8 on day 9 (Fig.2(a)). These data demonstrate that during ammonium removal, the pH of the wastewater was maintained within 7.7~9.3 and mostly > 8.0. Such high values (> 8.0) favor ammonia stripping due to the shifting equilibrium from NH4to ammonia (NH3)[19]. Therefore, the extent of ammonia removal with time can be explained by NH3volatilization.

    The DO concentrations in DRW and DAW increased from 4.9 and 4.7 mg/L to 6.3 and 5.8 mg/L on day 1, respectively, and then remained between 6.0 and 6.4 mg/L for both treatments. The DO concentration of the DAW control increased to 6.3 mg/Lon day 1 and then remained around 6.2 mg/L, while that of the DRW control ranged from 5.7~6.4 mg/L after day 1 (Fig.2(b)). Molecular oxygen is normally released during photosynthesis when treating wastewater with microalgae[20]. However, DO saturation (6.2 mg/L) can be maintained by appropriate aeration, which is favorable for algal cell growth and algal ammonia uptake[9]. The net algal growth rate without aeration is enhanced 1.7-fold by aeration. Moreover, the ammonium removal rate in algal cultures with aeration is approximately three times that of algal cultures without aeration[9]. At the same time, aeration contributes to ammonium removal by stripping ammonia out of wastewater directly; this process is highly favored at high pH[19]. Therefore, the NH4—N removal rate in this experiment was probably due to gas loss by NH3volatilization under conditions of high pH conditions and the stripping of ammonia by aeration in the controls as well as in DAW and DRW. These results are consistent with the aforementioned observation that 41.8%~48.9% of ammonium was removed in the controls without algal uptake.

    Fig.2 Changes in pH and DO concentrations for DRW and DAW over

    2.3 15N mass balance analysis

    The15N mass balance inOedogoniumsp. cultures at the end of the incubation period is shown in Fig.3. We assumed that the influence of the other microorganisms on ammonium removal was negligible compared to the initial bacteria in DRW and the added algae. Based on the value of15N uptake byOedogoniumsp. in DAW and DRW with isotope and the equations (1) and (2), the estimated quantities of15N in the final wastewater, algae, and bacteria were 0.12, 0.27, and 0.06 mg, respectively, accounting for 17.31%, 40.97%, and 9.13% of the initial 0.67 mg15N in the DRWOedogoniumsp. culture. The residual15N ratio in the final wastewater at day 9 was higher than that of NH4—N in the final DRW without isotope, indicating that14N is preferentially incorporated relative to15N. This has been observed previously in studies on nitrogen isotopic fractionation associated with N uptake and assimilation by microorganisms[21-22]. Mass balance analysis showed that 0.22 mg15N disappeared from theOedogoniumsp. culture, indicating that 32.59% of the added15N was lost through gas. Ammonia stripping could be considered an important pathway for NH4—N removal from DRW; the results of the15N tracer analysis showed that NH4—N removal from DRW could be mainly attributed to NH4—N incorporation intoOedogoniumsp. and gaseous loss.

    Fig.3 15N mass balance in Oedogonium sp.

    2.4 Ammonium removal regression and path analyses

    The Shapiro-Wilk test was used to analyze the normality of NH4—N removal in DAW as the dependent variable. The resulting Shapiro-Wilk statistic is 0.950 (pvalue of 0.736 > 0.05), which means that the dependent variable (Y) is distributed normally, that is,Yis a normal variable for regression analysis. The regression equation to define the relationship betweenYand the main influencing factors or independent variables, namely, DO (X1), pH (X2), and Chl-a content (X3), was established by stepwise regression using quadratic polynomials expressed as follows:

    (3)

    The correlation coefficient resulting from the equation is close to 1 (R=0.994) with a small standard deviation (S=0.045), indicating the high accuracy of fit of the equation.

    The correlation values between different independent variables and NH4—N removal are shown in Table 2. The results suggest that the degree of influence of the three independent variables on NH4—N removal is ranked as follows: Chl-a content > DO > pH. However, it is often difficult to clearly show which variable plays the major decisive or restrictive role on the dependent variable based on subdividing the correlation coefficient between different variables. Path analysis can check whetherXihas a significant effect onY, and most importantly, it determines whetherXidirectly or indirectly affects the dependent variable through other independent variables.

