• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organic Solar Cell Module Device Based on A Novel Composite Transport Layer

    2021-03-05 13:07:14DINGLeiFOWanzhenDONGHaojie
    發(fā)光學(xué)報(bào) 2021年2期

    DING Lei , FO Wan-zhen, DONG Hao-jie

    (1. School of Electrical Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China; 2. Jiangsu Jitri Org Optoelectronics Technology Co., Ltd., Suzhou 215215, China)*Corresponding Author, E-mail: dinglei@sust.edu.cn

    Abstract: Based on a new composite interface transport layer, large-area organic solar cell module was fabricated by vacuum evaporation of organic small molecular materials. According to the transmittance spectrum, surface roughness morphology and surface wettability of transport layer, the surface roughness of active layers based on different substrates, the uniformity of blade coating and the influence of different transport layers on the performance of organic solar cells were analyzed. The experimental results show that when the electronic dense layer of 4,7-diphenyl-1,10-phenanthroline(BPhen) acetylimide is deposited on the surface of aluminum-doped zinc oxide substrate, the new composite transport layer is formed, which does not affect the light transmittance of the substrate in the range of 300-900 nm. In addition, the electron dense layer of BPhen can effectively improve the flatness and wettability of the substrate surface, which is beneficial to the subsequent scraping of the active layer solution and improves the quality and the stability of the coating film. By analyzing the surface roughness and three-dimensional morphology of the active layer film coated on different substrates, the surface roughness of the active layer film coated on the AZO(Al doped ZnO)/BPhen new composite transport layer was significantly reduced. It means that the new composite transport layer as substrate is beneficial to scrape out a uniform active layer film. As a result, the open circuit voltage(Voc), short-circuit current density(Jsc) and fill factor(FF) of rigid and flexible module device are significantly improved, and the power conversion efficiency(PCE) of the new rigid modular device is increased to 10.62%, which is about 13% higher than stand device. Importantly, the PCE of the flexible module device reaches 5.13%, which is also approximately 32% higher than AZO-based device.

    Key words: new composite transport layer; organic solar cell module; electron dense layer

    1 Introduction

    Organic solar cells(OSCs) have attracted a wide attention due to their advantages of low cost, large area manufacturing, flexibility and environmental friendliness[1-6]. At present, organic solar cells are developing rapidly, in the laboratory stage their photoelectric conversion efficiency(PCE) has exceeded 17%[7-17]. Therefore, it is urgent to carry out relevant industrial studies, which is necessary for the preparation of high-efficiency organic solar cell module devices[18-23]. Therefore, organic solar cell modules prepared by doctor-blade coating(DBC) should have good repeatability and maintain excellent conversion efficiency. The film forming property, uniformity and stability of the active film will be affected by the surface morphology of the different transport layer substrate. In the process of large-area scraping and coating, the differences of film thickness in different areas, and bad surface morphology and blending state of active layer will lead to the attenuation of module device performance[24-28]. At the same time, an interface transport layer with excellent performance can greatly restrain intrinsic defects and interfacial defects, improve the efficiency of carrier collection, and improve the PCE of module devices, which has the potential to promote the industrialization of organic solar cells.

    Thus, this research proposes a new type of composite transport layer based on AZO/BPhen small molecule materials, which was constructed by vacuum evaporation of BPhen on the surface of the blade coated AZO film. The method of combining blade coating and vacuum evaporation can realize the hole filling and defect passivation of AZO film, which can improve the carrier collection efficiency and the surface smoothness. Therefore, the stability and PCE of organic solar cell module were effectively improved. In addition, this method is suitable for the preparation of flexible organic solar cells with highly repeatability.

    2 Materials and Methods

    2.1 Materials

    Indium tin oxide(ITO) glass was purchased from South China Xiang Science and Technology Company, Ltd.. AZO is Al doped ZnO[29]. Zincacetate dihydrate(Zn(CH3COO)2·2H2O, 98%) were purchased from Sigma-Aldrich. Aluminum nitrate(Al(NO3)3·9H2O, 99.99%) was purchased from Aladdin. BPhen was purchased from Shaanxi Lighte Optoelectronics Material. Chloroform(99.8%) was purchased from damas-beta. For the active layer, the mixture of Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b∶4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)](PM6)∶(2,2′-((2Z,2′Z)-(12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e] thieno [2″,3″∶4′,5′] thieno [2′,3′∶4,5] pyrrolo [3,2-g] thieno [2′,3′∶4,5] thieno [3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)) dimalononitrile)(Y6) at a weight ratio of 1∶1.2 with a concentration of 18 mg/mL was dissolved in Chloroform(CF).1-Chloronaphthalene(CN) was added to the CF at various concentrations of 1.5%.

