• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the shear bearing capacity of RC shear walls using artificial neural networks

    2021-03-06 02:45:54,

    ,

    School of Civil and Transportation Engineering; Civil Engineering Technology Research Center of Hebei Province, Hebei University of Technology, Tianjin 300401, P. R. China)

    Abstract: In various areas of civil engineering, the artificial neural network (ANN) model is used to solve complex problems. In this study, ANN models were used to predict the shear bearing capacity of RC shear walls. Based on the results of 160 experiments, a database was constructed that included the performance of RC shear walls under cyclic loading. One hundred and forty samples were chosen to train the ANN models, and 20 were used for validation. There were fourteen inputs parameters: concrete compressive strength, aspect ratio, axial compression ratio, vertical bar yield strength, horizontal bar yield strength, web vertical reinforcement ratio, web horizontal reinforcement ratio, boundary region vertical reinforcement ratio, boundary region horizontal reinforcement ratio, sectional area ratio, sectional height thickness ratio, total section area, wall height, and section shape. ANN1 and ANN2 were normalized in intervals of [0, 1] and [0.1, 0.9], respectively. The shear force of the RC shear walls was the output data for both models. The predictions by the ANN models and the code methods from GB 50011 and ACI 318 were compared. The results reveal that the developed models exhibit better prediction and generalization capacity for RC shear walls than the code methods.

    Keywords:artificial neural network; shear wall; reinforced concrete; model prediction; shear bearing capacity

    1 Introduction

    Reinforced concrete (RC)shear walls are often used in building structures due to their capacity to resist lateral loads under seismic action[1]. The concrete strength, aspect ratio, axial compression ratio, vertical or horizontal web reinforcement ratio, and vertical or horizontal boundary region reinforcement ratio are critical design parameters that govern the lateral load resistance capacity of RC shear walls[2-3]. The formula used in domestic and foreign codes to calculate the shear bearing capacity is an empirical formula determined by statistical analysis, that reflects the main physical and geometric parameters and considers the factors that influence the reliability. Differences in the calculation model and calculation method are incorporated in current codes, such as GB 50011, ACI 318, and EC2. Furthermore, the strength of the concrete used in the formula for calculating the shear bearing capacity is also different. Generally, most existing methods of calculating the shear bearing capacity of RC shear walls are based on models with limited experimental data, such as shear walls using high-strength steel bars. Therefore, further research on more reliable and effcient structural assessement is needed.

    ANNs have been used for simulating engineering problems[4-6]. To predict the axial bearing capacity, Du et al.[7]suggested two ANN models of rectangular concrete-filled steel tubular columns. Kotsovou et al.[8]established an ANN model to predict the load bearing capacity of beam-column joints. However, the ANN models and experimental data are limited. In this study, shear bearing capacity predictions of RC shear walls were developed using artificial neural networks. The developed ANN model provides a reference for prefabricated concrete shear walls, the seismic performance of which are equivalent to cast-in-place RC walls[9-12].

    2 Data collection

    As shown in Fig.1,test results for 160 RC shear walls with rectangular or barbell sections was found in the literature [2-3, 13-29]. The test information included all parameters that may have an impact on the behavior of the RC shear walls. The test samples exhibited good deformation ability. The parameters for all samples were consistent.

    The size parameters of the wall (b,h, andH), the yield strength of the horizontal reinforcementsfy, the concrete compressive strengthfc, the aspect ratio λ, the axial compression ratioμ, and the shear forceVare included to train and test the ANN models. Finally, 160 test samples were obtained and are summarized in Table 1.

    Fig.1 Typical test setup under cyclic loading and section for RC shear

    3 Artificial neural networks

    3.1 Background information

    ANN is an operational model that mimics the neural network of the human brain from the perspective of information processing. ANN is an artificial intelligence technology that can solve complex problems based on input parameters. The effects of these parameters are not explicitly illustrated or quantified. ANNs have the ability to learn, summarize, classify, and predict, and it have been achieved remarkable results in many practical applications over the past years. In this study, ANNs are used to predict the shear bearing capacity of RC shear walls.

