• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the shear bearing capacity of RC shear walls using artificial neural networks

    2021-03-06 02:45:54,

    ,

    School of Civil and Transportation Engineering; Civil Engineering Technology Research Center of Hebei Province, Hebei University of Technology, Tianjin 300401, P. R. China)

    Abstract: In various areas of civil engineering, the artificial neural network (ANN) model is used to solve complex problems. In this study, ANN models were used to predict the shear bearing capacity of RC shear walls. Based on the results of 160 experiments, a database was constructed that included the performance of RC shear walls under cyclic loading. One hundred and forty samples were chosen to train the ANN models, and 20 were used for validation. There were fourteen inputs parameters: concrete compressive strength, aspect ratio, axial compression ratio, vertical bar yield strength, horizontal bar yield strength, web vertical reinforcement ratio, web horizontal reinforcement ratio, boundary region vertical reinforcement ratio, boundary region horizontal reinforcement ratio, sectional area ratio, sectional height thickness ratio, total section area, wall height, and section shape. ANN1 and ANN2 were normalized in intervals of [0, 1] and [0.1, 0.9], respectively. The shear force of the RC shear walls was the output data for both models. The predictions by the ANN models and the code methods from GB 50011 and ACI 318 were compared. The results reveal that the developed models exhibit better prediction and generalization capacity for RC shear walls than the code methods.

    Keywords:artificial neural network; shear wall; reinforced concrete; model prediction; shear bearing capacity

    1 Introduction

    Reinforced concrete (RC)shear walls are often used in building structures due to their capacity to resist lateral loads under seismic action[1]. The concrete strength, aspect ratio, axial compression ratio, vertical or horizontal web reinforcement ratio, and vertical or horizontal boundary region reinforcement ratio are critical design parameters that govern the lateral load resistance capacity of RC shear walls[2-3]. The formula used in domestic and foreign codes to calculate the shear bearing capacity is an empirical formula determined by statistical analysis, that reflects the main physical and geometric parameters and considers the factors that influence the reliability. Differences in the calculation model and calculation method are incorporated in current codes, such as GB 50011, ACI 318, and EC2. Furthermore, the strength of the concrete used in the formula for calculating the shear bearing capacity is also different. Generally, most existing methods of calculating the shear bearing capacity of RC shear walls are based on models with limited experimental data, such as shear walls using high-strength steel bars. Therefore, further research on more reliable and effcient structural assessement is needed.

    ANNs have been used for simulating engineering problems[4-6]. To predict the axial bearing capacity, Du et al.[7]suggested two ANN models of rectangular concrete-filled steel tubular columns. Kotsovou et al.[8]established an ANN model to predict the load bearing capacity of beam-column joints. However, the ANN models and experimental data are limited. In this study, shear bearing capacity predictions of RC shear walls were developed using artificial neural networks. The developed ANN model provides a reference for prefabricated concrete shear walls, the seismic performance of which are equivalent to cast-in-place RC walls[9-12].

    2 Data collection

    As shown in Fig.1,test results for 160 RC shear walls with rectangular or barbell sections was found in the literature [2-3, 13-29]. The test information included all parameters that may have an impact on the behavior of the RC shear walls. The test samples exhibited good deformation ability. The parameters for all samples were consistent.

    The size parameters of the wall (b,h, andH), the yield strength of the horizontal reinforcementsfy, the concrete compressive strengthfc, the aspect ratio λ, the axial compression ratioμ, and the shear forceVare included to train and test the ANN models. Finally, 160 test samples were obtained and are summarized in Table 1.

    Fig.1 Typical test setup under cyclic loading and section for RC shear

    3 Artificial neural networks

    3.1 Background information

    ANN is an operational model that mimics the neural network of the human brain from the perspective of information processing. ANN is an artificial intelligence technology that can solve complex problems based on input parameters. The effects of these parameters are not explicitly illustrated or quantified. ANNs have the ability to learn, summarize, classify, and predict, and it have been achieved remarkable results in many practical applications over the past years. In this study, ANNs are used to predict the shear bearing capacity of RC shear walls.

