• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on CO2-light crude oil interfacial and swelling behavior

    2018-05-25 19:07:00MostafaLashkarbolookiShahabAyatollahi

    Mostafa Lashkarbolooki*,Shahab Ayatollahi

    1 School of Chemical Engineering,Babol Noshirvani University of Technology,Babol,Iran

    2 School of Chemical and Petroleum Engineering,Sharif University of Technology,Tehran,Iran

    1.Introduction

    The concentration of carbon dioxide(CO2)as one of the important greenhouse gases has tremendously increased as the industrial revolution begun in the mid of 19th century enhances the Earth's climate temperature[1].As a way out to eliminate this gas from atmosphere,CO2sequestration in geologic reservoirs is one of the applicable methods extensively being considered during the past decades[2-5].In details,carbon capture and sequestration drastically reduce emissions from power plants and industrial sources by capturing CO2emissions and injecting them into deep geologic formations including oil and gas fields,saline aquifers,and deep coal seams[2,3,6].Among the CO2sequestration methods in geologic reservoirs,miscible displacement by CO2injection into the oil reservoirs under favorable conditions not only can considerably reduce greenhouse gas emissions but also can effectively enhance oil recovery[7-9].

    The capillary forces in the pores and throats would entrap the oil ganglia and retain them as an unre covered phase in the reservoir[10].From the enhanced oil recovery(EOR)perspective,one-third of the original oilin place to be unrecoverable probably due to IFT between crude oil and injected gas or water[11].To achieve a low residual oilsaturation,an ultra-low IFT between the crude oil and injected fluids,which lead to the miscibility of fluids,are required.In the light of this fact,it seems that characterization of the main phenomena during interfacial interactions of crude oil and CO2such as interfacial tension(IFT),swelling and Bond number may have strong effects on ultimate oil recovery and long-term CO2sequestration in the depleted oil reservoirs[9,12-14].

    On the other hand,although,CO2is usually not miscible with a crude oil under the reservoir conditions at the first contact,it can develop through two-way inter facial mass transfer between the crude oil and CO2so-called dynamic and/or multi-contact miscibility[12,15,16].

    The minimum pressure at which CO2can achieve the multi-contact miscibility with the crude oil is so called minimum miscibility pressure(MMP)[15,16].Determining the MMP between a crude oil and CO2is the principal technical concern in optimization or design ofa CO2flooding project[17].

    In the shadow of this fact,several methods have been proposed to experimentally measure the MMP which the most popular one is the slimtube method.In contrast to slim tube which is an old and conventional method,vanishing inter facial tension(VIT)is the newest method recently proposed as the fastest and cheapest technique[12].VIT method is based on this concept that the fluid/ fluid IFT must approach zero when the two fluids become miscible[9].Therefore,experimental measurements of IFT between crude oiland CO2versus pressure have a critical impact on determining MMP of CO2and crude oil,although various contradicting results are reported about the trend existed about the IFT of oleic phase/CO2versus pressure[9,12,13,18-26].In addition,it has been shown thatthe measured equilibrium IFTs between pure hydrocarbons such as heptane and hexadecane reduce linearly with the pressure[25].However,for multicomponent fluids linear reduction with two slopes in the two distinct pressures intervals[21-25]and three slopes in the three distinct pressure intervals[9,12,13,19,20]have been reported.For instance,the experimental results reported by Zolghar et al.[25]showed that IFTs of diesel fuel(multi-component without as phaltene)+CO2versus pressure changed in two slopes in two individual pressure ranges.Moreover,Wang et al.[12]found that the equilibrium IFT between crude oil and CO2reduces almost linearly with the pressure in three distinct pressure ranges for the two light crude oils and in two different pressure ranges for the medium crude oil.For the two light crude oils-CO2systems,the respective linear regression equations of the equilibrium IFT versus pressure data for two initial ranges converge to almost the same equilibrium pressure at IFT=0[12].Although,three distinct pressures with different slopes were reported in literature for different crude oils,no similar equilibrium pressure at IFT=0 obtained in the respective linear regression equations of two initial ranges[9,13].Based on the obtained results they claimed that asphaltene precipitation has the dominant impact on the trend of equilibrium IFT as a function of pressure[9,12,19,20,26].Due to these shortcomings,in the current investigation,a crude oil from one of the southern Iranian oil fields with API°of 35 and low asphaltene content(about 0.1 wt%)is selected to study the mutual interaction between crude oil and CO2under various temperature and pressure conditions.In particular,the Bond number,swelling and IFT between crude oil and CO2is determined.Also,the MMP of the used crude oil/CO2are obtained based on the VIT method as functions of pressure and temperature.