    Table 1 Test data of RC shear walls

    This study uses a back-propagation (BP) algorithm, as shown in Fig.2. A typical artificial neuron is shown in Fig.3. Three layers are included in the ANNs: input layer, hidden layer, and output layer. Each layer compriseskneurons, three neurons, and two neurons, respectively.

    Fig.3 A typical artificial

    The connections between interrelated neurons with a set specific weight are multiplied by the input data produced by the neuron. The values obtained in a particular layer are passed through the link and summed up with the bias (refer to Fig.2)[8]A predefined activation is used to represent the relationship between the inputs and the outputs, as shown in the following

    (1)

    whereyiis the output of the ANN,wijis the weight coefficients of thejthneuron,xjis the input data,θiis the bias of the neuron, andg(·) is the activation function. In this study, input and hidden layers used sigmoid activation functions, and the output layer used the tan-sigmoid activation function.

    3.2 Input and output data

    The input parameters were selected based on the dominant effect of the parameters on the behavior of the RC shear wall, and included the concrete compressive strength (fc), the aspect ratio (λ), the axial compression ratio (μ), the vertical reinforcement yield strength (fy,vw), the horizontal reinforcement yield strength (fh,vw), the vertical reinforcement web ratio (ρvw), the horizontal reinforcement web ratio (ρhw), the vertical reinforcement boundary region ratio (ρvc), the horizontal reinforcement boundary region ratio (ρhc), the sectional area ratio of the boundary region to the total cross-section area (Ab/Ag), the sectional height thickness ratio (lw/tw), the total section area (Ag), the wall height (H), and the section shape (the rectangular section is “0” and the barbell section is “1”).

    Since the performance of the RC shear walls specified in the code is determined by the limit of the shear load capacity, we take the maximum shear (Vmax) as the target parameter. The maximum and minimum values of the input and output data are listed in Table 2. Table 3 shows the correlation between the input parameters used for the prediction of the shear bearing capacity of the RC shear walls. Some parameters are weakly correlated while others are strongly correlated. For example, the correlation coefficient between thelw/twandAb/Agwas -0.763, which indicates a strong negative relationship. The correlation coefficient between theHandλwas 0.449, which indicates a weak positive relationship. The sequence of the correlation for the input parameters from strong to weak wereAg,ρvc,ρhc,fc,Ab/Ag, section shape,fy,vw,fh,vw,H,ρhw,λ,ρvw,μ, andlw/tw.

    Table 2 Maximum and minimum values of the input and output data

    Table 3 Correlation matrix for input parameters

    To minimize the deviation of the ANN and low convergence rates, the values of the input and output data are normalized using Eq.(2).

    (2)

    3.3 Training and testing of the ANNs

    In this study, the network was built using the ANN toolbox in MATLAB. The BP network with 15 hidden layers was used to build the model of RC shear walls. The 160 experimental samples were randomly divided into two groups, 140 samples for training, and 20 samples for testing. In order to verify the effect of normalization equation on the ANNs prediction, the two control groups ANN1 and ANN2 were normalized in the range [0, 1] and [0.1, 0.9].

    The training process of the neural network involves adjusting the network’s weights and deviations (initially randomly assigned) to optimize the network’s performance in the iterative process. The error performance index of the forward network is MSE, which is the mean square error between the network output and the target. The neural network would modify the network node weight, according to MSE. At the same time, in order to reduce the error in each iteration, ANN used the back-error propagation algorithm. After the error was calculated, the weights and bias were readjusted.

    The calibration procedure of the ANN model is shown in Fig.4. This was repeated until one of the following conditions was met: 1) After 500 training sessions, the algorithm will stop the training process. 2) The error-index reaches 10-5. 3) The validation check occurs 10 times.

    The ANN values (ANN-output) and test values (targets) are illustrated in Fig.5. The ANNs predicted values were close to the experimental values with good deformation ability, indicating that the ANN1 and ANN2 models successfully learned the relationship between input and output data. In addition, the predicted values and test values that were closer to each other in different normalized ranges were in the range [0, 1] rather than the range [0.1, 0.9].