    Table 1 Test data of RC shear walls

    This study uses a back-propagation (BP) algorithm, as shown in Fig.2. A typical artificial neuron is shown in Fig.3. Three layers are included in the ANNs: input layer, hidden layer, and output layer. Each layer compriseskneurons, three neurons, and two neurons, respectively.

    Fig.3 A typical artificial

    The connections between interrelated neurons with a set specific weight are multiplied by the input data produced by the neuron. The values obtained in a particular layer are passed through the link and summed up with the bias (refer to Fig.2)[8]A predefined activation is used to represent the relationship between the inputs and the outputs, as shown in the following

    (1)

    whereyiis the output of the ANN,wijis the weight coefficients of thejthneuron,xjis the input data,θiis the bias of the neuron, andg(·) is the activation function. In this study, input and hidden layers used sigmoid activation functions, and the output layer used the tan-sigmoid activation function.

    3.2 Input and output data

    The input parameters were selected based on the dominant effect of the parameters on the behavior of the RC shear wall, and included the concrete compressive strength (fc), the aspect ratio (λ), the axial compression ratio (μ), the vertical reinforcement yield strength (fy,vw), the horizontal reinforcement yield strength (fh,vw), the vertical reinforcement web ratio (ρvw), the horizontal reinforcement web ratio (ρhw), the vertical reinforcement boundary region ratio (ρvc), the horizontal reinforcement boundary region ratio (ρhc), the sectional area ratio of the boundary region to the total cross-section area (Ab/Ag), the sectional height thickness ratio (lw/tw), the total section area (Ag), the wall height (H), and the section shape (the rectangular section is “0” and the barbell section is “1”).

    Since the performance of the RC shear walls specified in the code is determined by the limit of the shear load capacity, we take the maximum shear (Vmax) as the target parameter. The maximum and minimum values of the input and output data are listed in Table 2. Table 3 shows the correlation between the input parameters used for the prediction of the shear bearing capacity of the RC shear walls. Some parameters are weakly correlated while others are strongly correlated. For example, the correlation coefficient between thelw/twandAb/Agwas -0.763, which indicates a strong negative relationship. The correlation coefficient between theHandλwas 0.449, which indicates a weak positive relationship. The sequence of the correlation for the input parameters from strong to weak wereAg,ρvc,ρhc,fc,Ab/Ag, section shape,fy,vw,fh,vw,H,ρhw,λ,ρvw,μ, andlw/tw.

    Table 2 Maximum and minimum values of the input and output data

    Table 3 Correlation matrix for input parameters

    To minimize the deviation of the ANN and low convergence rates, the values of the input and output data are normalized using Eq.(2).

    (2)

    3.3 Training and testing of the ANNs

    In this study, the network was built using the ANN toolbox in MATLAB. The BP network with 15 hidden layers was used to build the model of RC shear walls. The 160 experimental samples were randomly divided into two groups, 140 samples for training, and 20 samples for testing. In order to verify the effect of normalization equation on the ANNs prediction, the two control groups ANN1 and ANN2 were normalized in the range [0, 1] and [0.1, 0.9].

    The training process of the neural network involves adjusting the network’s weights and deviations (initially randomly assigned) to optimize the network’s performance in the iterative process. The error performance index of the forward network is MSE, which is the mean square error between the network output and the target. The neural network would modify the network node weight, according to MSE. At the same time, in order to reduce the error in each iteration, ANN used the back-error propagation algorithm. After the error was calculated, the weights and bias were readjusted.

    The calibration procedure of the ANN model is shown in Fig.4. This was repeated until one of the following conditions was met: 1) After 500 training sessions, the algorithm will stop the training process. 2) The error-index reaches 10-5. 3) The validation check occurs 10 times.

    The ANN values (ANN-output) and test values (targets) are illustrated in Fig.5. The ANNs predicted values were close to the experimental values with good deformation ability, indicating that the ANN1 and ANN2 models successfully learned the relationship between input and output data. In addition, the predicted values and test values that were closer to each other in different normalized ranges were in the range [0, 1] rather than the range [0.1, 0.9].