    2.Experimental

    2.1.Materials

    In this investigation,the sample crude oil was supplied from of the southern Iranian oil fields.The general properties of the used crude oil are listed in Table 1.In addition,the used CO2was supplied from Pars Balloon Co,with a mole fraction purity of higher than 0.99.

    Table 1 Properties of the used light crude oil

    2.2.Apparatus

    Among the several proposed IFT measurement methods,the asymmetric pendant drop shape analysis method(the ADSA technique)is probably the most suitable one for measuring the IFT at high pressures and temperatures[18,27].In this regard,IFT-700 apparatus based onthe ADSA technique(Vinci-Technologies Co.,France)(see Fig.1)was used to not only measure the equilibrium IFT between crude oil and CO2but also to calculate the swelling and Bond number.The apparatus consists of several sections including a bulk(CW)and drop(crude oil)tanks,high pressure and temperature view cell,manual pump,pressure and the temperature display unit,light source,CCD camera,personal computer,and image processing software.The view cell is equipped with an entry port at the top and bottom for the drop injection based on the density difference existed between bulk and drop.The visual cell is equipped with three heating elements which are controlled by a PID controlling pattern(Thermostate F32-ME,Julabo,Germany)with the assist of temperature sensor(PT100)with accuracy of 0.1 K.

    Table 2 Densities(g·cm-3)of the used crude oil and CO2 for all studied conditions(1 psi=6894.76 Pa)

    The pressure is monitored by means ofa pressure transducer(Keller,modelPA-33X,Winterthur,Switzerland)up to 70 MPa with relative uncertainty of 0.1%.For monitoring the drops,a CCD camera(1.4 Mpixel,macro zoom lens,and panel light)and a light source were used for viewing the drops with high resolution.

    After adjusting the temperature of tanks and view cell at desired temperature,the view cell was filled with CO2as a bulk fluid.After that,when the temperature was stabilized,a drop of crude oil was injected from the drop tank into the cell containing CO2at the desired pressure.Each experiment was repeated for at least five times for each desired temperature and pressure conditions,and each drop was monitored during the time to reach the equilibrium.The complete shape of the drop is analyzed with an advanced Drop Shape Analysis Software using a calibrated and accurate video lens system,and consequently the drop volume,IFT and bond number(see Eq.(1))were measured.

    Fig.1.Schematic of the used apparatus.

    It should be noted that Bond Number(the ratio of gravity forces to capillary forces)is

    where g is the gravity constant;Δρis the density difference between the two fluids;γ is the IFT;R is the curve radius at the apex[13].Densities of the used crude oiland CO2forallstudied conditionsare tabulated in Table 2.

    3.Results and Discussion

    3.1.Dynamic behavior of crude oil drop,IFT and bond number

    IFT,droplet volume and Bond number values of crude oil and CO2system are recorded versus time for all studied operational conditions.Typically,dynamic IFT,volume and bond number of used crude oil/CO2at 80 °C and pressures of 500,800,1000 and 1300 psi(1 psi=6894.76 Pa)are shown in Fig.2a-c,respectively.As it can be seen in Fig.2a-c,the IFT and Bond number almost remained unchanged versus time while the drop volume experienced complicated and unsystematic trend.

    Fig.2.Dynamic IFT(a),volume(b)and bond number(c)of BCO/CO2 at T=80°C and different pressures(1 psi=6894.76 Pa).

    Ithas been wellunderstood thatas CO2gradually dissolves into the oil phase the volume ofthe dynamic pendantoildrop increases due to swelling phenomenon.But,on the otherhand a reverse trend ofvolume reduction called shrinkage process can occur due to the movement of light components of the pendant oil drop into the CO2phase.Wang et al.[12]reported that the oil-swelling due to CO2dissolution into the oil phase is more pronounced at the start up period(t<30 s),whereas the oil shrinking effect due to light-components extraction becomes dominant at a large time(e.g.,t>30 s)[18,22].In contrast to the previously published literature,these aforementioned phenomena were not observed during the measurements performed in this investigation.As it is obvious in Fig.2,in contrast to IFT and BN,the volume of the pendant crude oil drop continues to change.In addition,based on the increased or decreased volume of the crude oil drop it can be concluded that the oil swelling and light component extraction phenomena occurred.In details,it is seen that the swelling behavior occurs during all-time while light component extraction occurred at different pressures regardless of time.The interesting point is that the change of volume of crude oil has no effect on the IFT and BN.Therefore,it can be concluded that the variation of volume of crude oil has a minimum effect on the inter facial properties of crude oil and CO2,and,consequently,leads to no effect on IFT and the ratio of gravity forces to capillary forces(i.e.BN)as a function of time.In the next stage of this study,the effect of temperature(30,50 and 80°C)on the volume of crude oil drop under pressure of 500 psiwas investigated(see Fig.3).In addition,the shapes of the formed drops at different temperatures while the pressure was kept constant at 500 psi(1 psi=6894.76 Pa)are tabulated in Table 3.