    Table 2 Correlation coefficients between different variables

    The path analysis yields the path coefficient between three independent variables and NH4—N removal (Table 3). Among the three independent variables, Chl-a content has the greatest direct effect onY(P3y) followed by pH, and DO has the smallest direct effect. An analysis of various indirect path coefficients demonstrated that, despite the large value ofP2y, the indirect effect of pH onYthrough DO and Chl-a content produced a large negative value (P21y= -1.192 andP23y=-1.956), and the correlation coefficientR2ybetween pH andYis highly negative (-0.966). The Chl-a content had the greatest indirect effect onYthrough DO, yielding an indirect path coefficientP31yof 0.542, while DO had the second greatest indirect effect onYthrough Chl-a content, yielding an indirect path coefficientP13yof 0.207. Therefore, Chl-a content plays an important role in NH4—N removal. To improve NH4—N removal, Chl-a content and DO must increase while the pH is maintained in a weakly alkaline range.

    Table 3 Path coefficients between different variables

    3 Conclusion

    In conclusion, 96.2% ammonium removal and 0.04~0.15 specific growth rate ofOedogoniumsp. were observed in DAW during the incubation period, while 94.1% ammonium removal and -0.14~0.13 specific growth rate ofOedogoniumsp. were observed in DRW. High pH and aeration provided a significant benefit to ammonium removal by NH3volatilization and the stripping effect during the incubation period.15N isotope mass balance analysis indicates that bacteria initially present in DPW have little effect on ammonium removal inOedogoniumsp. cultures in DRW, as this occurs primarily through algal uptake, ammonia volatilization, and stripping processes. The statistical analysis between three independent variables and NH4—N removal indicates that increased levels ofOedogoniumsp. and DO under weakly alkaline conditions can improve the efficiency of NH4—N removal. Using the ammonium-based isotope tracing method, we hypothesize thatOedogoniumsp. is effective for treating DPW with high ammonium loading under adapted DO and pH values. Thus, culture conditions should be evaluated to improve the efficiency of nutrient treatment when microalgae are used for the secondary agricultural wastewater treatment process. Further investigation of whetherOedogoniumsp. has the capacity to simultaneously remove other pollutants, such as phosphorus and heavy metals, will be useful in assessing the practical potential of this organism as a biological agent for secondary treatment of DPW. In addition, as it affects the growth of algae, the influence of light time on ammonium removal will be further studied.

    Acknowledgements

    This work was nancially supported by the Research Project of Education Department of Hunan Province (No. 19C0026), the Natural Science Foundation of Hunan Province (2017JJ5061). We gratefully acknowledge anonymous reviewers for their constructive comments and suggestions.