    2.2 Device Fabrication

    As shown in Fig.1(a), it is a schematic diagram of the device structure of traditional OSCs. The structure of OSCs is ITO/AZO(20 nm)/PM6∶Y6(100 nm)/MoO3(10 nm)/Al(300 nm).

    Fig.1(b) is a schematic diagram of the device structure of the new composite transport layer OSCs. The structure of OSCs is ITO/AZO(20 nm)/ 4,7-Diphenyl-1,10-phenanthroline(BPhen)(10 nm) PM6∶Y6(100 nm)/MoO3(10 nm)/Al(300 nm). Fig.1(c) shows the chemical structure of the material used in the device. The preparation process of the new composite transport layer OSCs device is as follows: (1)Glass substrate was polished first, and then an ITO film was plated on the glass by magnetron sputtering to form ITO conductive glass as the cathode of the solar cell. (2)Patterned laser etched ITO conductive glass. (3)AZO solution was scraped on the patterned ITO conductive glass(The slit height was 20 μm[23]. The substrate temperature was 40 ℃, and the scraping rate was 30 mm/s.). The film was obtained by annealing at 140 ℃ for 20 min in the air. (4)ITO coated with AZO film was placed in the nitrogen gloves box inside of the vacuum coating machine. When the cabin pressure was pumped to 3×10-4Pa, BPhen organic small molecular material of 10 nm was steam plated at a rate of 0.2 nm/s to construct the composite transport layer. (5)Take out the evaporated substrate and place it on the scraper in the air for scraping and painting the light absorption layer solution. The active layer solution is a binary system solution divided into two groups PM6 and Y6, with a ratio of PM6∶Y6=1∶1.2.(6)Stir all solutions for 6 h before used(The height of the slit is 20 μm, the substrate temperature is 60 ℃, and the scraping speed is 40 mm/s.). Then anneal at 110 ℃ for 10 min resulted in a light absorption film thickness of 100 nm. (7)The battery sheet scraped and coated with the light absorption film was placed in the vacuum evaporation machine. When the cabin pressure was pumped to 3×10-4Pa, 10 nm thickness of MoO3was evaporated as the cavity transport layer at 0.01 nm/s evaporation rate. (8)Take out the battery slice and put it into a mold for physical partition. 1 mm electrode is exposed for connecting the top and the bottom between modules to build the batteries connected in series. Then put the battery slice in the coating machine, evaporate the 300 nm aluminum electrodes at the evaporation rate of 0.1 nm/s after the cabin pressure is pumped to 3×10-4Pa.

    Fig.1 (a)-(b)Schematic diagrams of the device structure of traditional OSCs and the new composite transport layer. (c)Chemical structure of the material used in the device.

    Fig.2(a) and (c) show the design drawings of large-area OSCs, which comprising 12 cells connected in series. Each cell is 0.4 cm in width and 7.5 cm in length and the intervals is 0.1 cm. The total active area of a large-area OSC is 36 cm2. The output voltage could be controlled by dominant the amount of cells in series. The cathode of each cell is connected to the ITO of adjacent right-side cell for series connection. However, in the batteries connected in series, every cell must be good running to make sure the circuit is connected. Therefore, how to control the uniformity of film is important. Fig.2(c) and (d) show the metal mask used to define the active layer by mechanical scratch for the series connection amongst the cells. Fig.2(e) shows the blade coating process, which first uses a pipette to deposit solution and then spreads of solution through capillary action.

    Fig.2 Design of large-scale patterned OPV in series with side view(a) and top view(c). (b)Photo of the knife’s edge. (d)A metal mask for active region definition and interconnection. (e)Blade coating process.

    3 Results and Discussion

    3.1 Physical Characteristics of Different Transport Layers

    In order to study the influence of different transport layers on the performance of OSC devices, we prepared traditional transport layer AZO films and new composite transport layer AZO/BPhen films on glass substrates.Fig.3 shows the transmittance curves of the glass substrate/AZO and glass substrate/AZO/BPhen structures. It can be seen from the curve that when an electron dense layer is deposited on the AZO substrate surface, and it has no effect on the transmittance of the substrate in the range of 300-900 nm, which ensures that the overall performance of the module device was not be affected.

    Fig.3 Transmittance curves of glass substrate/AZO and glass substrate/AZO/BPhen structures

    Because the surface morphology of the transport layer substrate is different, the film forming property, uniformity and stability of the next layer of film prepared by scraping and coating will be further affected. So we prepared different transport layers with different morphologies for test.Fig.4 shows the roughness of the surface of the glass substrate/AZO and glass substrate/AZO/BPhen structure with two-dimensional view.