    A closer examination into Fig.3 and Table 3,revealed that the influence of temperature on the crude oil drops.The oil swellings not only are higher at low temperatures but also began to increase at the startup of the test which may be due to higher dissolution of CO2in the crude oil at lower temperatures.At higher temperatures(i.e.80°C),the volume of the crude oil drop remained unchanged during the initial 600 s,while after this period of time crude oil volume increased may be due to dissolution of CO2in the oil phase.Therefore,it can be concluded that the composition of crude oil as well as operational conditions have dominant effects on the crude oil volume during CO2flooding.

    3.2.Equilibrium behavior of IFT and bond number

    In the next step of this investigation,the equilibrium IFT and Bond number values are investigated at different operational conditions.The measured equilibrium IFT values are plotted at 30,50 and 80°C vs pressure to investigate the inter facial behavior of the system(see Fig.4).Equilibrium IFT of the used crude oil/CO2at all studied conditions with their uncertainties are also listed in Table 4.It can be seen from Fig.4 that both pressure and temperature has dominant effects on the equilibrium IFT of CO2and light crude oil.Also,the equilibrium IFT decreases as pressure increases,while it increases as a function of temperature since the solubility of CO2in crude oil is higher at higher pressures and lower at higher temperatures.Moreover,as it is shown in Fig.4,equilibrium IFT values were linearly extrapolated to zero,which was previously defined as the MMP of the crude oil-CO2system[17,18].It is found that the measured equilibrium IFT is reduced almost linearly with the pressure in two distinct pressure intervals.The linear equations in these intervals withtheir correlation coefficient(R2)are reported in Table 5.The obtained results are shown a close match between the linear equation and equilibrium IFT data.

    Table 3 Initial and final(before releasing)shape of crude oil drop at constant pressure of 500 psi(1 psi=6894.76 Pa)and three different temperatures

    The most significant threshold pressure that can be observed from the measured equilibrium IFT against the pressure curve is the pressure at which this curve showed a sharp slope change.This pressure is located at the intersection of the above two linear correlations tabulated in Table 5.The first and second slopes are the indication of lighter and heavier components(after extraction of the light components by CO2)presented at the interface,respectively[21,25].

    Equilibrium IFTs of the used crude oil and CO2versus temperature for three constant pressures and pressure of intersection points(threshold pressure)are shown in Fig.5.These depicted results revealed that there is a linear relation between equilibrium IFT and temperature for threshold pressure while the linear relation is not obtained for constant pressures.

    Fig.3.Volume of crude oil drop at constant pressure of 500 psi(1 psi=6894.76 Pa)and three different temperatures as a function of time.

    Fig.4.EIFT of BCO/CO2 at three constant temperatures as a function of pressure(1 psi=6894.76 Pa).

    Table 4 EIFT of the used crude oil/CO2 at all studied conditions with their uncertainty(1 psi=6894.76 Pa)

    In Fig.5,the equilibrium IFT between diesel fuel and CO2[25]at threshold pressure is also plotted as a function of temperature which revealed a linear phenomenon at threshold pressure.In more details,at threshold pressure for the examined light crude oil and diesel fuel,quilibrium IFT experienced an enhancement of about 0.0821 and 0.0252 mN·m-1,respectively.At threshold pressure,crude oil with API°of 35 which is heavier than diesel fuel with API°of 38.5 experienced more IFT enhancement.In other words,the effect of temperature on the equilibrium IFT at threshold pressure is more considerable for heavy components.