    国产高清有码在线观看视频| 女人十人毛片免费观看3o分钟| 日韩一本色道免费dvd| 老师上课跳d突然被开到最大视频| 亚洲最大成人av| 精品人妻偷拍中文字幕| 国产日韩欧美在线精品| 午夜爱爱视频在线播放| 久久精品夜夜夜夜夜久久蜜豆| 国产午夜精品一二区理论片| 午夜激情欧美在线| 深爱激情五月婷婷| 蜜臀久久99精品久久宅男| 日韩一区二区视频免费看| 成人无遮挡网站| 白带黄色成豆腐渣| 久久精品国产亚洲av天美| 搡老妇女老女人老熟妇| 成人毛片a级毛片在线播放| 成人美女网站在线观看视频| 干丝袜人妻中文字幕| 一边摸一边抽搐一进一小说| 久久欧美精品欧美久久欧美| 亚洲无线观看免费| 国产精品久久电影中文字幕| 亚洲最大成人av| 亚洲成人av在线免费| 精品久久久噜噜| 欧美成人免费av一区二区三区| 99久久无色码亚洲精品果冻| av在线观看视频网站免费| 国产成人a区在线观看| 午夜福利视频1000在线观看| 99国产极品粉嫩在线观看| 日韩国内少妇激情av| 国产色爽女视频免费观看| av在线播放精品| 久久亚洲精品不卡| 精品熟女少妇av免费看| av在线老鸭窝| 最近的中文字幕免费完整| 国产av不卡久久| av.在线天堂| 久久久精品大字幕| 亚洲国产欧美人成| 少妇熟女aⅴ在线视频| 亚洲欧美日韩高清专用| 国产黄片视频在线免费观看| 99久久九九国产精品国产免费| 午夜久久久久精精品| 男女视频在线观看网站免费| 久久人人精品亚洲av| 国产精品国产高清国产av| 国产久久久一区二区三区| 国产一区二区三区在线臀色熟女| www日本黄色视频网| av天堂中文字幕网| 高清在线视频一区二区三区 | 亚洲av免费高清在线观看| 2022亚洲国产成人精品| 亚洲性久久影院| 夜夜夜夜夜久久久久| 日本免费a在线| eeuss影院久久| 寂寞人妻少妇视频99o| 国产精品野战在线观看| 麻豆国产av国片精品| 一个人观看的视频www高清免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产91av在线免费观看| 一本一本综合久久| 欧美xxxx性猛交bbbb| 国产成人a∨麻豆精品| 别揉我奶头 嗯啊视频| 我要搜黄色片| 亚洲一级一片aⅴ在线观看| 村上凉子中文字幕在线| 麻豆久久精品国产亚洲av| 欧美日本视频| 亚洲精品乱码久久久v下载方式| 亚洲四区av| 日日摸夜夜添夜夜爱| 免费不卡的大黄色大毛片视频在线观看 | 三级男女做爰猛烈吃奶摸视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧洲综合997久久,| 久久久午夜欧美精品| 麻豆一二三区av精品| 成人二区视频| 老司机影院成人| 中国国产av一级| 少妇的逼好多水| 91aial.com中文字幕在线观看| 岛国毛片在线播放| 国产大屁股一区二区在线视频| 精品一区二区三区视频在线| 毛片一级片免费看久久久久| 日韩制服骚丝袜av| .国产精品久久| 欧美+日韩+精品| 高清毛片免费看| 人人妻人人澡欧美一区二区| 看黄色毛片网站| 国产精品一二三区在线看| 免费人成视频x8x8入口观看| 亚洲av男天堂| 少妇被粗大猛烈的视频| 久久欧美精品欧美久久欧美| 悠悠久久av| 成人毛片60女人毛片免费| 久久精品国产亚洲av涩爱 | 亚洲精品乱码久久久久久按摩| 国产免费男女视频| 国产伦理片在线播放av一区 | 国产成人午夜福利电影在线观看| 亚洲精品国产av成人精品| av国产免费在线观看| 在线a可以看的网站| 蜜桃久久精品国产亚洲av| 久久韩国三级中文字幕| 又粗又硬又长又爽又黄的视频 | 亚洲精品粉嫩美女一区| 欧美不卡视频在线免费观看| 国产精品人妻久久久久久| 校园春色视频在线观看| 色播亚洲综合网| 国产成人精品婷婷| 亚洲成人中文字幕在线播放| 成人综合一区亚洲| 中国美女看黄片| АⅤ资源中文在线天堂| 天天躁夜夜躁狠狠久久av| 91精品一卡2卡3卡4卡| 晚上一个人看的免费电影| 六月丁香七月| 长腿黑丝高跟| 男女做爰动态图高潮gif福利片| 国产女主播在线喷水免费视频网站 | 久久人妻av系列| 国产黄色视频一区二区在线观看 | 成人亚洲精品av一区二区| 深爱激情五月婷婷| 免费电影在线观看免费观看| 亚洲真实伦在线观看| 色综合色国产| 国产色爽女视频免费观看| 中文字幕精品亚洲无线码一区| 天美传媒精品一区二区| 国产三级中文精品| 国产精品野战在线观看| 亚洲av免费高清在线观看| 一区二区三区四区激情视频 | 亚洲精华国产精华液的使用体验 | 97热精品久久久久久| 一区福利在线观看| 