    Fig.4 Two-dimensional plan view of surface roughness of glass substrate/AZO(a) and glass substrate/AZO/BPhen(b) structure

    The arithmetic mean difference(Ra) of the active layer is reduced from 5.456 nm to 4.779 nm under different substrates(the glass substrate/AZO and glass substrate/AZO/BPhen structure).

    From the figure we could recognize that when an electron dense layer(BPhen layer) is deposited on the electron transport layer(BPhen layer and AZO layer), the surface roughness effectively reduced, which is benefited to the increasing of stability and uniformity of subsequent active layer coating.

    Fig.5 shows the three-dimensional surface morphologies of the glass substrate/AZO and glass substrate/AZO/BPhen structures. As shown in Fig.5, the glass substrate/AZO has a drastic fluctuation of the thickness, which indicates that the entire surface is not flat enough. By adding an electron dense layer, we can effectively fill the holes defects of the AZO substrate, which make the entire base surface more flat, and significantly impact the quality of the subsequent coating film.

    Fig.5 Three-dimensional surface morphologies of glass substrate/AZO(a) and glass substrate/AZO/BPhen(b) structure

    Then, we studied the difference of the surface wettability of different transport layers through measuring the contact angles. As shown in Fig.6, the contact angle(θ) of chloroform solution changed from 43.1° to 41.2° for the glass substrate/AZO and glass substrate/AZO/BPhen structure. It can be found that when the electronic dense layer of BPhen is added to the AZO surface, it can effectively improve the flatness and wettability of the substrate surface, which is also benefited to the subsequent knife coating process of the light absorption layer solution, thus improves the quality and stability of the coating film.

    Fig.6 Contact angle test diagrams of glass substrate/AZO(a) and glass substrate/AZO/BPhen(b) structure

    3.2 Characteristics of Active Layer Based on Different Transport Layer Substrates

    An excellent interface transport layer can greatly reduce the intrinsic defects and interface defects, further improved the carrier collection efficiency and the photoelectric conversion efficiency of the module device. For this reason, we studied the surface roughness and morphologies of the active layer based on different transport layer substrates. As shown in Fig.7, when an electron dense layer is added to the electron transport layer, the surface roughness of the active layer scraped as a substrate has been significantly reduced. TheRaof the active layer is reduced from 6.452 nm to 5.887 nm for glass substrate/AZO and glass substrate/AZO/BPhen structure. This indicates that a flat base is beneficial to scraping a uniform surface film.

    Fig.7 Two-dimensional plan view of the surface roughness of the active layer based on glass substrate/AZO/active layer(a) and glass substrate/AZO/BPhen/active layer(b) structure

    Fig.8 Three-dimensional surface morphology of active layer based on glass substrate/AZO/active layer(a) and glass substrate/AZO/BPhen/active layer(b) structure

    Fig.9 Film locations of different areas

    Tab.1 Thickness of different areas of the active layer based on different substrates

    3.3 Photovoltaic Characteristics of Organic Solar Cell Modules Based on Different Transport Layers

    Based on two different transport layer substrates, we prepared the traditional organic solar cell module devices ITO/AZO/PM6∶Y6/MoO3/Al and new composite transport layer ITO/AZO/Bphen/PM6∶Y6/MoO3/Al organic solar cell module devices. Fig.10 shows the densityversusvoltage(J-V) curves of OSCs with BPhen of different thicknesses. The electron dense layer(BPhen) with 10 nm thicknesses is the most optimized device, which demonstrated a high photoelectric conversion efficiency(PCE) of 10.62%. The main effect of BPhen’s thickness is the electron transmission capacity for devices performance. If the BPhen’s thickness is too thick, the electron transmission capacity becomes weak. If it is too thin, which will not form an electron dense layer.

    Fig.10 J-V curves of OSCs with BPhen of different thick-nesses

    From theJ-Vand external quantum efficiency (EQE) curves of the rigid organic solar cell module devices with different structures as shown in Fig.11(a) and the photovoltaic parameters in Tab.2, we can found that when the composite transport layer is used, the uniformity of the morphology has a significant improvement. By improved and enhanced the carrier mobility, the device performance has been greatly improved, which mainly manifested by the increase in short-circuit current densityJscand fill factor FF,Jscincreased from 1.51 mA/cm2to 1.65 mA/cm2, FF from 63.04% to 64.15%. It shows that the film formed based on the new type of transport layer substrate has better film formation properties, fewer defects inside, and higher conversion efficiency of the absorbed photons. The PCE of the final prepared new rigid module device was improved to 10.62%, about an increase of 13%. As shown in Fig.11(b), the EQE of the device(from 450 to 800 nm) shows a slight improvement owing to the morphological optimization of blend films. Furthermore, 82% of EQE is obtained in the device with BPhen, exhibiting much stronger ability to collect carriers.