    Table 5 Linear equation between EIFT(mN·m-1)and P(psi,1 psi=6894.76 Pa)for specified lines depicted in Fig.4

    For more examination,in Fig.6,the obtained MMP and threshold pressure of the used crude oil and diesel fuel are depicted versus temperature.For two studied systems,both of MMP and threshold pressure increased with temperature,although the increasing rate as a function of temperature is higher for MMP compared to threshold pressure.

    Comparing the obtained results for the light crude oil with API°of 35 with the diesel fuel with API°38.5 demonstrated that the heavier components(i.e.light crude oil)lead to more MMP enhancement with temperature.Consequently,for light crude oil,the higher differences between MMP and threshold pressure could be observed at higher temperatures.

    The results ofthe obtained Bond number of all studied conditions are shown in Fig.7 and the irun certainties are listed in Table 6.These results demonstrated that Bond number linearly increases with pressure at constant temperature.Thus,as the BN is increased,a blob that would have been trapped in the capillary dominated case can continue to flow if the gravitational forces are more important[28].Also,it can be observed that BN decreases with temperature at constant pressure.The slope and intercept of the linear equations are also shown in Fig.8.It can be observed that the slope of the linear line of BN versus pressure decreases as a function of temperature but the intercept linearly increases with temperature.

    Based on the obtained results,one can conclude that two conformable outcomes could be observed when two reservoirs with the similar crude oil and different temperatures are compared.First,crude oil in the reservoir with lower temperature could have lower MMP.Thus,lower pressure will be required to employ the influence of miscibility to obtain higher oil recovery.Second,the reservoir with lower temperatures due to higher BN can experience more oil recovery because it can overcome to gravitational forces compared to capillary forces.

    4.Conclusions

    In this investigation,the mutual inter facial interaction is examined for a CO2-light crude oil system.Dynamic and equilibrium IFT,Bond number and swelling/extraction are measured at different pressures and temperatures.The most important results of this investigation can be summarized as follows:

    ?The IFT and Bond number almost remained unchanged vs time while a complicated and unsystematic trend was observed for the drop volume.

    ?Swelling behavior is mostly dominant during the long time and extraction of light component are occurred at different pressures regardless of the contact time.

    Fig.5.Comparison of EIFT at constant pressures with intersection point as a function of temperature(1 psi=6894.76 Pa).

    Fig.6.Functionality of intersection point and MMP with temperature and pressure(1 psi=6894.76 Pa)for the used crude oil and diesel fuel.Obtained from Ref.[25].

    Fig.7.BN of BCO/CO2 at three constant temperatures as a function of pressure(1 psi=6894.76 Pa).

    Fig.8.Slope and intercept of BN versus P (Fig.7)at different temperatures.

    Table 6 BN of BCO/CO2 at all studied conditions with their uncertainty(1 psi=6894.76 Pa)

    ?The equilibrium IFT increases as temperature increases which possibly can be related to lower CO2solubility at higher temperatures.Therefore,the reservoir with lower temperatures due to lower IFT and higher BN experiences more oil recovery as a result of gravitational forces conquered to capillary forces.

    ?The measured equilibrium IFT is reduced almost linearly as a function of pressure in two distinct pressure intervals.

    ?MMP and threshold pressure(pressure at the intersection of two linear lines of equilibrium IFT versus pressure)are increased as temperature increased,while the rate of increasing as a function of temperature was higher for MMP compared with threshold pressure.

    Acknowledgments

    The authors express their sincere gratitude to Mr.Ali Zeinolabedini Hezave for his masterful guidance during the experimentation and organizing this manuscript.

    [1]P.J.Crutzen,W.Steffen,How long have we been in the Anthropocene era?Clim.Chang.61(2003)251-257.

    [2]H.J.Herzog,Peer reviewed:What future for carbon capture and sequestration?Environ.Sci.Technol.35(2001)148-153.

    [3]H.S.Viswanathan,R.J.Pawar,P.H.Stauffer,J.P.Kaszuba,J.W.Carey,S.C.Olsen,G.D.Guthrie,Development of a hybrid process and system model for the assessment of well bore leakage at a geologic CO2sequestration site,Environ.Sci.Technol.42(2008)7280-7286.

    [4]Y.A.N.G.Zihao,J.I.N.Min,L.I.Mingyuan,D.O.N.G.Zhaoxia,Y.A.N.Peng,Implication of geochemical simulation for CO2storage using data of york reservoir,Chin.J.Chem.Eng.19(2011)1052-1059.