    Fig.4 Calibration procedure of the ANN

    Fig.5 ANN predicted values and test

    The ratio of output to target OTR, mean valueMV, and standard deviationSDare used to evaluate the behavior of the model.

    OTRi=Oi/Ti

    (3)

    (4)

    (5)

    WhereOiandTiare the prediction values of the ANN models and the maximum shear of the experimental samples, respectively.nis the total sample number.

    Curves of OTR and sample number for ANN1, ANN2, GB 50011, and ACI 318 are presented in Fig.6. Two predicted values in the ANN1 model exhibited the errors of 8.1% and 8.7%, which were overestimated. Two predicted values in the ANN2 model exceeded the error of 8.0%. One was underestimated and the other was overestimated. TheSDwas 0.036 1 in ANN1 and 0.041 2 in ANN2 (refer to Table 4). Therefore, the ANN1 model was superior to the ANN2 model in calculating the shear bearing capacity of RC shear walls.

    Fig.6 OTRs-sample numbers curves for ANN1, ANN2,

    Table 4 MVs and SDs with testing data

    4 Comparative studies of ANN models and design codes

    The methods proposed by GB 50011 and ACI 318 are presented as follows

    (6)

    Vu=φ(Vc+Vs)

    (7)

    (8)

    (9)

    The outputs of the RC shear walls are the results calculated by the formulas Eqs.(6) to (9).

    Fig.6 shows the OTRs calculated by ANN1, ANN2, GB 50011, and ACI 318. Table 4 listsMVs andSDs using the testing data for ANN1, ANN2, GB 50011, and ACI 318.

    Results predicted by the ANN1 and ANN2 models matched those calculated by GB 50011 and ACI 318 very well.

    The results predicted by the ANN1 and ANN2 models matched those calculated by GB 50011 and ACI 318 very well. There were two outputs with an error of over 8% for both ANN1 and ANN2, but they did not exceed 10%. Two out of twenty in ANN1 were overestimated. One was overestimated in ANN2, and the other was underestimated. These results show that the ANN model exhibited a significant improvement compared to the standard GB 50011 and ACI 318. Compared with the experimental data, fourteen results predicted by GB 50011 exceed 10% difference based on theOTRs. There were sixteen predicted results with errors exceeding 10% in ACI 318. TheSDs of ANN1 and ANN2 were 0.036 1 and 0.041 2, much lower than those of GB 50011 and ACI 318 (refer to Table 3). Compared with GB 50011 and ACI 318, the ANNs exhibited better performance on predicting the shear bearing capacity of RC shear walls.

    There were thirteen results with errors exceeding 10% in GB 50011 and three in ACI 318 were underestimated. TheMVs of the results predicted by GB 50011 and ACI 318 were 0.954 4 and 0.825 6, respectively. ANN models exhibited higherMVs than GB 50011 and ACI 318, indicating that the formulas were conservative in GB 50011 and ACI 318 due to the usage of high strength materials. TheSDof GB 50011 and ACI 318 reached 0.189 7 and 0.223 6, which were larger than the ANN models.

    The ANN1 and ANN2 models had the two largestMVs, while ANN1 and ANN2 exhibited smallerSDs. Thus, ANN models can accurately predict the shear bearing capacity of RC shear walls. Compared with the design codes, ANN models may be safer.

    5 Conclusions

    Two ANN models with fourteen input parameters were developed, based on experimental data. An efficient learning model based on ANNs was proposed to evaluate the load bearing capacity of RC shear walls. The prediction results show that ANN models predict the load bearing capacity favorably using parameters such as the aspect ratio, the axial compression ratio, the concrete and reinforcement strength, the boundary region and web reinforcement ratio, and the sectional ratio and size, thus accurate predictions can be provided.

    The ANN1 and ANN2 models exhibit a better correlation with the experimental results than the codes GB 50011 and ACI 318. The ANN models exhibit better accuracy in prediction and generalization capacity. The BP algorithm can be effectively adopted in the shear strength prediction of RC shear walls.