    Fig.11 (a)J-V curves of rigid organic solar cell modules with different structures. (b)EQE curves of rigid organic solar cell modules with different structures.

    Tab.2 Photovoltaic performance of rigid organic solar cell modules with different structures

    Fig.12 shows the evolution of the PCE of cells under AM1.5(100 mW/cm2air mass 1.5 illumination). The performance of the reference cells degrades slowly. After 168 h, the PCE of the cells decreases from 10.62%(Voc=9.92 V,Jsc=1.65 mA/cm2, and FF=63.04%) to 9.26%(Voc=9.62 V,Jsc=1.50 mA/cm2, and FF=62.4%), and the PCE of traditional cell decreases from 9.40%(Voc=9.88 V,Jsc=1.51 mA/cm2, and FF=63.04%) to 5.23%(Voc=9.02 V,Jsc=1.08 mA/cm2, and FF=53.68%).Jscand FF of the large area devices are decreased, but new composite large-area modular devices show good stability.

    From theJ-Vcurve of flexible organic solar cell module devices with different structures as shown in Fig.13 and the photovoltaic parameters in Tab.3, it can be seen that the new composite transport layer also has a good device performance on the flexible substrate. Compared with traditional module devices, the photovoltaic parameters have been greatly improved.Vocincreased from 8.59 V to 9.01 V,Jscincreased from 1.10 mA/cm2to 1.26 mA/ cm2and FF increased from 41.11% to 44.78%. In the end, the photoelectric conversion efficiency of its flexible module devices reached 5.13%, about an increase of 32%. Finally, it shows that adding an electronic dense layer on the surface of the rough PET substrate can effectively increase the surface flatness, which has great application potential in the improvement of the performance of flexible module devices in the future.

    Fig.12 Evolution of the PCE of cells under AM1.5(100 mW/cm2 air mass 1.5 illumination)

    Fig.13 J-V curves of flexible organic solar cell modules with different structures

    Tab.3 Photovoltaic performance of flexible organic solar cell modules with different structures

    4 Conclusion

    In this study, a new type of composite transport layer is constructed by introducing an electron dense layer into the traditional transport layer. The combination of blade coating and evaporation techniques not only improved the optical and electrical properties of the film, but also reduced the roughness of the substrate and increased the substrate wettability. It is helpful for the film to form the active layer during the knife coating process, so that the film thickness is uniform and the morphology is structured. Finally, the overall photoelectric conversion efficiency of the rigid module device was greatly improved, and the PCE was increased from 9.4% to 10.62%. Moreover, it has a very good performance improvement effect on the flexible substrate, and the photoelectric conversion efficiency of the flexible module device has reached 5.13%, about an increase of 32% comparing to reference device. This research has a marked impact on the promotion of the industrialization of organic photovoltaic.