    Fig.4 Calibration procedure of the ANN

    Fig.5 ANN predicted values and test

    The ratio of output to target OTR, mean valueMV, and standard deviationSDare used to evaluate the behavior of the model.

    OTRi=Oi/Ti

    (3)

    (4)

    (5)

    WhereOiandTiare the prediction values of the ANN models and the maximum shear of the experimental samples, respectively.nis the total sample number.

    Curves of OTR and sample number for ANN1, ANN2, GB 50011, and ACI 318 are presented in Fig.6. Two predicted values in the ANN1 model exhibited the errors of 8.1% and 8.7%, which were overestimated. Two predicted values in the ANN2 model exceeded the error of 8.0%. One was underestimated and the other was overestimated. TheSDwas 0.036 1 in ANN1 and 0.041 2 in ANN2 (refer to Table 4). Therefore, the ANN1 model was superior to the ANN2 model in calculating the shear bearing capacity of RC shear walls.

    Fig.6 OTRs-sample numbers curves for ANN1, ANN2,

    Table 4 MVs and SDs with testing data

    4 Comparative studies of ANN models and design codes

    The methods proposed by GB 50011 and ACI 318 are presented as follows

    (6)

    Vu=φ(Vc+Vs)

    (7)

    (8)

    (9)

    The outputs of the RC shear walls are the results calculated by the formulas Eqs.(6) to (9).

    Fig.6 shows the OTRs calculated by ANN1, ANN2, GB 50011, and ACI 318. Table 4 listsMVs andSDs using the testing data for ANN1, ANN2, GB 50011, and ACI 318.

    Results predicted by the ANN1 and ANN2 models matched those calculated by GB 50011 and ACI 318 very well.

    The results predicted by the ANN1 and ANN2 models matched those calculated by GB 50011 and ACI 318 very well. There were two outputs with an error of over 8% for both ANN1 and ANN2, but they did not exceed 10%. Two out of twenty in ANN1 were overestimated. One was overestimated in ANN2, and the other was underestimated. These results show that the ANN model exhibited a significant improvement compared to the standard GB 50011 and ACI 318. Compared with the experimental data, fourteen results predicted by GB 50011 exceed 10% difference based on theOTRs. There were sixteen predicted results with errors exceeding 10% in ACI 318. TheSDs of ANN1 and ANN2 were 0.036 1 and 0.041 2, much lower than those of GB 50011 and ACI 318 (refer to Table 3). Compared with GB 50011 and ACI 318, the ANNs exhibited better performance on predicting the shear bearing capacity of RC shear walls.

    There were thirteen results with errors exceeding 10% in GB 50011 and three in ACI 318 were underestimated. TheMVs of the results predicted by GB 50011 and ACI 318 were 0.954 4 and 0.825 6, respectively. ANN models exhibited higherMVs than GB 50011 and ACI 318, indicating that the formulas were conservative in GB 50011 and ACI 318 due to the usage of high strength materials. TheSDof GB 50011 and ACI 318 reached 0.189 7 and 0.223 6, which were larger than the ANN models.

    The ANN1 and ANN2 models had the two largestMVs, while ANN1 and ANN2 exhibited smallerSDs. Thus, ANN models can accurately predict the shear bearing capacity of RC shear walls. Compared with the design codes, ANN models may be safer.

    5 Conclusions

    Two ANN models with fourteen input parameters were developed, based on experimental data. An efficient learning model based on ANNs was proposed to evaluate the load bearing capacity of RC shear walls. The prediction results show that ANN models predict the load bearing capacity favorably using parameters such as the aspect ratio, the axial compression ratio, the concrete and reinforcement strength, the boundary region and web reinforcement ratio, and the sectional ratio and size, thus accurate predictions can be provided.

    The ANN1 and ANN2 models exhibit a better correlation with the experimental results than the codes GB 50011 and ACI 318. The ANN models exhibit better accuracy in prediction and generalization capacity. The BP algorithm can be effectively adopted in the shear strength prediction of RC shear walls.

    Application of developed ANNs can be extended by further experimental tests including other shaped sections as input data. More studies on RC shear walls including high strength concrete and high strength reinforcements are valuable for the structures adopting RC shear walls.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Natural Science Foundation of Hebei Province (No. E2018202290).