    Application of developed ANNs can be extended by further experimental tests including other shaped sections as input data. More studies on RC shear walls including high strength concrete and high strength reinforcements are valuable for the structures adopting RC shear walls.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Natural Science Foundation of Hebei Province (No. E2018202290).

    曰老女人黄片| 日韩不卡一区二区三区视频在线| 国产视频首页在线观看| 下体分泌物呈黄色| 十八禁高潮呻吟视频| 国产探花极品一区二区| 欧美日韩成人在线一区二区| √禁漫天堂资源中文www| 亚洲高清免费不卡视频| 国产精品99久久99久久久不卡 | 日韩免费高清中文字幕av| 中文字幕免费在线视频6| 尾随美女入室| 亚洲精品日韩在线中文字幕| 午夜激情久久久久久久| 人妻人人澡人人爽人人| 激情视频va一区二区三区| 亚洲伊人色综图| 亚洲国产日韩一区二区| 日本与韩国留学比较| 久久ye,这里只有精品| 曰老女人黄片| 亚洲三级黄色毛片| 插逼视频在线观看| 亚洲国产精品专区欧美| 国产成人免费无遮挡视频| 妹子高潮喷水视频| 亚洲欧美成人精品一区二区| 婷婷色麻豆天堂久久| 九色成人免费人妻av| 99久久精品国产国产毛片| 在线观看人妻少妇| 精品国产露脸久久av麻豆| 日本vs欧美在线观看视频| 美女内射精品一级片tv| 精品99又大又爽又粗少妇毛片| 精品少妇黑人巨大在线播放| 国产精品一国产av| 午夜免费鲁丝| 久久精品久久久久久久性| 日韩视频在线欧美| 大香蕉久久网| 波多野结衣一区麻豆| 午夜免费鲁丝| 久热久热在线精品观看| 精品人妻熟女毛片av久久网站| 一区二区三区精品91| 在线观看国产h片| 亚洲欧美中文字幕日韩二区| 国产xxxxx性猛交| 满18在线观看网站| 五月玫瑰六月丁香| 亚洲四区av| 国产xxxxx性猛交| 满18在线观看网站| 国产男女内射视频| 熟女人妻精品中文字幕| 赤兔流量卡办理| 这个男人来自地球电影免费观看 | 最新中文字幕久久久久| 久久99热这里只频精品6学生| 丝袜在线中文字幕| 精品人妻熟女毛片av久久网站| 国产 一区精品| 观看美女的网站| 国产精品久久久久久久久免| 欧美激情极品国产一区二区三区 | 精品国产一区二区三区四区第35| 全区人妻精品视频| 视频区图区小说| 亚洲 欧美一区二区三区| 三上悠亚av全集在线观看| 黄色配什么色好看| 美女主播在线视频| 国产成人a∨麻豆精品| 乱人伦中国视频| 夫妻性生交免费视频一级片| 最近最新中文字幕免费大全7| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 久久久久久久久久久免费av| 极品人妻少妇av视频| videossex国产| 国产色爽女视频免费观看| 亚洲第一区二区三区不卡| 午夜激情久久久久久久| 九色亚洲精品在线播放| 97超碰精品成人国产| 亚洲精品久久久久久婷婷小说| 美女xxoo啪啪120秒动态图| 国产69精品久久久久777片| 免费在线观看完整版高清| av免费观看日本| 美女福利国产在线| 老女人水多毛片| 狠狠婷婷综合久久久久久88av| 亚洲精品乱久久久久久| 精品一区二区三区视频在线| 亚洲人成网站在线观看播放| 