    性色avwww在线观看| 免费看美女性在线毛片视频| 国内揄拍国产精品人妻在线| 在线观看免费视频日本深夜| 啦啦啦韩国在线观看视频| 亚洲丝袜综合中文字幕| 男人的好看免费观看在线视频| 午夜老司机福利剧场| 国产男靠女视频免费网站| 成人av一区二区三区在线看| 亚洲精品影视一区二区三区av| 黄色一级大片看看| 国产色婷婷99| 欧美最黄视频在线播放免费| 国产在线精品亚洲第一网站| 国产精品久久电影中文字幕| 少妇熟女欧美另类| 午夜精品在线福利| 国产精品久久视频播放| 亚洲七黄色美女视频| 男女之事视频高清在线观看| 亚洲精品粉嫩美女一区| 亚洲av美国av| 精品国产三级普通话版| 欧美日韩精品成人综合77777| 亚洲一区二区三区色噜噜| 日本黄色视频三级网站网址| 久久精品91蜜桃| 免费在线观看影片大全网站| 欧美激情久久久久久爽电影| 国产伦在线观看视频一区| 搡老熟女国产l中国老女人| 久久久欧美国产精品| 国产精品野战在线观看| 免费人成在线观看视频色| 内地一区二区视频在线| 亚洲精品乱码久久久v下载方式| 麻豆成人午夜福利视频| 久久国内精品自在自线图片| 中国美女看黄片| 日日干狠狠操夜夜爽| 中文字幕熟女人妻在线| 九九热线精品视视频播放| 亚洲精品粉嫩美女一区| 亚洲熟妇熟女久久| 少妇丰满av| 2021天堂中文幕一二区在线观| 欧美国产日韩亚洲一区| 日韩欧美国产在线观看| 色尼玛亚洲综合影院| 麻豆乱淫一区二区| 国产麻豆成人av免费视频| 日韩 亚洲 欧美在线| 国产欧美日韩一区二区精品| 亚洲国产精品成人综合色| 在线观看美女被高潮喷水网站| 国产亚洲91精品色在线| av免费在线看不卡| 香蕉av资源在线| av免费在线看不卡| 精品一区二区免费观看| 日本与韩国留学比较| 日韩精品青青久久久久久| 亚洲成人久久性| 久久精品人妻少妇| 男女啪啪激烈高潮av片| 97碰自拍视频| 97人妻精品一区二区三区麻豆| 欧美激情久久久久久爽电影| 国产精品99久久久久久久久| 91狼人影院| 国产成人一区二区在线| 精品久久久久久久人妻蜜臀av| 国产91av在线免费观看| 国产av一区在线观看免费| 精品久久久久久久久久免费视频| 九九爱精品视频在线观看| 亚洲人成网站在线播| 国产单亲对白刺激| 欧美另类亚洲清纯唯美| 老司机午夜福利在线观看视频| 国产成人a∨麻豆精品| 欧美激情在线99| 午夜亚洲福利在线播放| 日本a在线网址| 国产黄色小视频在线观看| 亚洲av第一区精品v没综合| 18禁在线播放成人免费| av在线天堂中文字幕| 欧美一区二区国产精品久久精品| 亚洲熟妇中文字幕五十中出| 深夜精品福利| АⅤ资源中文在线天堂| 精品久久久久久久久av| 一级毛片电影观看 | 人人妻,人人澡人人爽秒播| 国产精品福利在线免费观看| 精品国产三级普通话版| 精品乱码久久久久久99久播| 免费不卡的大黄色大毛片视频在线观看 | 身体一侧抽搐| 国产极品精品免费视频能看的| 一个人看的www免费观看视频| 亚洲最大成人中文| 亚洲国产高清在线一区二区三| 中文亚洲av片在线观看爽| 国产午夜福利久久久久久| 日韩欧美 国产精品| 97碰自拍视频| 少妇丰满av| 波多野结衣高清作品| 一级毛片电影观看 | 免费搜索国产男女视频| 一本久久中文字幕| 国产欧美日韩一区二区精品| 欧美3d第一页| 午夜久久久久精精品| 99精品在免费线老司机午夜| 久久久欧美国产精品| 国产伦在线观看视频一区| 色综合色国产| 黄色一级大片看看| 欧美区成人在线视频| 亚洲成人久久性| 亚洲欧美日韩无卡精品| 国产不卡一卡二| 国产精品人妻久久久影院| а√天堂www在线а√下载| 国产成人a∨麻豆精品| 男人和女人高潮做爰伦理| 一级av片app| 国产大屁股一区二区在线视频| 男女那种视频在线观看| 欧美最黄视频在线播放免费| 亚洲av中文字字幕乱码综合| 日韩成人伦理影院| 欧美日韩综合久久久久久| 精品熟女少妇av免费看| 悠悠久久av| 亚洲精品一区av在线观看| 欧美一区二区精品小视频在线| 色哟哟哟哟哟哟| 亚洲精品亚洲一区二区| 蜜臀久久99精品久久宅男| 亚洲美女黄片视频| 亚洲av.av天堂| 国产欧美日韩精品亚洲av| 在线观看美女被高潮喷水网站| 免费看美女性在线毛片视频| 日韩av在线大香蕉| 午夜福利视频1000在线观看| 中文字幕精品亚洲无线码一区| 国产日本99.