趙小云, 龔紅英, 施為鐘, 周志偉, 申晨彤, 嵇友迪
(上海工程技術(shù)大學(xué) 材料工程學(xué)院, 上海 201620)
家用燃?xì)庠钔鈿な侨細(xì)庠畹牧悴考?,既有固定和保護(hù)燃?xì)庠畹淖饔茫苍黾恿巳細(xì)庠罹叩拿烙^和穩(wěn)定以及易于清潔等附加性能。作為最直觀的一個(gè)配件,其質(zhì)量好壞也是灶具品質(zhì)的一種重要的指標(biāo),同時(shí)也關(guān)系到家庭生活的安全問(wèn)題[1]。選擇合理的工藝方案對(duì)確保產(chǎn)品的成形質(zhì)量和加工成本具有重要意義。利用CAE技術(shù),可以預(yù)測(cè)板料拉深成形的流動(dòng)情況、應(yīng)力應(yīng)變分布以及厚度變化,可以在模具制造前驗(yàn)證其成形的可能性,并且實(shí)現(xiàn)板材形狀,尺寸和其他工藝參數(shù)的優(yōu)化,同時(shí)也是提高效率和節(jié)省成本的有效方法。近年來(lái),進(jìn)行了許多關(guān)于數(shù)值模擬在板料成形工藝參數(shù)優(yōu)化等方面的研究。Qiu等[2]運(yùn)用eta/DYNAFORM完成了對(duì)發(fā)動(dòng)機(jī)罩面板成形過(guò)程的模擬,研究了毛坯的初始形狀和尺寸對(duì)其沖壓成形性的影響。文藝等[3]采用二次響應(yīng)面和蒙特卡羅方法對(duì)后排座靠背零件成形工藝參數(shù)進(jìn)行了優(yōu)化分析,對(duì)板料成形質(zhì)量進(jìn)行了優(yōu)化。利用響應(yīng)面尋優(yōu),灰色理論分析和正交試驗(yàn)抽樣相結(jié)合的方式,熊文韜等[4]對(duì)某輕型卡車(chē)底板的成形參數(shù)進(jìn)行優(yōu)化,成功改善了輕型卡車(chē)地板的拉深成形質(zhì)量。靳陽(yáng)[5]運(yùn)用DYNAFORM軟件對(duì)內(nèi)凹形零件的沖壓成形過(guò)程進(jìn)行了仿真模擬,基于正交試驗(yàn)分析法,研究了外轉(zhuǎn)角、側(cè)壁長(zhǎng)度、內(nèi)轉(zhuǎn)角、拉伸高度、沖壓速度、壓邊力和摩擦因數(shù)對(duì)零件壁厚的影響程度,得到了最佳的成形工藝參數(shù)組合。劉強(qiáng)等[6]以空調(diào)壓縮機(jī)殼沖壓成形的最大減薄率和最大增厚率為優(yōu)化目標(biāo),利用DYNAFORM軟件進(jìn)行沖壓成形數(shù)值仿真,采用徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)結(jié)合帶精英策略的非支配排序遺傳算法(NSGA-Ⅱ)獲得Pareto最優(yōu)解集,并通過(guò)有限元分析驗(yàn)證方法的有效性。
由于工藝參數(shù)設(shè)置不合理導(dǎo)致的燃?xì)庠钔鈿ち慵嬖诰植窟^(guò)度減薄等問(wèn)題,課題組對(duì)燃?xì)庠钔鈿ち慵畛尚芜^(guò)程進(jìn)行有限元仿真,采用BBD試驗(yàn)建立了工藝參數(shù)與最大減薄率、最大增厚率之間的響應(yīng)面目標(biāo)優(yōu)化函數(shù);利用NSGA-Ⅱ?qū)?個(gè)目標(biāo)函數(shù)進(jìn)行求解,得到優(yōu)化的Pareto最優(yōu)解集并將最優(yōu)解進(jìn)行試驗(yàn)驗(yàn)證。
課題組以某燃?xì)庠钔鈿檠芯繉?duì)象,三維模型如圖1所示。燃?xì)庠钫w尺寸為680 mm×384 mm×50 mm,材料為304不銹鋼,鋼板厚度為0.7 mm,材料力學(xué)性能參數(shù)如表1所示。它屬于嵌入式燃?xì)庠钔鈿ち慵w形狀為矩形,結(jié)構(gòu)復(fù)雜且相對(duì)于Y軸對(duì)稱(chēng)。其頂部區(qū)域有2個(gè)凹臺(tái)和1個(gè)凸臺(tái),且分布偏向一側(cè),因此該零件相對(duì)于X軸為非對(duì)稱(chēng)件,非對(duì)稱(chēng)的兩側(cè)的變形量存在差異。由于圓角半徑r和寬度b之比r/b數(shù)值偏小,則將導(dǎo)致質(zhì)變部分對(duì)圓角部位的變形顯著,使圓角部位極易產(chǎn)生破裂缺陷,同時(shí)在零件的凸緣面受切向壓縮易產(chǎn)生起皺缺陷。因此在進(jìn)行拉深成形模擬分析中應(yīng)當(dāng)注意可能產(chǎn)生的缺陷問(wèn)題[7]。文中試驗(yàn)都在確保本零件成形結(jié)果不產(chǎn)生開(kāi)裂和起皺的前提下進(jìn)行的。