日本与韩国留学比较| av国产精品久久久久影院| 亚洲国产欧美日韩在线播放| 久久狼人影院| 成年动漫av网址| 综合色丁香网| 水蜜桃什么品种好| 在线观看免费视频网站a站| 伦理电影大哥的女人| 岛国毛片在线播放| 久久久久久久国产电影| 精品少妇内射三级| 日韩免费高清中文字幕av| 啦啦啦啦在线视频资源| 老熟女久久久| 在线观看免费视频网站a站| 国产在线免费精品| 国产永久视频网站| 欧美+日韩+精品| 狠狠婷婷综合久久久久久88av| 日韩中字成人| 人人澡人人妻人| 国产无遮挡羞羞视频在线观看| 国产成人精品一,二区| 色94色欧美一区二区| av网站免费在线观看视频| 亚洲国产av新网站| 久久影院123| 久久国内精品自在自线图片| 两个人免费观看高清视频| 黄片无遮挡物在线观看| av在线播放精品| 韩国精品一区二区三区 | 色哟哟·www| 黄色视频在线播放观看不卡| 男女无遮挡免费网站观看| 欧美日韩成人在线一区二区| 一二三四中文在线观看免费高清| 乱人伦中国视频| 满18在线观看网站| 美女xxoo啪啪120秒动态图| 男人舔女人的私密视频| 精品国产一区二区三区久久久樱花| 久久人人爽人人爽人人片va| 丰满饥渴人妻一区二区三| 久久精品人人爽人人爽视色| 又粗又硬又长又爽又黄的视频| 久久久久网色| 高清视频免费观看一区二区| 日韩精品有码人妻一区| 女性被躁到高潮视频| 少妇被粗大的猛进出69影院 | 免费日韩欧美在线观看| 少妇被粗大的猛进出69影院 | 一边摸一边做爽爽视频免费| 日本黄色日本黄色录像| 99热网站在线观看| 熟女人妻精品中文字幕| 亚洲国产精品999| 久久免费观看电影| 有码 亚洲区| 黄色 视频免费看| 中文字幕另类日韩欧美亚洲嫩草| 狂野欧美激情性xxxx在线观看| 欧美亚洲日本最大视频资源| 黑丝袜美女国产一区| 夫妻午夜视频| 中文字幕制服av| 制服丝袜香蕉在线| 视频中文字幕在线观看| 国产精品久久久久久精品古装| 夜夜爽夜夜爽视频| 欧美精品一区二区免费开放| 91精品国产国语对白视频| 欧美成人午夜免费资源| 美女大奶头黄色视频| 日本爱情动作片www.在线观看| 91成人精品电影| 国产黄色免费在线视频| 久久青草综合色| 国产在线一区二区三区精| 母亲3免费完整高清在线观看 | 亚洲av福利一区| 精品一区二区三区视频在线| 精品人妻熟女毛片av久久网站| 99热网站在线观看| 久久人人爽av亚洲精品天堂| 在线 av 中文字幕| 免费av中文字幕在线| 欧美+日韩+精品| 欧美日韩综合久久久久久| 亚洲欧美成人精品一区二区| 亚洲国产毛片av蜜桃av| 国产色爽女视频免费观看| 亚洲精品久久成人aⅴ小说| 久久99一区二区三区| 精品一区二区免费观看| 日本wwww免费看| 久久青草综合色| 三上悠亚av全集在线观看| 日本黄色日本黄色录像| 最黄视频免费看| 毛片一级片免费看久久久久| 丝袜喷水一区| 国产成人精品福利久久| 汤姆久久久久久久影院中文字幕| 一级毛片电影观看| 韩国高清视频一区二区三区| 久久久久精品人妻al黑| 久久婷婷青草| 免费观看在线日韩| 一区二区av电影网| 精品少妇久久久久久888优播| 亚洲精品456在线播放app| 久久久欧美国产精品| 久久久亚洲精品成人影院| 亚洲精品国产色婷婷电影| 韩国高清视频一区二区三区| 在线天堂中文资源库| 男的添女的下面高潮视频| 欧美精品av麻豆av| 亚洲国产欧美日韩在线播放| 国产成人精品在线电影| 亚洲国产精品专区欧美| 久久国产亚洲av麻豆专区| 女的被弄到高潮叫床怎么办| 亚洲久久久国产精品| 日韩av在线免费看完整版不卡| 97在线视频观看| 少妇熟女欧美另类| 亚洲性久久影院| 欧美人与性动交α欧美精品济南到 | 亚洲人与动物交配视频| 亚洲人成网站在线观看播放| 18在线观看网站| 人人妻人人添人人爽欧美一区卜| 亚洲精品中文字幕在线视频| 国产精品.