免费观看| 高清毛片免费看| 九九爱精品视频在线观看| 一本精品99久久精品77| 青春草视频在线免费观看| 成人欧美大片| 亚洲国产日韩欧美精品在线观看| 精品久久久久久久人妻蜜臀av| 久久久久久久久中文| h日本视频在线播放| 国产成人精品久久久久久| 不卡一级毛片| 大型黄色视频在线免费观看| 日韩精品青青久久久久久| 精华霜和精华液先用哪个| 草草在线视频免费看| 亚洲自偷自拍三级| 麻豆国产97在线/欧美| 成人特级av手机在线观看| 男女之事视频高清在线观看| 日日干狠狠操夜夜爽| 一边摸一边抽搐一进一小说| 国产精品嫩草影院av在线观看| 一区二区三区免费毛片| 日韩高清综合在线| 精品无人区乱码1区二区| 成人二区视频| 老女人水多毛片| 国产在线男女| 在线a可以看的网站| 我的老师免费观看完整版| 最新中文字幕久久久久| 亚洲精品粉嫩美女一区| 成人午夜高清在线视频| 国产片特级美女逼逼视频| 精品午夜福利视频在线观看一区| 插阴视频在线观看视频| 精品久久久久久久末码| 欧美色视频一区免费| 亚洲成a人片在线一区二区| 久久久久久久久久久丰满| 天堂av国产一区二区熟女人妻| 日韩成人伦理影院| 欧美三级亚洲精品| 日韩精品有码人妻一区| 国产私拍福利视频在线观看| 黄色视频,在线免费观看| 亚洲高清免费不卡视频| 麻豆精品久久久久久蜜桃| 国产在线精品亚洲第一网站| 国产精品不卡视频一区二区| 波野结衣二区三区在线| 国产午夜精品久久久久久一区二区三区 | 青春草视频在线免费观看| 黄色一级大片看看| 久久欧美精品欧美久久欧美| 波多野结衣高清作品| 欧美zozozo另类| 99热全是精品| 国产成人a区在线观看| 人人妻人人澡人人爽人人夜夜 | 联通29元200g的流量卡| 伦理电影大哥的女人| 一区二区三区高清视频在线| 热99在线观看视频| 亚洲精品国产成人久久av| 别揉我奶头~嗯~啊~动态视频| a级毛色黄片| 亚洲在线观看片| 不卡视频在线观看欧美| 亚洲成人久久性| 免费av毛片视频| 亚洲欧美日韩卡通动漫| 97超级碰碰碰精品色视频在线观看| 91精品国产九色| 成人综合一区亚洲| 中文亚洲av片在线观看爽| 99久久中文字幕三级久久日本| 我要搜黄色片| 久久国产乱子免费精品| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 欧美性猛交黑人性爽| 俄罗斯特黄特色一大片| 精品午夜福利视频在线观看一区| 日日摸夜夜添夜夜添av毛片| 久久热精品热| 看非洲黑人一级黄片| 老熟妇仑乱视频hdxx| 日韩精品中文字幕看吧| 欧美日韩综合久久久久久| 99国产极品粉嫩在线观看| 久久久久久久久久黄片| av黄色大香蕉| av专区在线播放| 在线观看66精品国产| 此物有八面人人有两片| 一区福利在线观看| 女生性感内裤真人,穿戴方法视频| 91久久精品国产一区二区三区| 免费大片18禁| 男女视频在线观看网站免费| 成人鲁丝片一二三区免费| 日韩成人伦理影院| 久久精品人妻少妇| 成人特级av手机在线观看| 亚洲国产色片| 精品人妻一区二区三区麻豆 | 极品教师在线视频| 赤兔流量卡办理| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| 亚洲五月天丁香| 97超级碰碰碰精品色视频在线观看| 久久人妻av系列| 色综合色国产| av天堂在线播放| 国产精品日韩av在线免费观看| 国产黄色小视频在线观看| 日本撒尿小便嘘嘘汇集6| 欧美一级a爱片免费观看看| 欧美日韩一区二区视频在线观看视频在线 | 国产爱豆传媒在线观看| 久久精品影院6| 好男人在线观看高清免费视频| 女人被狂操c到高潮| 小蜜桃在线观看免费完整版高清| 老熟妇乱子伦视频在线观看| 美女大奶头视频| 深爱激情五月婷婷| 桃色一区二区三区在线观看| 看黄色毛片网站| 久久精品91蜜桃| 免费不卡的大黄色大毛片视频在线观看 | 国产午夜福利久久久久久| 久久精品国产清高在天天线| 亚洲七黄色美女视频| 国产单亲对白刺激| 国产伦在线观看视频一区| 午夜影院日韩av| 观看美女的网站| 成年女人毛片免费观看观看9| 亚洲在线自拍视频| 寂寞人妻少妇视频99o| 日韩欧美三级三区| 日韩欧美精品免费久久| 亚洲不卡免费看| 亚洲中文字幕日韩| 国产精品一及| 99riav亚洲国产免费| 久久精品国产鲁丝片午夜精品| 国产伦一二天堂av在线观看| 亚洲精品日韩在线中文字幕 | 色综合亚洲欧美另类图片| 午夜福利在线观看吧| 日韩大尺度精品在线看网址| av.