    天天一区二区日本电影三级| 熟妇人妻久久中文字幕3abv| 亚洲成人久久爱视频| 丰满的人妻完整版| 男人舔奶头视频| 老熟妇乱子伦视频在线观看| 成人一区二区视频在线观看| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩一区二区精品| 91在线精品国自产拍蜜月| 有码 亚洲区| 免费电影在线观看免费观看| 国产真实伦视频高清在线观看 | 亚洲中文字幕一区二区三区有码在线看| 国产伦一二天堂av在线观看| 亚洲在线观看片| 无人区码免费观看不卡| 亚洲欧美日韩卡通动漫| 丰满乱子伦码专区| 美女黄网站色视频| 欧美又色又爽又黄视频| 嫩草影院入口| 国产精品影院久久| 国产乱人伦免费视频| 免费人成在线观看视频色| 欧美黄色淫秽网站| 桃红色精品国产亚洲av| 国产av不卡久久| 久久国产乱子免费精品| 99riav亚洲国产免费| 欧美zozozo另类| 久久久久久久午夜电影| av欧美777| 亚洲国产高清在线一区二区三| 伦理电影大哥的女人| 色尼玛亚洲综合影院| 亚洲最大成人手机在线| 精品国产三级普通话版| 国产男靠女视频免费网站| 国产精品亚洲一级av第二区| 亚洲av中文字字幕乱码综合| 色尼玛亚洲综合影院| 国产中年淑女户外野战色| 欧美日韩乱码在线| 偷拍熟女少妇极品色| 日本免费一区二区三区高清不卡| 麻豆一二三区av精品| 99在线视频只有这里精品首页| 久久久久久国产a免费观看| 国产主播在线观看一区二区| 999久久久精品免费观看国产| 亚洲av成人精品一区久久| 午夜视频国产福利| 午夜激情福利司机影院| 琪琪午夜伦伦电影理论片6080| 亚洲自偷自拍三级| 成人午夜高清在线视频| 久久6这里有精品| 午夜老司机福利剧场| 三级毛片av免费| 高清在线国产一区| 欧美日本视频| 亚洲av二区三区四区| 亚洲 国产 在线| 香蕉av资源在线| 国产精品自产拍在线观看55亚洲| 夜夜爽天天搞| 少妇人妻精品综合一区二区 | 日韩中字成人| 国产午夜精品久久久久久一区二区三区 | 国产av麻豆久久久久久久| 国产亚洲精品av在线| 两性午夜刺激爽爽歪歪视频在线观看| 一个人看的www免费观看视频| 午夜福利成人在线免费观看| a在线观看视频网站| 亚洲av成人av| 午夜福利在线观看免费完整高清在 | 中文字幕精品亚洲无线码一区| 国内精品一区二区在线观看| 国产亚洲精品综合一区在线观看| 久久久久久久久久成人| 又黄又爽又免费观看的视频| 欧美3d第一页| 精品熟女少妇八av免费久了| 亚洲成a人片在线一区二区| 国产精品久久电影中文字幕| 成人美女网站在线观看视频| 麻豆av噜噜一区二区三区| 中文字幕精品亚洲无线码一区| 狠狠狠狠99中文字幕| 天天躁日日操中文字幕| 男插女下体视频免费在线播放| 午夜精品在线福利| bbb黄色大片| 久久久国产成人精品二区| 99热精品在线国产| av福利片在线观看| 亚洲国产高清在线一区二区三| 国产老妇女一区| 又粗又爽又猛毛片免费看| 他把我摸到了高潮在线观看| 淫秽高清视频在线观看| 欧美在线一区亚洲| 性色avwww在线观看| 午夜免费激情av| 免费观看的影片在线观看| 51国产日韩欧美| 免费在线观看成人毛片| 精品午夜福利视频在线观看一区| 天堂影院成人在线观看| 免费观看精品视频网站| 欧美绝顶高潮抽搐喷水| 午夜两性在线视频| 91狼人影院| 天天一区二区日本电影三级| 久久久久久久久久成人| 免费观看的影片在线观看| 亚洲五月婷婷丁香| 18禁黄网站禁片午夜丰满| 国产v大片淫在线免费观看| 亚洲久久久久久中文字幕| 久久精品国产亚洲av天美| 