    [5]M.A.Ahmadi,B.Pouladi,T.Barghi,Numerical modeling ofCO2injection scenarios in petroleum reservoirs:Application to CO2sequestration and EOR,J.Nat.Gas Sci.Eng.30(2016)38-49.

    [6]S.M.Klara,R.D.Srivastava,H.G.McIlvried,Integrated collaborative technology development program for CO2sequestration in geologic formations--United States Department of Energy R&D,Energy Convers.Manag.44(2003)2699-2712.

    [7]Y.Yang,X.Li,P.Guo,Y.Zhuo,Y.Sha,Improving oil recovery in the CO2flooding process by utilizing nonpolar chemical modifiers,Chin.J.Chem.Eng.24(2016)646-650.

    [8]D.Yang,P.Tontiwa chwuthikul,Y.Gu,Interfacial interactions between reservoir brine and CO2at high pressures and elevated temperatures,Energy Fuel 19(2005)216-223.

    [9]M.Escrochi,N.Mehranbod,S.Ayatollahi,The gas-oil interfacial behavior during gas injection into an asphaltenic oil reservoir,J.Chem.Eng.Data 58(2013)2513-2526.

    [10]M.Lashkarbolooki,S.Ayatollahi,M.Riazi,The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection,J.Chem.Eng.Data 59(2014)3624-3634.

    [11]J.R.Christensen,E.H.Stenby,A.Skauge,A review of WAG field experience,SPE Reserv.Eval.Eng.4(2001)97-106.

    [12]X.Wang,S.Zhang,Y.Gu,Four important onset pressures for mutual interactions between each of three crude oils and CO2,J.Chem.Eng.Data 55(2010)4390-4398.

    [13]Y.Kazemzadeh,R.Parsaei,M.Riazi,Experimental study of asphaltene precipitation prediction during gas injection to oil reservoirs by interfacial tension measurement,Colloids Surf.A Physicochem.Eng.Asp.466(2015)138-146.

    [14]M.Lashkarbolooki,A.Vaezian,A.Z.Hezave,S.Ayatollahi,M.Riazi,Experimental investigation of the influence of supercritical carbondioxide and supercritical nitrogen injection on tertiary live-oil recovery,J.Supercrit.Fluids 117(2016)260-269.

    [15]L.W.Hol,V.A.Josendal,Mechanisms of oil displacement by carbon dioxide,J.Pet.Technol.26(1974)1427-1438.

    [16]D.W.Green,G.P.Willhite,Enhanced Oil RecoVery,SPE Textbook Series,vol.6,SPE,Richardson,TX,1998.

    [17]M.Dong,S.S.Huang,S.B.Dyer,F.M.Mourits,A comparison of CO2minimum miscibility pressure determinations for weyburn crude oil,J.Pet.Sci.Eng.31(2001)13-22.

    [18]D.Yang,Y.Gu,Interfacial interactions between crude oil and CO2under reservoir conditions,Pet.Sci.Technol.23(2005)1099-1112.

    [19]A.Hemmati-Sarapardeh,S.Ayatollahi,M.H.Ghazanfari,M.Masihi,Experimental determination of interfacial tension and miscibility of the CO2-crude oil system;temperature,pressure,and composition effects,J.Chem.Eng.Data 59(2014)61-69.

    [20]X.Wang,Y.Gu,Oilrecovery and permeability reduction ofa tightsandstone reservoirin immiscible and miscible CO2flooding processes,Ind.Eng.Chem.Res.50(2011)2388-2399.

    [21]M.Nobakht,S.Moghadam,Y.Gu,Mutual interactions between crude oil and CO2under different pressures,Fluid Phase Equilib.265(2008)94-103.

    [22]M.Nobakht,S.Moghadam,Y.Gu,Determination of CO2minimum miscibility pressure from the measured and predicted equilibrium interfacial tensions,Ind.Eng.Chem.Res.47(2008)8918-8925.

    [23]H.Li,D.Yang,P.Tontiwachwuthikul,Experimental and theoretical determination of equilibrium interfacial tension for the Solvent(s)-CO2-heavy oil systems,Energy Fuel 26(2012)1776-1786.

    [24]Y.Gu,P.Hou,W.Luo,Effects of four important factors on the measured minimum miscibility pressure and first-contact miscibility pressure,J.Chem.Eng.Data 58(2013)1361-1370.

    [25]A.Zolghadr,M.Escrochi,S.Ayatollahi,Temperature and Composition Effecton CO2Miscibility by Interfacial Tension Measurement,J.Chem.Eng.Data 58(2013)1168-1175.