亚洲成人久久性| 不卡视频在线观看欧美| 人妻系列 视频| 亚洲高清免费不卡视频| 久久久久久久午夜电影| 免费电影在线观看免费观看| 伦理电影大哥的女人| 国产激情偷乱视频一区二区| 少妇人妻精品综合一区二区 | 26uuu在线亚洲综合色| 青春草视频在线免费观看| 中文字幕av成人在线电影| 日本熟妇午夜| 精品国内亚洲2022精品成人| 成人鲁丝片一二三区免费| 六月丁香七月| 91久久精品国产一区二区成人| 偷拍熟女少妇极品色| 九九久久精品国产亚洲av麻豆| 欧美日韩一区二区视频在线观看视频在线 | 99热精品在线国产| 少妇的逼水好多| 免费看日本二区| 日韩大尺度精品在线看网址| 亚洲精华国产精华液的使用体验 | 国产成人91sexporn| 成人漫画全彩无遮挡| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式| 久久精品久久久久久久性| 成人美女网站在线观看视频| 亚洲一区二区三区色噜噜| 精品久久国产蜜桃| 久久久久性生活片| av在线亚洲专区| 国产高潮美女av| 乱人视频在线观看| 亚洲欧美精品综合久久99| 内射极品少妇av片p| 18禁黄网站禁片免费观看直播| 久久这里只有精品中国| 男插女下体视频免费在线播放| 成熟少妇高潮喷水视频| 国产毛片a区久久久久| av免费观看日本| 最近视频中文字幕2019在线8| 久久精品久久久久久久性| 在线播放无遮挡| 日韩欧美精品v在线| 免费观看人在逋| 欧美丝袜亚洲另类| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 九色成人免费人妻av| 国产亚洲精品久久久com| 一级av片app| 久久精品国产亚洲av天美| 亚洲最大成人中文| 国产爱豆传媒在线观看| 久久久久久九九精品二区国产| 又粗又爽又猛毛片免费看| 爱豆传媒免费全集在线观看| 精品免费久久久久久久清纯| 97热精品久久久久久| 国产精品伦人一区二区| 青春草视频在线免费观看| 在线观看66精品国产| 国产三级中文精品| av国产免费在线观看| 久久久久久国产a免费观看| 18禁裸乳无遮挡免费网站照片| 国产片特级美女逼逼视频| 欧美成人免费av一区二区三区| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 久久99精品国语久久久| 美女黄网站色视频| 免费人成视频x8x8入口观看| 少妇人妻精品综合一区二区 | 岛国毛片在线播放| 久久久午夜欧美精品| 亚洲精品色激情综合| 91在线精品国自产拍蜜月| 亚洲欧美中文字幕日韩二区| 99久久人妻综合| 国产精品不卡视频一区二区| 国产精品国产高清国产av| 国产三级中文精品| 亚洲内射少妇av| 美女内射精品一级片tv| 干丝袜人妻中文字幕| 99久久精品一区二区三区| 老熟妇乱子伦视频在线观看| 深夜a级毛片| 九九热线精品视视频播放| av女优亚洲男人天堂| 久久久精品大字幕| 夜夜看夜夜爽夜夜摸| 只有这里有精品99| 亚洲av男天堂| 两个人视频免费观看高清| 亚洲欧美中文字幕日韩二区| 真实男女啪啪啪动态图| 少妇熟女aⅴ在线视频| 此物有八面人人有两片| 国产成人精品婷婷| 久久久国产成人免费| 亚洲av成人精品一区久久| 一个人看视频在线观看www免费| 欧美不卡视频在线免费观看| 日产精品乱码卡一卡2卡三| 国产国拍精品亚洲av在线观看| 男插女下体视频免费在线播放| 亚洲图色成人| 欧美人与善性xxx| 日产精品乱码卡一卡2卡三| 精品久久久久久久久av| 99久国产av精品国产电影| 干丝袜人妻中文字幕| 一个人看视频在线观看www免费| 村上凉子中文字幕在线| 亚洲最大成人av| 最近2019中文字幕mv第一页| 国产亚洲av片在线观看秒播厂 | 在线观看一区二区三区| 亚洲精品色激情综合| 成人无遮挡网站| 久久久a久久爽久久v久久| 日本成人三级电影网站| 亚洲欧洲国产日韩| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| 欧美激情国产日韩精品一区| 2022亚洲国产成人精品| 波多野结衣高清作品| а√天堂www在线а√下载| 欧美色欧美亚洲另类二区| 成人欧美大片| 麻豆久久精品国产亚洲av| АⅤ资源中文在线天堂| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 夫妻性生交免费视频一级片| 久久精品国产清高在天天线| 亚洲欧美日韩卡通动漫| 成人亚洲精品av一区二区| 日韩大尺度精品在线看网址| 国产一级毛片七仙女欲春2| 国产精品,欧美在线| 