中文字幕久久专区| 欧美高清性xxxxhd video| 久久午夜亚洲精品久久| 亚洲性夜色夜夜综合| 69人妻影院| 国产私拍福利视频在线观看| 精品久久国产蜜桃| 97人妻精品一区二区三区麻豆| 久久精品人妻少妇| 999久久久精品免费观看国产| 国产精品综合久久久久久久免费| 日本黄色视频三级网站网址| 亚洲 国产 在线| 精品久久久久久久久亚洲 | 夜夜看夜夜爽夜夜摸| 欧美一区二区精品小视频在线| 日韩精品青青久久久久久| www日本黄色视频网| 久久精品国产亚洲av香蕉五月| АⅤ资源中文在线天堂| 国产精品自产拍在线观看55亚洲| 亚洲无线在线观看| 一区二区三区免费毛片| 精品日产1卡2卡| 欧美日本视频| 日本五十路高清| 男女床上黄色一级片免费看| 一二三四社区在线视频社区8| 亚洲aⅴ乱码一区二区在线播放| 国产精品美女特级片免费视频播放器| 观看免费一级毛片| 黄色配什么色好看| 精品不卡国产一区二区三区| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影| 丰满乱子伦码专区| 麻豆国产av国片精品| 欧美高清性xxxxhd video| 人妻丰满熟妇av一区二区三区| 老司机深夜福利视频在线观看| 成人av一区二区三区在线看| 国产精品免费一区二区三区在线| 黄片小视频在线播放| 日韩欧美三级三区| 一级毛片久久久久久久久女| 一个人免费在线观看电影| 亚洲黑人精品在线| 青草久久国产| 国产人妻一区二区三区在| 亚洲人成伊人成综合网2020| 成人亚洲精品av一区二区| 免费观看精品视频网站| 亚洲午夜理论影院| 久久久久国产精品人妻aⅴ院| 亚洲av二区三区四区| 亚洲精品日韩av片在线观看| 亚洲内射少妇av| 亚洲无线在线观看| 18禁在线播放成人免费| 九九热线精品视视频播放| 国产精品自产拍在线观看55亚洲| 嫩草影院精品99| 欧美日韩乱码在线| 亚洲黑人精品在线| 亚洲av免费高清在线观看| 国产淫片久久久久久久久 | 成年女人毛片免费观看观看9| 国产单亲对白刺激| 丰满人妻熟妇乱又伦精品不卡| 99热这里只有是精品50| 夜夜躁狠狠躁天天躁| netflix在线观看网站| 亚洲电影在线观看av| 神马国产精品三级电影在线观看| 一区福利在线观看| 国产成人福利小说| 老鸭窝网址在线观看| 欧美日韩福利视频一区二区| 国产精品亚洲av一区麻豆| 精品日产1卡2卡| 国产综合懂色| 国产熟女xx| 国产精品一区二区三区四区免费观看 | 婷婷精品国产亚洲av在线| 九九久久精品国产亚洲av麻豆| 久久久久久国产a免费观看| 最后的刺客免费高清国语| 欧美色视频一区免费| 国产日本99.免费观看| 又黄又爽又刺激的免费视频.| 人妻制服诱惑在线中文字幕| 国内少妇人妻偷人精品xxx网站| 国产蜜桃级精品一区二区三区| 性色avwww在线观看| 亚洲久久久久久中文字幕| 国产精品人妻久久久久久| 亚洲精品在线美女| 美女黄网站色视频| 男人的好看免费观看在线视频| 男人狂女人下面高潮的视频| 看免费av毛片| 国产亚洲精品久久久久久毛片| 两个人的视频大全免费| 精品人妻1区二区| 午夜福利欧美成人| 日韩欧美三级三区| 免费看美女性在线毛片视频| 嫩草影院入口| 能在线免费观看的黄片| 老司机午夜福利在线观看视频| 久久精品国产亚洲av天美| 国产精品电影一区二区三区| 国产亚洲精品av在线| 波野结衣二区三区在线| av在线蜜桃| 亚洲精品日韩av片在线观看| 国产精品一及| 国产成人福利小说| 亚洲av熟女| 亚洲成av人片免费观看| aaaaa片日本免费| 中文字幕免费在线视频6| 久久久精品大字幕| 色5月婷婷丁香| 亚洲人成网站在线播放欧美日韩| 99久久久亚洲精品蜜臀av| 深夜a级毛片| 宅男免费午夜| 国产精品爽爽va在线观看网站| 日本a在线网址| 午夜精品久久久久久毛片777| 国产日本99.