    [26]M.Bayat,M.Lashkarbolooki,A.Z.Hezave,S.Ayatollahi,Investigation of gas injection flooding performance as enhanced oil recovery method,J.Nat.Gas Sci.Eng.29(2016)37-45.

    [27]M.Lashkarbolooki,S.Ayatollahi,M.Riazi,Mechanistic study on the dynamic interfacialtension ofcrude oil+water systems:Experimentaland modeling approaches,J.Ind.Eng.Chem.35(2016)408-416.

    [28]D.S.Schechter,Z.Denqen,F.M.Orr,Capillary imbibition and gravity segregation in low IFT systems.In SPE annual technical conference and exhibition,Society of Petroleum Engineers,SPE-22594-MS January,1991.

    精品一区二区三卡| 精品高清国产在线一区| 精品国产超薄肉色丝袜足j| 国产av又大| 欧美日韩亚洲高清精品| 99久久国产精品久久久| 国产三级在线视频| www.精华液| 亚洲成av片中文字幕在线观看| 无限看片的www在线观看| 国产麻豆69| 国产成人欧美| 国内久久婷婷六月综合欲色啪| 欧美激情 高清一区二区三区| 国产成人欧美| 国产成人一区二区三区免费视频网站| 国产成人系列免费观看| 99久久综合精品五月天人人| 嫩草影院精品99| 亚洲视频免费观看视频| 99久久99久久久精品蜜桃| 免费女性裸体啪啪无遮挡网站| 日韩中文字幕欧美一区二区| 久久青草综合色| 亚洲av成人av| 午夜两性在线视频| 欧美另类亚洲清纯唯美| 交换朋友夫妻互换小说| 一二三四社区在线视频社区8| 老汉色∧v一级毛片| 成人手机av| 日韩欧美三级三区| 成人av一区二区三区在线看| 日日夜夜操网爽| 操美女的视频在线观看| 丝袜人妻中文字幕| 91精品三级在线观看| 成人特级黄色片久久久久久久| 淫妇啪啪啪对白视频| 视频在线观看一区二区三区| 国产不卡一卡二| 窝窝影院91人妻| 国产精品久久电影中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 国产1区2区3区精品| 日本一区二区免费在线视频| 婷婷精品国产亚洲av在线| 黄片播放在线免费| 日韩大码丰满熟妇| 少妇被粗大的猛进出69影院| 在线十欧美十亚洲十日本专区| 久久久久国产一级毛片高清牌| 免费在线观看影片大全网站| 久久 成人 亚洲| 欧美人与性动交α欧美精品济南到| 久久久国产精品麻豆| 久久国产精品男人的天堂亚洲| 又紧又爽又黄一区二区| 日日摸夜夜添夜夜添小说| 国产精品亚洲av一区麻豆| 高清毛片免费观看视频网站 | 亚洲五月婷婷丁香| 国产av一区二区精品久久| 91大片在线观看| 亚洲精品中文字幕一二三四区| 黑人巨大精品欧美一区二区蜜桃| 欧美人与性动交α欧美软件| 夜夜躁狠狠躁天天躁| 国产97色在线日韩免费| 长腿黑丝高跟| 18禁观看日本| 一级a爱视频在线免费观看| 人妻丰满熟妇av一区二区三区| 午夜福利,免费看| 黄色怎么调成土黄色| 桃红色精品国产亚洲av| 午夜福利在线观看吧| 欧美日韩视频精品一区| 亚洲精华国产精华精| 51午夜福利影视在线观看| 亚洲成人精品中文字幕电影 | 久久久水蜜桃国产精品网| 国产精品1区2区在线观看.