在线天堂| 女生性感内裤真人,穿戴方法视频| 亚洲高清免费不卡视频| 亚洲美女搞黄在线观看 | 亚州av有码| 99久久精品国产国产毛片| 天堂av国产一区二区熟女人妻| 在线天堂最新版资源| 亚洲精品粉嫩美女一区| 99热这里只有是精品在线观看| 18+在线观看网站| 亚洲精品成人久久久久久| 欧美xxxx黑人xx丫x性爽| 欧美最黄视频在线播放免费| 寂寞人妻少妇视频99o| 国产国拍精品亚洲av在线观看| 日本一二三区视频观看| 丝袜喷水一区| 亚洲成人久久性| 国产一区二区亚洲精品在线观看| 精品欧美国产一区二区三| 国产综合懂色| 国产老妇女一区| 日韩三级伦理在线观看| 99久久精品国产国产毛片| 午夜精品一区二区三区免费看| 亚洲欧美日韩东京热| 在线观看一区二区三区| 久久午夜福利片| 国产高清三级在线| 国产高潮美女av| 国产精品精品国产色婷婷| 成人鲁丝片一二三区免费| 国产毛片a区久久久久| 久久99热这里只有精品18| 久久久久九九精品影院| 成人综合一区亚洲| ponron亚洲| 91久久精品国产一区二区三区| 毛片女人毛片| 国产精品久久久久久久久免| 搞女人的毛片| 少妇人妻一区二区三区视频| 免费搜索国产男女视频| 天堂影院成人在线观看| 国产老妇女一区| 深夜精品福利| 国产亚洲欧美98| 一个人看的www免费观看视频| 日韩中字成人| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播| 变态另类成人亚洲欧美熟女| 亚洲一级一片aⅴ在线观看| 午夜激情欧美在线| 久久精品国产亚洲av涩爱 | 老女人水多毛片| 国产成人精品久久久久久| 九色成人免费人妻av| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩东京热| eeuss影院久久| 18禁在线无遮挡免费观看视频 | 亚洲乱码一区二区免费版| 一区二区三区四区激情视频 | 久久精品夜色国产| 大香蕉久久网| 精品午夜福利在线看| 国产真实乱freesex| 欧美绝顶高潮抽搐喷水| 日本 av在线| 99久久精品国产国产毛片| 日韩欧美在线乱码| 国产一区二区三区av在线 | 国产欧美日韩精品亚洲av| 熟女人妻精品中文字幕| 搞女人的毛片| 日韩欧美一区二区三区在线观看| 日日摸夜夜添夜夜爱| 真实男女啪啪啪动态图| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清| 亚洲欧美精品综合久久99| 三级男女做爰猛烈吃奶摸视频| 亚洲综合色惰| 亚洲欧美日韩高清专用| 亚洲人成网站在线观看播放| 亚洲美女黄片视频| 女人十人毛片免费观看3o分钟| 精品人妻熟女av久视频| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 成人无遮挡网站| 成人一区二区视频在线观看| 亚洲乱码一区二区免费版| 99国产精品一区二区蜜桃av| 99热这里只有精品一区| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 国产69精品久久久久777片| 国产精品不卡视频一区二区| 日本与韩国留学比较| 久久亚洲精品不卡| 日本色播在线视频| 精品午夜福利视频在线观看一区| 岛国在线免费视频观看| 国产成人福利小说| 听说在线观看完整版免费高清| 一区二区三区免费毛片| 国内精品久久久久精免费| 国产精品福利在线免费观看| 亚洲欧美清纯卡通| 亚洲欧美成人精品一区二区| 久久久成人免费电影| 一级黄片播放器| 欧美激情久久久久久爽电影| 国产成人福利小说| 九九爱精品视频在线观看| 大型黄色视频在线免费观看| 一夜夜www| 一级毛片aaaaaa免费看小| 久久亚洲精品不卡| 三级毛片av免费| 小说图片视频综合网站| 99九九线精品视频在线观看视频| 国产91av在线免费观看| 日韩欧美 国产精品| 卡戴珊不雅视频在线播放| 中文字幕av在线有码专区| 精品一区二区免费观看| 精品午夜福利视频在线观看一区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲内射少妇av| 内地一区二区视频在线| 亚洲乱码一区二区免费版| 久久九九热精品免费| 黄色配什么色好看| 国产av不卡久久| 日本在线视频免费播放| 神马国产精品三级电影在线观看| 观看美女的网站| 看黄色毛片网站| 高清日韩中文字幕在线| 国产精品一二三区在线看| 精品一区二区三区视频在线观看免费| 国产一区二区亚洲精品在线观看| 老司机午夜福利在线观看视频| 亚洲第一区二区三区不卡| 性色avwww在线观看| 亚洲国产精品国产精品| 亚洲成人精品中文字幕电影| 