免费观看| 色尼玛亚洲综合影院| 成人精品一区二区免费| 国产白丝娇喘喷水9色精品| 欧美+亚洲+日韩+国产| 草草在线视频免费看| 亚洲熟妇熟女久久| 69av精品久久久久久| 久久久国产成人免费| 一卡2卡三卡四卡精品乱码亚洲| 怎么达到女性高潮| 黄色配什么色好看| 国内精品美女久久久久久| 亚洲美女黄片视频| 欧美精品国产亚洲| 给我免费播放毛片高清在线观看| 国内精品久久久久久久电影| 欧美日韩国产亚洲二区| 91久久精品电影网| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久精品电影| 我要看日韩黄色一级片| 高清毛片免费观看视频网站| 亚洲人与动物交配视频| 成人亚洲精品av一区二区| 看片在线看免费视频| 变态另类成人亚洲欧美熟女| av在线观看视频网站免费| 久久精品国产清高在天天线| 国产精品女同一区二区软件 | 中文字幕熟女人妻在线| 精品久久久久久久末码| 老司机午夜十八禁免费视频| 久久久久精品国产欧美久久久| 波多野结衣巨乳人妻| 婷婷精品国产亚洲av| 亚洲精品亚洲一区二区| 黄色女人牲交| 欧美一区二区亚洲| 精品欧美国产一区二区三| 亚洲久久久久久中文字幕| 免费av观看视频| 欧美日韩综合久久久久久 | av专区在线播放| .国产精品久久| 村上凉子中文字幕在线| 亚洲av成人av| 嫩草影院入口| 麻豆av噜噜一区二区三区| 人妻丰满熟妇av一区二区三区| 99久久九九国产精品国产免费| 亚洲自拍偷在线| 亚洲内射少妇av| 欧美一区二区国产精品久久精品| 午夜福利视频1000在线观看| 亚洲欧美精品综合久久99| 99久久99久久久精品蜜桃| 国产爱豆传媒在线观看| 91麻豆精品激情在线观看国产| 日韩av在线大香蕉| 国产精品伦人一区二区| 人人妻人人看人人澡| 日本黄大片高清| 国产私拍福利视频在线观看| 性插视频无遮挡在线免费观看| 亚洲第一欧美日韩一区二区三区| 亚洲成av人片在线播放无| 国产一区二区三区视频了| 亚洲激情在线av| 亚洲黑人精品在线| 亚洲avbb在线观看| 欧美绝顶高潮抽搐喷水| 人人妻人人澡欧美一区二区| 亚洲熟妇中文字幕五十中出| 亚洲五月婷婷丁香| 国产综合懂色| 永久网站在线| 丰满人妻一区二区三区视频av| 99riav亚洲国产免费| 亚洲久久久久久中文字幕| 白带黄色成豆腐渣| 精品久久久久久,| 真人一进一出gif抽搐免费| 亚洲av电影不卡..在线观看| 韩国av一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 国产av不卡久久| 欧美成狂野欧美在线观看| 国产 一区 欧美 日韩| 1000部很黄的大片| 亚洲熟妇熟女久久| 日韩亚洲欧美综合| 中文字幕久久专区| 亚洲一区二区三区色噜噜| www.999成人在线观看| 免费观看的影片在线观看| 天堂影院成人在线观看| av福利片在线观看| 亚洲片人在线观看| 老鸭窝网址在线观看| 99久久成人亚洲精品观看| 国产老妇女一区| 国产精品一区二区三区四区久久| 午夜福利视频1000在线观看| 一本精品99久久精品77| 欧美日韩综合久久久久久 | 在线十欧美十亚洲十日本专区| 国产一区二区在线观看日韩| 99久久无色码亚洲精品果冻| 亚洲av电影不卡..