久久久| 最近最新中文字幕免费大全7| 亚洲国产色片| 国产一区二区激情短视频 | 51国产日韩欧美| 看十八女毛片水多多多| 欧美日韩精品成人综合77777| 91精品国产国语对白视频| 国产精品国产av在线观看| av播播在线观看一区| 91在线精品国自产拍蜜月| 欧美丝袜亚洲另类| 熟女av电影| 少妇人妻 视频| 中文字幕av电影在线播放| 亚洲精品456在线播放app| 在线精品无人区一区二区三| 丝袜人妻中文字幕| 欧美性感艳星| 国产精品久久久久久久久免| 色94色欧美一区二区| 99热网站在线观看| 女性被躁到高潮视频| 精品人妻一区二区三区麻豆| 日本免费在线观看一区| 十分钟在线观看高清视频www| 女性被躁到高潮视频| 另类亚洲欧美激情| 日本av免费视频播放| 男男h啪啪无遮挡| 丝袜喷水一区| 一级片免费观看大全| 黑人欧美特级aaaaaa片| 三上悠亚av全集在线观看| 国产av精品麻豆| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久99久久久不卡 | 老司机亚洲免费影院| 男人添女人高潮全过程视频| 亚洲精品自拍成人| 男女高潮啪啪啪动态图| 久久久久精品性色| 久久亚洲国产成人精品v| 日本av免费视频播放| 国产成人a∨麻豆精品| 欧美精品高潮呻吟av久久| 欧美精品一区二区大全| 国产精品一区二区在线不卡| 国产精品久久久久久久久免| 99视频精品全部免费 在线| 亚洲av福利一区| 欧美成人午夜精品| 国产在线免费精品| 亚洲精品乱久久久久久| 亚洲欧美日韩另类电影网站| 日韩熟女老妇一区二区性免费视频| 国产欧美另类精品又又久久亚洲欧美| 天堂俺去俺来也www色官网| 免费女性裸体啪啪无遮挡网站| 美女福利国产在线| 捣出白浆h1v1| 久久综合国产亚洲精品| 成年动漫av网址| 亚洲成国产人片在线观看| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 青春草国产在线视频| 成人毛片60女人毛片免费| 精品久久久精品久久久| 久久久国产精品麻豆| xxxhd国产人妻xxx| 久久av网站| 男女高潮啪啪啪动态图| 日韩精品免费视频一区二区三区 | 男人舔女人的私密视频| 免费观看a级毛片全部| 麻豆精品久久久久久蜜桃| 一级片免费观看大全| 亚洲av免费高清在线观看| 色网站视频免费| 午夜福利视频精品| 国产探花极品一区二区| 免费大片18禁| 国产成人午夜福利电影在线观看| 亚洲欧洲日产国产| 国产淫语在线视频| 午夜激情久久久久久久| 日本欧美视频一区| 国产一区亚洲一区在线观看| 老女人水多毛片| 亚洲伊人久久精品综合| 韩国精品一区二区三区 | 巨乳人妻的诱惑在线观看| 七月丁香在线播放| 韩国精品一区二区三区 | 精品一区二区三卡| 99久久中文字幕三级久久日本| 精品99又大又爽又粗少妇毛片| 成人黄色视频免费在线看| 建设人人有责人人尽责人人享有的| 日韩av不卡免费在线播放| 在现免费观看毛片| 国产成人精品久久久久久| 中文字幕精品免费在线观看视频 | 少妇 在线观看| 母亲3免费完整高清在线观看 | 美女视频免费永久观看网站| 欧美日韩成人在线一区二区| 久久人人爽人人片av| 日韩一本色道免费dvd| 下体分泌物呈黄色| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| 亚洲国产精品一区二区三区在线| 美国免费a级毛片| 色94色欧美一区二区| 在线观看免费高清a一片| 国产在线免费精品| 午夜福利视频精品| 90打野战视频偷拍视频| 黄色毛片三级朝国网站| 岛国毛片在线播放| 91精品国产国语对白视频| 国产一区二区激情短视频 | 亚洲精品一区蜜桃| 