在线观看午夜福利视频| 亚洲无线观看免费| 亚洲内射少妇av| 色尼玛亚洲综合影院| 无遮挡黄片免费观看| 亚洲成人久久爱视频| 插逼视频在线观看| 在线观看美女被高潮喷水网站| 91精品国产九色| 22中文网久久字幕| 美女cb高潮喷水在线观看| 天天一区二区日本电影三级| 国产一区二区激情短视频| 欧洲精品卡2卡3卡4卡5卡区| 国产av在哪里看| 麻豆国产av国片精品| 网址你懂的国产日韩在线| 日韩强制内射视频| 精品一区二区三区av网在线观看| 午夜福利18| 午夜爱爱视频在线播放| 精品不卡国产一区二区三区| 最近中文字幕高清免费大全6| 一卡2卡三卡四卡精品乱码亚洲| 中文亚洲av片在线观看爽| 丰满乱子伦码专区| 黄色欧美视频在线观看| 久久精品久久久久久噜噜老黄 | av在线蜜桃| 国产成人影院久久av| 日本黄大片高清| 亚洲av第一区精品v没综合| 国产在线男女| 99在线人妻在线中文字幕| 久久人妻av系列| 男女下面进入的视频免费午夜| 午夜激情欧美在线| 日本黄大片高清| 国产精品久久视频播放| 国产探花极品一区二区| 露出奶头的视频| 联通29元200g的流量卡| 日韩三级伦理在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| 99热6这里只有精品| 22中文网久久字幕| 日本欧美国产在线视频| av.在线天堂| 午夜免费激情av| 小说图片视频综合网站| 国产精品久久久久久av不卡| 国内精品一区二区在线观看| 欧美一区二区亚洲| 免费av观看视频| 综合色av麻豆| 波多野结衣巨乳人妻| 亚洲国产欧洲综合997久久,| 国内久久婷婷六月综合欲色啪| 日本黄色视频三级网站网址| 男女之事视频高清在线观看| 欧美人与善性xxx| 一个人免费在线观看电影| 搞女人的毛片| 舔av片在线| 少妇的逼水好多| a级毛片免费高清观看在线播放| 精品久久久久久久久久久久久| 日本色播在线视频| 免费看av在线观看网站| 国产精品福利在线免费观看| 久久久久性生活片| 97碰自拍视频| 三级毛片av免费| 欧美+亚洲+日韩+国产| 成人av在线播放网站| 91久久精品电影网| 好男人在线观看高清免费视频| 变态另类成人亚洲欧美熟女| 亚洲五月天丁香| 变态另类成人亚洲欧美熟女| 97热精品久久久久久| 婷婷精品国产亚洲av| 久久韩国三级中文字幕| 欧美不卡视频在线免费观看| 狠狠狠狠99中文字幕| 国内精品一区二区在线观看| 日日干狠狠操夜夜爽| 黄色一级大片看看| 欧美zozozo另类| 国产精品乱码一区二三区的特点| 成年女人永久免费观看视频| 免费一级毛片在线播放高清视频| 日本精品一区二区三区蜜桃| 亚洲av成人精品一区久久| 日日撸夜夜添| 日本三级黄在线观看| 精品一区二区免费观看| 免费看av在线观看网站| 亚洲成人久久性| 一区二区三区免费毛片| 国产在视频线在精品| 搡老岳熟女国产| 欧美丝袜亚洲另类| 男人舔奶头视频| a级毛色黄片| 免费在线观看影片大全网站| 国产片特级美女逼逼视频| 国产成人freesex在线 | 精品国产三级普通话版| 精品人妻熟女av久视频| 国产三级中文精品| 亚洲国产色片| 欧美+亚洲+日韩+国产| 久久久久国内视频| 欧美不卡视频在线免费观看| 久久久精品94久久精品| 成人美女网站在线观看视频| 国产欧美日韩精品亚洲av| 亚洲美女搞黄在线观看 | 亚洲欧美清纯卡通| 亚洲,欧美,日韩| 一级毛片久久久久久久久女| 日本熟妇午夜| 少妇裸体淫交视频免费看高清| 99久久成人亚洲精品观看| 我的女老师完整版在线观看| 成年女人毛片免费观看观看9| 日韩成人伦理影院| 九色成人免费人妻av| 大又大粗又爽又黄少妇毛片口| 成年女人看的毛片在线观看| 亚洲欧美日韩高清专用| 99久久九九国产精品国产免费| 少妇人妻一区二区三区视频| 久久久国产成人精品二区| 亚洲精品在线观看二区| 老司机影院成人| 日韩一本色道免费dvd| 别揉我奶头~嗯~啊~动态视频| 欧美日韩综合久久久久久| 亚洲精品影视一区二区三区av| 91在线观看av| 国产精品一区二区三区四区久久| 国产乱人偷精品视频| 搡老岳熟女国产| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品合色在线| 日韩成人av中文字幕在线观看 | 在线免费观看的www视频| 欧美高清性xxxxhd video| 国产成人91sexporn| 亚洲图色成人| 人人妻人人澡欧美一区二区| 精品无人区乱码1区二区| 日韩精品青青久久久久久|