在线观看| 久久国产精品影院| 免费电影在线观看免费观看| www.www免费av| 国产 一区 欧美 日韩| 大型黄色视频在线免费观看| 舔av片在线| 久久久国产成人精品二区| 在线十欧美十亚洲十日本专区| eeuss影院久久| 夜夜爽天天搞| 午夜久久久久精精品| 亚洲国产高清在线一区二区三| 99热只有精品国产| 亚洲av免费高清在线观看| 国产精品电影一区二区三区| 亚洲 国产 在线| 欧美日韩乱码在线| 精品99又大又爽又粗少妇毛片 | 婷婷亚洲欧美| 男女做爰动态图高潮gif福利片| 日韩av在线大香蕉| 直男gayav资源| 又紧又爽又黄一区二区| 久久中文看片网| 亚洲最大成人手机在线| 亚洲在线自拍视频| 我的老师免费观看完整版| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播| 99久久九九国产精品国产免费| 久久亚洲精品不卡| www.www免费av| 99精品在免费线老司机午夜| 悠悠久久av| 欧美一区二区国产精品久久精品| 国产69精品久久久久777片| 日本熟妇午夜| 国产伦精品一区二区三区视频9| 给我免费播放毛片高清在线观看| 国内精品久久久久精免费| 日韩人妻高清精品专区| 听说在线观看完整版免费高清| 国产单亲对白刺激| 亚洲色图av天堂| 黄片小视频在线播放| 欧美色视频一区免费| 赤兔流量卡办理| 精品久久久久久,| 日韩av在线大香蕉| 国产 一区 欧美 日韩| 成人av一区二区三区在线看| 制服丝袜大香蕉在线| 中文字幕免费在线视频6| 在线观看免费视频日本深夜| 88av欧美| 别揉我奶头~嗯~啊~动态视频| 亚洲成av人片在线播放无| 日韩中字成人| 最后的刺客免费高清国语| 欧美最黄视频在线播放免费| 人人妻人人澡欧美一区二区| 99国产精品一区二区蜜桃av| 亚洲第一电影网av| 人妻夜夜爽99麻豆av| 国产精品女同一区二区软件 | 精品人妻熟女av久视频| 91九色精品人成在线观看| 一a级毛片在线观看| 青草久久国产| 亚洲午夜理论影院| 久久精品久久久久久噜噜老黄 | 免费av不卡在线播放| 97超视频在线观看视频| 久99久视频精品免费| 亚洲无线观看免费| avwww免费| 男插女下体视频免费在线播放| 赤兔流量卡办理| 国产主播在线观看一区二区| 欧美成狂野欧美在线观看| 免费一级毛片在线播放高清视频| 午夜影院日韩av| 亚洲五月天丁香| 啦啦啦韩国在线观看视频| 久久国产乱子免费精品| 高清毛片免费观看视频网站| 黄色丝袜av网址大全| 直男gayav资源| 久久久久久九九精品二区国产| 性色av乱码一区二区三区2| 中文在线观看免费www的网站| 美女大奶头视频| 在线观看午夜福利视频| 精品久久久久久久久久免费视频| 亚洲真实伦在线观看| 欧美黑人巨大hd| 99久久精品一区二区三区| 中文字幕人成人乱码亚洲影| 成人av在线播放网站| 黄色一级大片看看| 床上黄色一级片| 国产v大片淫在线免费观看| 日韩精品青青久久久久久| 一区二区三区四区激情视频 | 老女人水多毛片| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 欧美乱色亚洲激情| 91麻豆精品激情在线观看国产| 美女 人体艺术 gogo| 我的老师免费观看完整版| 观看美女的网站| 天堂av国产一区二区熟女人妻| eeuss影院久久| 久久99热6这里只有精品| 国产老妇女一区| 深爱激情五月婷婷| 久久久久久久亚洲中文字幕 | 熟女人妻精品中文字幕| 伦理电影大哥的女人| 丰满乱子伦码专区| 亚洲在线自拍视频| 村上凉子中文字幕在线| 久久久久九九精品影院| 亚洲成av人片在线播放无| 