圖1 燃?xì)庠钔鈿とS模型Figure 1 3D model of gas stove shell
表1 SS304鋼力學(xué)性能參數(shù)
以燃?xì)庠钔鈿さ娜S模型為基準(zhǔn),在UG軟件中設(shè)計(jì)該零件的凸、凹模和板料,輸出IGS格式導(dǎo)入到DYNAFORM系統(tǒng)中。然后在DYNAFORM軟件進(jìn)行定義和網(wǎng)格劃分,凹模,凸模、壓邊圈均定義為剛性體。其中壓邊圈是通過(guò)網(wǎng)格偏置生成,燃?xì)庠钔鈿ち慵嚓P(guān)的有限元模型如圖2所示。試驗(yàn)中,摩擦因數(shù)默認(rèn)0.125,沖壓速度設(shè)定2 000 mm/s,在壓邊圈上設(shè)置一圈等效拉延筋。本試驗(yàn)選用Barlat′89各向異性屈服準(zhǔn)則建立材料模型,為基于平面應(yīng)力條件下考慮面內(nèi)各向異性提出的屈服準(zhǔn)則,可以較好地描述各向異性材料的屈服行為,即適用于薄板金屬成形分析,其表達(dá)式為:
(1)
其中:
(2)
(3)
(4)
(5)
式中:f為屈服準(zhǔn)則函數(shù);r0,r90為各向異性系數(shù);σs為等效應(yīng)力;σx,σy和τxy分別為主次應(yīng)力和剪應(yīng)力;m為非二次屈服函數(shù)指數(shù),對(duì)鋼而言m=6;x,y和z分別為平行于軋制方向、垂直于軋制方向和垂直于板平面方向;a,h和p為表征各向異性的材料參數(shù)。
對(duì)零件成形工藝參數(shù)進(jìn)行設(shè)置,均采用Closure控制上下模閉合,gap設(shè)置為1.05~1.20倍數(shù)的料厚。運(yùn)動(dòng)過(guò)程為凹模向下運(yùn)動(dòng)壓住板料,然后壓住壓邊圈一起向下運(yùn)動(dòng),直到凸模位置,完成零件沖壓成形過(guò)程。
圖2 有限元模型Figure 2 Finite element model
雖然可以獲得較好的拉深成形效果,但是厚度變化中最大減薄率較大,因此采用中心復(fù)合試驗(yàn)[8]設(shè)計(jì)建立工藝參數(shù)與目標(biāo)間的二階響應(yīng)面模型,結(jié)合NSGA-Ⅱ算法實(shí)現(xiàn)多目標(biāo)優(yōu)化[9],使得模擬結(jié)果滿(mǎn)足最大減薄率和最大增厚率的條件下獲得較好的拉深成形效果。
試驗(yàn)選取圓角半徑A、壓邊力B和模具間隙C3個(gè)工藝參數(shù)作為優(yōu)化自變量,將最大減薄率y1和最大增厚率y2作為模型響應(yīng)值。由于燃?xì)庠钔鈿ち慵尚喂に噮?shù)和優(yōu)化目標(biāo)之間具有高度非線性變化特點(diǎn),根據(jù)BBD設(shè)計(jì)原理采用多項(xiàng)式對(duì)目標(biāo)函數(shù)進(jìn)行擬合,其二階多項(xiàng)式[10]模型可表示為
(5)
式中:β0,βi,βii,βij均為多項(xiàng)式待定系數(shù);k為設(shè)計(jì)變量的數(shù)量;xi為設(shè)計(jì)變量集合;ε為次要誤差。
試驗(yàn)各工藝參數(shù)的因子和水平表如表2所示,采用DYNAFORM進(jìn)行模擬試驗(yàn)前處理設(shè)置,在Ls-Dyna求解器中進(jìn)行數(shù)值運(yùn)算,獲得的17組試驗(yàn)?zāi)M仿真結(jié)果如表3所示。
表2 工藝參數(shù)因子與水平
表3 試驗(yàn)方案與結(jié)果