日韩成人av中文字幕在线观看| 国产亚洲精品久久久久久毛片| 国产欧美日韩精品一区二区| 色哟哟哟哟哟哟| 美女黄网站色视频| 最近中文字幕高清免费大全6| 成人亚洲精品av一区二区| 国产成人freesex在线| 日本与韩国留学比较| 超碰av人人做人人爽久久| 秋霞在线观看毛片| 赤兔流量卡办理| 久久99蜜桃精品久久| 99国产精品一区二区蜜桃av| 蜜桃亚洲精品一区二区三区| av在线亚洲专区| 成人毛片a级毛片在线播放| 哪里可以看免费的av片| 夜夜爽天天搞| 亚洲图色成人| 免费观看在线日韩| 国产精品人妻久久久影院| 亚洲四区av| 欧美高清成人免费视频www| 最好的美女福利视频网| 超碰av人人做人人爽久久| 成人鲁丝片一二三区免费| 国产成人一区二区在线| 精品久久久久久久久亚洲| 久久6这里有精品| 久久精品国产亚洲av天美| 小说图片视频综合网站| avwww免费| 亚洲欧美清纯卡通| 日本在线视频免费播放| 亚洲第一区二区三区不卡| 亚洲18禁久久av| 一进一出抽搐动态| 欧美变态另类bdsm刘玥| 国产av在哪里看| 嫩草影院新地址| 如何舔出高潮| 一个人看的www免费观看视频| 亚洲国产精品sss在线观看| 有码 亚洲区| 能在线免费观看的黄片| 日韩视频在线欧美| 亚洲一区二区三区色噜噜| 九色成人免费人妻av| 久久久久性生活片| 国产成人freesex在线| av国产免费在线观看| 欧美激情在线99| 直男gayav资源| 精品不卡国产一区二区三区| 日韩欧美一区二区三区在线观看| 欧美zozozo另类| 99热这里只有精品一区| 欧美日韩综合久久久久久| 欧美精品国产亚洲| 热99re8久久精品国产| 国产免费男女视频| 亚洲av男天堂| 简卡轻食公司| 伊人久久精品亚洲午夜| 国产一区二区在线观看日韩| 久久午夜福利片| 青春草视频在线免费观看| av在线观看视频网站免费| 日日摸夜夜添夜夜爱| 老师上课跳d突然被开到最大视频| 亚洲电影在线观看av| 色综合站精品国产| 人妻久久中文字幕网| 成人特级黄色片久久久久久久| 国产男人的电影天堂91| 51国产日韩欧美| 免费av观看视频| 男人舔女人下体高潮全视频| 午夜免费激情av| 亚洲丝袜综合中文字幕| 日本与韩国留学比较| 卡戴珊不雅视频在线播放| 亚洲av成人精品一区久久| 亚洲av中文av极速乱| 国产黄片视频在线免费观看| 内地一区二区视频在线| 国产免费一级a男人的天堂| 两个人视频免费观看高清| 我的女老师完整版在线观看| 久久久色成人| 国产免费男女视频| 日韩三级伦理在线观看| 国产亚洲欧美98| 婷婷精品国产亚洲av| 美女国产视频在线观看| 最近的中文字幕免费完整| 婷婷精品国产亚洲av| 国国产精品蜜臀av免费| 又爽又黄无遮挡网站| 国产成人freesex在线| 免费av毛片视频| 成人av在线播放网站| 国产亚洲精品av在线| 国产高清激情床上av| 亚洲国产色片| 成人午夜精彩视频在线观看| 久久欧美精品欧美久久欧美| 色播亚洲综合网| 国产精品电影一区二区三区| 只有这里有精品99| 成人无遮挡网站| 国产在线男女| 日韩中字成人| 日韩亚洲欧美综合| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看 | 少妇裸体淫交视频免费看高清| av在线老鸭窝| 亚洲精品自拍成人| 国产精品久久久久久av不卡| 国产在线男女| 日韩精品有码人妻一区| 久久午夜亚洲精品久久| 国产免费男女视频| 国产精品一区二区三区四区久久| 亚洲成a人片在线一区二区| 熟女电影av网| 深爱激情五月婷婷| 国产色婷婷99| 精华霜和精华液先用哪个| 欧美色视频一区免费| 国产伦一二天堂av在线观看| 美女黄网站色视频| 日本撒尿小便嘘嘘汇集6| 国产老妇女一区| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| 人妻夜夜爽99麻豆av| 一夜夜www| 国产成人a区在线观看| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 久久这里有精品视频免费| 3wmmmm亚洲av在线观看| 精品人妻熟女av久视频| 人妻制服诱惑在线中文字幕| 少妇的逼好多水| 亚洲人成网站在线播| 日韩精品青青久久久久久| 亚洲高清免费不卡视频| 99久久精品一区二区三区| 一区福利在线观看| 能在线免费观看的黄片| 欧洲精品卡2卡3卡4卡5卡区| 久久这里有精品视频免费| 免费av毛片视频| 91精品国产九色| 国产亚洲5aaaaa淫片| 人妻少妇偷人精品九色| 在线观看66精品国产| 