亚洲国产精品专区欧美| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www| av黄色大香蕉| 日韩大片免费观看网站| 国产高清三级在线| 777米奇影视久久| 国产高清三级在线| 中文精品一卡2卡3卡4更新| 国产又爽黄色视频| 一边亲一边摸免费视频| 亚洲精品久久成人aⅴ小说| 色哟哟·www| 精品人妻在线不人妻| 久久久精品94久久精品| 亚洲精华国产精华液的使用体验| 国产片内射在线| 久久久精品免费免费高清| 一级毛片电影观看| 久久亚洲国产成人精品v| 丰满迷人的少妇在线观看| 国产毛片在线视频| 91在线精品国自产拍蜜月| www.av在线官网国产| 在线观看免费高清a一片| 色94色欧美一区二区| 久久午夜福利片| 波野结衣二区三区在线| 美国免费a级毛片| 中文字幕人妻丝袜制服| 男人爽女人下面视频在线观看| 高清黄色对白视频在线免费看| 曰老女人黄片| freevideosex欧美| 激情视频va一区二区三区| 亚洲av中文av极速乱| 久久韩国三级中文字幕| 久久亚洲国产成人精品v| 国产精品国产三级国产av玫瑰| 久久久久国产精品人妻一区二区| 亚洲人成77777在线视频| av又黄又爽大尺度在线免费看| 蜜桃国产av成人99| 男女下面插进去视频免费观看 | 97超碰精品成人国产| www.色视频.com| 妹子高潮喷水视频| 交换朋友夫妻互换小说| 嫩草影院入口| 99国产精品免费福利视频| 日韩av免费高清视频| 高清在线视频一区二区三区| 男人操女人黄网站| 国产精品99久久99久久久不卡 | 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| av卡一久久| www.av在线官网国产| 日本av手机在线免费观看| kizo精华| www.熟女人妻精品国产 | 日韩av免费高清视频| 一个人免费看片子| 亚洲国产精品专区欧美| 国产爽快片一区二区三区| 婷婷色综合大香蕉| 亚洲精品第二区| 精品人妻偷拍中文字幕| 精品一区二区三区视频在线| 插逼视频在线观看| 亚洲婷婷狠狠爱综合网| 国产精品.久久久| 亚洲欧美日韩卡通动漫| 国产精品不卡视频一区二区| 免费不卡的大黄色大毛片视频在线观看| 纯流量卡能插随身wifi吗| 欧美亚洲 丝袜 人妻 在线| 在线 av 中文字幕| freevideosex欧美| 在线亚洲精品国产二区图片欧美| 99久久中文字幕三级久久日本| av黄色大香蕉| 一区在线观看完整版| 99热这里只有是精品在线观看| 大话2 男鬼变身卡| 丰满少妇做爰视频| 国产一区二区激情短视频 | 亚洲精品日本国产第一区| 视频在线观看一区二区三区| 超碰97精品在线观看| 一区二区av电影网| 青春草视频在线免费观看| 丰满乱子伦码专区| 九草在线视频观看| 最后的刺客免费高清国语| 交换朋友夫妻互换小说| 免费看av在线观看网站| 色婷婷av一区二区三区视频| 亚洲三级黄色毛片| 青青草视频在线视频观看| 大香蕉久久网| 色婷婷久久久亚洲欧美| 丝瓜视频免费看黄片| 精品一区二区三区四区五区乱码 | 亚洲美女视频黄频| 男人添女人高潮全过程视频| 久久人人爽av亚洲精品天堂| 老司机影院毛片| av女优亚洲男人天堂| 婷婷色麻豆天堂久久| 18禁动态无遮挡网站| 色吧在线观看| 国产不卡av网站在线观看| 中文字幕av电影在线播放| 狠狠婷婷综合久久久久久88av| 欧美xxxx性猛交bbbb| 国产熟女午夜一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区三区| 国产男女超爽视频在线观看| 国产精品99久久99久久久不卡 | 最新的欧美精品一区二区| 18禁动态无遮挡网站| 免费不卡的大黄色大毛片视频在线观看| 