| 91麻豆av在线| a级毛片在线看网站| 99久久久亚洲精品蜜臀av| 中文字幕精品免费在线观看视频| 热re99久久国产66热| tocl精华| 精品国产一区二区三区四区第35| 又黄又粗又硬又大视频| 国产区一区二久久| 天堂中文最新版在线下载| 日韩三级视频一区二区三区| 99久久人妻综合| 久久精品影院6| 中出人妻视频一区二区| 国产一区二区三区在线臀色熟女 | 日韩三级视频一区二区三区| 一级a爱视频在线免费观看| 9色porny在线观看| 性色av乱码一区二区三区2| 一级a爱片免费观看的视频| 亚洲欧美精品综合一区二区三区| 黑人欧美特级aaaaaa片| 中亚洲国语对白在线视频| 1024香蕉在线观看| 九色亚洲精品在线播放| 熟女少妇亚洲综合色aaa.| 亚洲av熟女| ponron亚洲| 看黄色毛片网站| 精品无人区乱码1区二区| 久久久精品欧美日韩精品| 国产男靠女视频免费网站| 色综合婷婷激情| 久久久久久亚洲精品国产蜜桃av| 久久久精品欧美日韩精品| 亚洲欧美日韩无卡精品| 在线十欧美十亚洲十日本专区| svipshipincom国产片| 欧美激情极品国产一区二区三区| 男人舔女人的私密视频| 窝窝影院91人妻| 老司机午夜十八禁免费视频| cao死你这个sao货| 精品人妻在线不人妻| 少妇 在线观看| 91麻豆av在线| 免费在线观看亚洲国产| 亚洲精品粉嫩美女一区| 大型黄色视频在线免费观看| 性少妇av在线| 叶爱在线成人免费视频播放| 欧美黑人欧美精品刺激| 国产一区在线观看成人免费| 韩国av一区二区三区四区| 国产精品永久免费网站| 免费不卡黄色视频| 如日韩欧美国产精品一区二区三区| 1024香蕉在线观看| 淫妇啪啪啪对白视频| 国产一区二区在线av高清观看| 国产主播在线观看一区二区| 波多野结衣高清无吗| 精品国产亚洲在线| 在线播放国产精品三级| 18禁裸乳无遮挡免费网站照片 | 免费观看人在逋| 精品一区二区三卡| 成年版毛片免费区| 怎么达到女性高潮| 国产高清国产精品国产三级| 少妇裸体淫交视频免费看高清 | 一级片'在线观看视频| av网站免费在线观看视频| 亚洲成人久久性| 欧美日韩一级在线毛片| 国产免费av片在线观看野外av| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 校园春色视频在线观看| 一区二区三区精品91| 国产一区二区激情短视频| 丰满饥渴人妻一区二区三| 在线播放国产精品三级| 精品人妻1区二区| 国产1区2区3区精品| 久久久国产一区二区| 免费看十八禁软件| 91成年电影在线观看| 日韩精品免费视频一区二区三区| 女人被躁到高潮嗷嗷叫费观| 国产精品乱码一区二三区的特点 | 国产成年人精品一区二区 | 久久亚洲真实| 在线观看免费视频网站a站| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| a级毛片黄视频| 国产精品久久视频播放| 欧美另类亚洲清纯唯美| 韩国精品一区二区三区| 99国产精品99久久久久| 99久久精品国产亚洲精品| 亚洲五月天丁香| 精品久久久久久久毛片微露脸| 一a级毛片在线观看| 人人妻,人人澡人人爽秒播| 色老头精品视频在线观看| 99精品在免费线老司机午夜| 久久午夜综合久久蜜桃| 亚洲国产中文字幕在线视频| 亚洲av第一区精品v没综合| 天天添夜夜摸| 欧美另类亚洲清纯唯美| 欧美乱色亚洲激情| 国产真人三级小视频在线观看| 日韩人妻精品一区2区三区| 久久午夜综合久久蜜桃| 午夜免费成人在线视频| 99riav亚洲国产免费| 日日夜夜操网爽| 亚洲精品在线观看二区| 一级片免费观看大全| 久久久久久久久免费视频了| 久久久国产欧美日韩av| 久久午夜亚洲精品久久| 免费在线观看视频国产中文字幕亚洲| 亚洲av美国av| 精品日产1卡2卡| 动漫黄色视频在线观看| 99国产综合亚洲精品| 久久久国产一区二区| 在线观看www视频免费| 成人免费观看视频高清| 亚洲男人的天堂狠狠| 成人特级黄色片久久久久久久| 国产三级黄色录像| 美女扒开内裤让男人捅视频| 国产精品综合久久久久久久免费 | 五月开心婷婷网| av片东京热男人的天堂| 国产亚洲av高清不卡| 国产精品九九99| 99久久综合精品五月天人人| 亚洲三区欧美一区| 天天添夜夜摸| 夜夜躁狠狠躁天天躁| 神马国产精品三级电影在线观看 | 国产乱人伦免费视频| 他把我摸到了高潮在线观看| 免费在线观看黄色视频的| 在线十欧美十亚洲十日本专区| 久久精品国产清高在天天线| 