狠狠狠狠99中文字幕| 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 神马国产精品三级电影在线观看| 一本久久精品| 日本熟妇午夜| 亚洲最大成人av| 啦啦啦观看免费观看视频高清| 99热网站在线观看| 国产视频内射| 久久久久久九九精品二区国产| 亚洲精品国产av成人精品| 少妇高潮的动态图| 免费大片18禁| 国产探花在线观看一区二区| 久久婷婷人人爽人人干人人爱| 免费看日本二区| 午夜福利在线在线| 日本一二三区视频观看| 黄色一级大片看看| 亚洲最大成人av| 小蜜桃在线观看免费完整版高清| 亚洲国产欧美在线一区| 成人亚洲精品av一区二区| 亚洲欧美日韩无卡精品| 亚洲欧美中文字幕日韩二区| 99视频精品全部免费 在线| 成人午夜高清在线视频| 久久亚洲国产成人精品v| 久久久久久国产a免费观看| 精品久久久噜噜| 在线免费观看的www视频| 精品日产1卡2卡| 日本五十路高清| av女优亚洲男人天堂| 两个人的视频大全免费| 国产精华一区二区三区| 夫妻性生交免费视频一级片| 69av精品久久久久久| 国产精品国产高清国产av| 搡老妇女老女人老熟妇| 欧美+日韩+精品| 我要看日韩黄色一级片| 亚洲人成网站在线观看播放| 97在线视频观看| 国产av麻豆久久久久久久| 亚州av有码| 国产av一区在线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人免费av一区二区三区| eeuss影院久久| 亚洲av不卡在线观看| 97人妻精品一区二区三区麻豆| 久99久视频精品免费| 成人毛片60女人毛片免费| 男人的好看免费观看在线视频| 欧美日韩综合久久久久久| 97热精品久久久久久| 欧美最新免费一区二区三区| 丝袜美腿在线中文| 欧美不卡视频在线免费观看| 中文字幕熟女人妻在线| 十八禁国产超污无遮挡网站| 2021天堂中文幕一二区在线观| 亚洲精品影视一区二区三区av| 男女那种视频在线观看| 亚洲精品日韩在线中文字幕 | 国内久久婷婷六月综合欲色啪| 久久99精品国语久久久| 免费人成视频x8x8入口观看| 午夜福利成人在线免费观看| 亚洲在线自拍视频| 亚洲电影在线观看av| 99久久中文字幕三级久久日本| 日本撒尿小便嘘嘘汇集6| 欧美又色又爽又黄视频| 禁无遮挡网站| 欧美区成人在线视频| 天堂√8在线中文| 亚洲人成网站在线播| 18禁黄网站禁片免费观看直播| 成熟少妇高潮喷水视频| 少妇丰满av| 成人亚洲精品av一区二区| 22中文网久久字幕| 51国产日韩欧美| 成人毛片a级毛片在线播放| 国产人妻一区二区三区在| 欧美精品一区二区大全| 国产高清有码在线观看视频| 欧美激情国产日韩精品一区| 午夜亚洲福利在线播放| 亚洲美女搞黄在线观看| 亚洲欧洲国产日韩| 日本在线视频免费播放| 日本免费一区二区三区高清不卡| 三级毛片av免费| 午夜福利高清视频| 性色avwww在线观看| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 国产伦一二天堂av在线观看| 观看美女的网站| 国产成人一区二区在线| 亚洲av成人av| 麻豆一二三区av精品| 欧美一区二区国产精品久久精品| 久久精品国产鲁丝片午夜精品| av免费观看日本| www.色视频.com| 国内精品久久久久精免费| 国产黄a三级三级三级人| 99久国产av精品| 亚洲乱码一区二区免费版| 欧美3d第一页| 神马国产精品三级电影在线观看| 日韩亚洲欧美综合| 欧美+亚洲+日韩+国产| 国产黄色视频一区二区在线观看 | 亚洲精品成人久久久久久| 免费黄网站久久成人精品| 日韩欧美一区二区三区在线观看| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 少妇猛男粗大的猛烈进出视频 | 青春草亚洲视频在线观看| 国产色爽女视频免费观看| 国产精品人妻久久久影院| 免费一级毛片在线播放高清视频| 亚洲欧洲国产日韩| 国产在视频线在精品| 两个人的视频大全免费| 日韩亚洲欧美综合| 亚洲在久久综合| 性插视频无遮挡在线免费观看| 可以在线观看毛片的网站| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲,欧美,日韩| av在线播放精品| 久久精品久久久久久久性| avwww免费| 桃色一区二区三区在线观看| 国产三级在线视频| 99久国产av精品| 在线天堂最新版资源| 一进一出抽搐动态| 2021天堂中文幕一二区在线观| 人妻少妇偷人精品九色| 只有这里有精品99|