赤兔流量卡办理| 日日爽夜夜爽网站| 高清黄色对白视频在线免费看| 韩国高清视频一区二区三区| 国产精品秋霞免费鲁丝片| 国产淫语在线视频| 一区二区三区四区激情视频| 男女免费视频国产| 999精品在线视频| 日韩大片免费观看网站| 欧美激情 高清一区二区三区| 男男h啪啪无遮挡| 国产女主播在线喷水免费视频网站| 韩国av在线不卡| 香蕉国产在线看| 另类精品久久| 亚洲色图 男人天堂 中文字幕 | av在线观看视频网站免费| 99热全是精品| av播播在线观看一区| 91成人精品电影| 日韩av免费高清视频| 久久这里有精品视频免费| 少妇的丰满在线观看| 国精品久久久久久国模美| 成年动漫av网址| 国产一区亚洲一区在线观看| 精品亚洲成a人片在线观看| 亚洲国产av新网站| 精品少妇内射三级| 赤兔流量卡办理| 久久ye,这里只有精品| 精品一区二区三卡| av一本久久久久| 18+在线观看网站| av天堂久久9| 尾随美女入室| 日本爱情动作片www.在线观看| 看免费成人av毛片| 久久97久久精品| 成人亚洲精品一区在线观看| videossex国产| 免费观看av网站的网址| 成年人午夜在线观看视频| 日韩人妻精品一区2区三区| 日韩 亚洲 欧美在线| 国产精品国产三级专区第一集| 激情视频va一区二区三区| 亚洲天堂av无毛| 久久人人97超碰香蕉20202| 久久久久久伊人网av| 久久久a久久爽久久v久久| 亚洲综合色网址| 赤兔流量卡办理| 人人澡人人妻人| 亚洲中文av在线| 国语对白做爰xxxⅹ性视频网站| 一级毛片黄色毛片免费观看视频| 国产精品熟女久久久久浪| 在线看a的网站| 久久精品夜色国产| 黄片无遮挡物在线观看| 亚洲精品国产av蜜桃| 色婷婷av一区二区三区视频| 在线观看一区二区三区激情| 午夜激情久久久久久久| 午夜视频国产福利| 成人影院久久| 欧美日本中文国产一区发布| 精品少妇内射三级| 免费观看在线日韩| 亚洲欧美一区二区三区国产| 成人手机av| 欧美日韩亚洲高清精品| 亚洲综合色惰| 成人综合一区亚洲| 久久久国产一区二区| 18禁国产床啪视频网站| av国产精品久久久久影院| 国产高清不卡午夜福利| 最近手机中文字幕大全| 久久久久久久久久久久大奶| 建设人人有责人人尽责人人享有的| 婷婷色综合大香蕉| av在线app专区| 777米奇影视久久| 18+在线观看网站| av在线播放精品| 美女脱内裤让男人舔精品视频| 精品一区二区三区视频在线| 欧美亚洲 丝袜 人妻 在线| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 秋霞伦理黄片| 视频中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 2021少妇久久久久久久久久久| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 搡女人真爽免费视频火全软件| 在线观看一区二区三区激情| www.熟女人妻精品国产 | 亚洲av.av天堂| 久热这里只有精品99| 久久综合国产亚洲精品| 人人妻人人澡人人爽人人夜夜| 欧美国产精品va在线观看不卡| 22中文网久久字幕| 边亲边吃奶的免费视频| 亚洲精品第二区| 国产 一区精品| 新久久久久国产一级毛片| 精品久久国产蜜桃| 国产伦理片在线播放av一区| 在线观看免费高清a一片| 国产免费福利视频在线观看| 99热全是精品| 成人国产麻豆网| 青春草视频在线免费观看| 免费大片18禁| 99视频精品全部免费 在线| 国产成人aa在线观看| 69精品国产乱码久久久| av在线老鸭窝| 久久久久人妻精品一区果冻| 亚洲国产日韩一区二区| 我要看黄色一级片免费的| 最新的欧美精品一区二区| 韩国精品一区二区三区 | 日韩电影二区|