對(duì)表3試驗(yàn)結(jié)果進(jìn)行數(shù)學(xué)分析,考慮各工藝參數(shù)間的交互作用,線性和平方項(xiàng)采用最小二乘法進(jìn)行擬合,建立目標(biāo)y1,y2與設(shè)計(jì)變量的非線性回歸模型,響應(yīng)目標(biāo)函數(shù)為:
y1=55.242 02-4.928 24A-3.601 19×10-3B-3.775 51C+3.720 24×10-4AB+0.0102 04BC+0.189 65A2;
(6)
y2=-24.925 92+4.374 27A-0.028 99B+58.082 77C+4.017 86×10-3AB-7.714 29AC+0.011 338BC-0.202 50A2-4.499 72×10-6B2-14.240 36C2-1.860 12×10-4A2B+0.357 14A2C。
(7)
表4 最大減薄率y1方差分析
表5 最大增厚率y2方差分析
對(duì)影響最顯著的交互因素進(jìn)行分析,影響y1的交互因素最顯著的為A和B,影響y2的交互因素最顯著的為B和C,三維響應(yīng)面與等高線圖如圖3~4所示。由圖3可看出,當(dāng)C=0.787 5 mm時(shí),圓角半徑減小及壓邊力增大的情況下,減薄率顯著增大,這是因?yàn)殡S著壓邊力增大,板料與壓邊圈以及凹模之間的摩擦阻力隨之增大,材料的流動(dòng)會(huì)受到更大的阻力,使得材料開(kāi)裂傾向增大。圓角半徑對(duì)零件成形質(zhì)量的影響很關(guān)鍵,圓角半徑減小增加了材料進(jìn)入凹模的阻力,便增加了一些危險(xiǎn)位置的開(kāi)裂趨勢(shì);圓角半徑過(guò)大,會(huì)使得零件成形不完整。由圖4可知,當(dāng)A=11 mm時(shí),模具間隙和壓邊力增大時(shí),最大增厚率減小,且壓邊力的影響作用更大。工藝參數(shù)對(duì)減薄率和增厚率的影響規(guī)律不同,為保證零件具有較好的成形質(zhì)量同時(shí)使得y1和y2盡可能小,需要對(duì)多目標(biāo)進(jìn)一步優(yōu)化以得到最佳工藝參數(shù)。
圖3 C=0.787 5 mm時(shí),A和B交互作用下y1的三維響應(yīng)面和等高線圖Figure 3 Three-dimensional response surface diagram and contour diagram of y1 under interaction of A and B at C=0.787 5 mm
圖4 A=11 mm時(shí),B和C交互作下y2的三維響應(yīng)面和等高線圖Figure 4 Three-dimensional response surface diagram and contour diagram of y2 under interaction of B and C at A=11 mm
遺傳算法(genetic algo rithm,GA)是由美國(guó)的Holland教授提出的,是通過(guò)模擬生物界的進(jìn)化過(guò)程并在種群中尋找最優(yōu)解的優(yōu)化方法。然而最優(yōu)解通常是一個(gè)解集,且解與解之間有時(shí)是無(wú)法進(jìn)行權(quán)衡的,可能對(duì)于一個(gè)目標(biāo)函數(shù)而言為最優(yōu)解,卻對(duì)另一目標(biāo)函數(shù)并非最優(yōu)。對(duì)于多目標(biāo)優(yōu)化問(wèn)題,根據(jù)以上定義在遺傳算法基礎(chǔ)上引入Pareto概念,提供可行解區(qū)域中的一些折中解[11-12]。
為使得成形后的零件最大減薄率和最大增厚率符合零件厚度減薄要求,同時(shí)也符合成形質(zhì)量要求,根據(jù)響應(yīng)面y1,y2目標(biāo)函數(shù),建立多目標(biāo)優(yōu)化模型和模型約束條件:
Fmin[y1(%),y2(%)]
(8)
約束條件:
(9)