丰满人妻一区二区三区视频av| 亚洲一区高清亚洲精品| 久久精品91蜜桃| av视频在线观看入口| 99久久精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 一级黄色大片毛片| 制服丝袜大香蕉在线| 免费观看精品视频网站| 一区福利在线观看| 少妇人妻精品综合一区二区 | 久久久精品大字幕| av国产免费在线观看| 简卡轻食公司| 黄色日韩在线| 亚洲欧美日韩卡通动漫| av专区在线播放| 91麻豆精品激情在线观看国产| aaaaa片日本免费| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品影视一区二区三区av| 国产精品国产高清国产av| 免费高清视频大片| 久久久久精品国产欧美久久久| 午夜影院日韩av| 久久久色成人| 全区人妻精品视频| 少妇裸体淫交视频免费看高清| 日日夜夜操网爽| 久久精品国产亚洲av香蕉五月| 99久国产av精品| 亚洲精品亚洲一区二区| 高清毛片免费观看视频网站| 日韩国内少妇激情av| 九九热线精品视视频播放| 久久久精品大字幕| 国内揄拍国产精品人妻在线| 色视频www国产| 两个人的视频大全免费| 午夜福利视频1000在线观看| 日韩精品中文字幕看吧| 久久久精品欧美日韩精品| 午夜精品一区二区三区免费看| 精品一区二区免费观看| 亚洲欧美精品综合久久99| 午夜福利在线在线| av女优亚洲男人天堂| 1000部很黄的大片| 性色avwww在线观看| 国产毛片a区久久久久| 极品教师在线免费播放| 国产亚洲精品av在线| 最近视频中文字幕2019在线8| 丁香六月欧美| 精品午夜福利在线看| 日韩欧美国产在线观看| 日韩中字成人| 中文字幕免费在线视频6| 亚洲国产精品sss在线观看| 51国产日韩欧美| 日韩欧美 国产精品| 午夜福利在线观看吧| 欧美区成人在线视频| 亚洲aⅴ乱码一区二区在线播放| 91狼人影院| 中文字幕熟女人妻在线| 真人做人爱边吃奶动态| 亚洲内射少妇av| 久久久精品大字幕| 99热只有精品国产| 国内久久婷婷六月综合欲色啪| 精品久久久久久久久亚洲 | 日韩亚洲欧美综合| 在线天堂最新版资源| 久久亚洲真实| 成人国产综合亚洲| 欧美zozozo另类| 在线十欧美十亚洲十日本专区| 日本a在线网址| 欧美激情国产日韩精品一区| 亚洲性夜色夜夜综合| 免费av观看视频| or卡值多少钱| 18+在线观看网站| 久久久久久国产a免费观看| 99热精品在线国产| 99在线人妻在线中文字幕| 夜夜躁狠狠躁天天躁| 国产成年人精品一区二区| av黄色大香蕉| 色吧在线观看| av在线老鸭窝| 宅男免费午夜| 国产aⅴ精品一区二区三区波| 嫩草影视91久久| 在线观看午夜福利视频| 精品久久久久久久久久免费视频| 欧美日本亚洲视频在线播放| 99riav亚洲国产免费| 久久久久久久久中文| 久久久成人免费电影| 中文字幕精品亚洲无线码一区| 黄色日韩在线| 最近视频中文字幕2019在线8| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| 精品久久久久久久末码| 免费av观看视频| 久久中文看片网| 首页视频小说图片口味搜索| 日本黄色视频三级网站网址| 超碰av人人做人人爽久久| 又黄又爽又刺激的免费视频.| 深夜a级毛片| 99riav亚洲国产免费| 亚洲一区二区三区不卡视频| 亚洲av.av天堂| 国产单亲对白刺激| 99久久久亚洲精品蜜臀av| 啪啪无遮挡十八禁网站| 波多野结衣巨乳人妻| 国产精品一及| 嫩草影院入口| 欧美乱色亚洲激情| 亚洲18禁久久av|