NSGA-Ⅱ是NSGA的改進(jìn)型遺傳算法,提出快速非支配排序算法,采用擁擠度和擁擠度比較算子,使解集中的個(gè)體均勻擴(kuò)散到整個(gè)Pareto域,同時(shí)引入精英策略擴(kuò)大采樣空間,提高種族水平,廣泛應(yīng)用于多目標(biāo)優(yōu)化。采用MATLAB軟件設(shè)計(jì),對(duì)目標(biāo)函數(shù)及約束條件進(jìn)行NSGA-Ⅱ優(yōu)化設(shè)計(jì),其中遺傳算法相關(guān)參數(shù)設(shè)置為:種群規(guī)模200,迭代次數(shù)50,交叉概率0.9,變異概率1/3。運(yùn)行得到如圖5所示的NSGA-Ⅱ的Pareto優(yōu)化前沿。
根據(jù)圖5所示,NSGA-Ⅱ預(yù)測(cè)的結(jié)果顯示,整體趨勢(shì)上減薄率會(huì)隨著增厚率的減小而增大。在Ⅰ區(qū)中,增厚率和減薄率的關(guān)系呈近似反比例函數(shù)關(guān)系,前期增厚率減少量大,而減薄率增量小,當(dāng)減薄率為23.4%后,增厚率減少放緩;在Ⅱ區(qū)中,減薄率增大和增厚率降低的趨勢(shì)呈線性關(guān)系。預(yù)測(cè)的增厚率數(shù)值較小,同時(shí)變化量較小,引起起皺的可能性較小,而開(kāi)裂是燃?xì)庠钔鈿ち慵闹饕尚稳毕?,因此,在Pareto最優(yōu)解集中,選取減薄率最小的優(yōu)化結(jié)果如表6所示。
圖5 NSGA-Ⅱ多目標(biāo)優(yōu)化Pareto前沿Figure 5 Pareto frontier of NSGA-Ⅱ multi-objective optimization
表6 NSGA-Ⅱ部分解的取值
由表6可知,NSGA-Ⅱ預(yù)測(cè)的最大減薄率為23.32%,最大增厚率為2.8%,減薄率滿(mǎn)足工程上低于30%的要求。因此將工藝參數(shù)取整:圓角半徑為13 mm;壓邊力為335 kN;模具間隙為0.84 mm。
將優(yōu)化后的工藝參數(shù)導(dǎo)入DYNAFORM軟件進(jìn)行驗(yàn)證,成形極限圖(foming limit diagram, FLD)和減薄率云圖如圖6(a)和圖6(b)所示。由圖6(a)可知,拉深件內(nèi)部為安全區(qū)域,邊緣上有起皺,成形后的燃?xì)庠钔鈿ち慵o(wú)開(kāi)裂缺陷;由圖6(b)可知,減薄率最小區(qū)域?yàn)榈撞繄A角部分,在凸緣部分為增厚區(qū)域,數(shù)值模擬的y1為23.39%,與NSGA-Ⅱ預(yù)測(cè)值相差0.09%,y2為2.96%,與預(yù)測(cè)值差0.16%,說(shuō)明NSGA-Ⅱ具有良好的全局優(yōu)化和預(yù)測(cè)能力。
圖6 優(yōu)化后成形結(jié)果Figure 6 Optimized forming results
1) 針對(duì)燃?xì)庠钔鈿ち慵暮穸茸兓瘑?wèn)題,課題組采用DYNAFORM6.0對(duì)其成形及優(yōu)化過(guò)程進(jìn)行有限元仿真。
2) 課題組利用RSM設(shè)計(jì)試驗(yàn),分析幾種工藝參數(shù)對(duì)燃?xì)庠钔鈿ち慵畲鬁p薄率和最大增厚率的影響規(guī)律。最大減薄率y1交互作用最顯著的為A和B,隨著壓邊力減小和圓角半徑增大時(shí),減薄率隨之降低;最大增厚率y2的交互作用最顯著的是B和C,y2隨著壓邊力和模具間隙的增大而減小,并得到基于最大減薄率和最大增厚率多目標(biāo)優(yōu)化的響應(yīng)目標(biāo)函數(shù)y1和y2。
3) 課題組應(yīng)用遺傳算法設(shè)計(jì)NSGA-Ⅱ程序?qū)憫?yīng)目標(biāo)函數(shù)建立多目標(biāo)優(yōu)化模型,得到Pareto多目標(biāo)優(yōu)化最優(yōu)解集,選擇合理優(yōu)化工藝參數(shù)組合:圓角半徑為13 mm;壓邊力為335 kN;模具間隙為0.84 mm。并通過(guò)仿真結(jié)果驗(yàn)證該試驗(yàn)方案的可靠性,為此類(lèi)外殼零件的成形優(yōu)化提供參考。