久久精品国产99精品国产亚洲性色 | www国产在线视频色| 亚洲av五月六月丁香网| 精品久久久久久久毛片微露脸| 精品久久蜜臀av无| 12—13女人毛片做爰片一| 久久中文字幕一级| 看免费av毛片| av视频免费观看在线观看| 欧美人与性动交α欧美精品济南到| 一本综合久久免费| 啦啦啦 在线观看视频| 亚洲一区高清亚洲精品| 不卡一级毛片| 男女下面插进去视频免费观看| 精品久久久久久久久久免费视频 | 久久午夜亚洲精品久久| 曰老女人黄片| 91成年电影在线观看| 多毛熟女@视频| 老熟妇仑乱视频hdxx| 大型av网站在线播放| 欧洲精品卡2卡3卡4卡5卡区| 久久久久亚洲av毛片大全| 1024视频免费在线观看| 性色av乱码一区二区三区2| 咕卡用的链子| 精品欧美一区二区三区在线| 成年人黄色毛片网站| 国产成人免费无遮挡视频| 中文字幕高清在线视频| 久久 成人 亚洲| 免费一级毛片在线播放高清视频 | 亚洲国产中文字幕在线视频| 国产精品一区二区免费欧美| 国产亚洲精品综合一区在线观看 | 亚洲精品av麻豆狂野| 亚洲精品av麻豆狂野| 久久人人爽av亚洲精品天堂| 久久草成人影院| 十八禁网站免费在线| 人妻丰满熟妇av一区二区三区| 久久99一区二区三区| 亚洲专区国产一区二区| 法律面前人人平等表现在哪些方面| 精品日产1卡2卡| 日韩人妻精品一区2区三区| 亚洲精品中文字幕在线视频| 在线国产一区二区在线| 免费久久久久久久精品成人欧美视频| 欧美精品一区二区免费开放| 国产成人影院久久av| 老鸭窝网址在线观看| 最近最新中文字幕大全免费视频| 精品福利永久在线观看| 超色免费av| 久久九九热精品免费| 操美女的视频在线观看| 久久伊人香网站| 可以在线观看毛片的网站| 中文字幕精品免费在线观看视频| 精品少妇一区二区三区视频日本电影| 日韩精品青青久久久久久| 日韩免费av在线播放| 最近最新中文字幕大全免费视频| 亚洲欧美一区二区三区久久| 国产精品免费一区二区三区在线| 一级片'在线观看视频| 男人舔女人的私密视频| 成人黄色视频免费在线看| 久久久久国产精品人妻aⅴ院| 亚洲中文av在线| 欧美大码av| 久久久国产欧美日韩av| 亚洲人成伊人成综合网2020| 国产高清视频在线播放一区| 久久九九热精品免费| 9热在线视频观看99| 视频区欧美日本亚洲| www.熟女人妻精品国产| 亚洲美女黄片视频| bbb黄色大片| a级毛片黄视频| av视频免费观看在线观看| 精品久久久久久电影网| 亚洲欧美激情在线| 午夜福利免费观看在线| 亚洲情色 制服丝袜| 一a级毛片在线观看| 97超级碰碰碰精品色视频在线观看| 激情视频va一区二区三区| 51午夜福利影视在线观看| 亚洲精品av麻豆狂野| 亚洲,欧美精品.| 精品日产1卡2卡| 精品人妻1区二区| 一级作爱视频免费观看| 欧美亚洲日本最大视频资源| 在线观看午夜福利视频| 色老头精品视频在线观看| 91av网站免费观看| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区三区综合在线观看| 脱女人内裤的视频| 亚洲av成人av| 亚洲欧美日韩高清在线视频| 黄片小视频在线播放| 久久久久精品国产欧美久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产区一区二久久| 国产三级在线视频| 97超级碰碰碰精品色视频在线观看| 天天躁夜夜躁狠狠躁躁| bbb黄色大片| 99久久久亚洲精品蜜臀av| 成人手机av| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 又黄又爽又免费观看的视频| 在线看a的网站| 欧美 亚洲 国产 日韩一| 一个人免费在线观看的高清视频| 精品国产国语对白av| 久久久国产精品麻豆| 日日爽夜夜爽网站| 女生性感内裤真人,穿戴方法视频| 夜夜躁狠狠躁天天躁| 在线免费观看的www视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美一区二区三区在线观看| 中文字幕最新亚洲高清| 岛国视频午夜一区免费看| 久久午夜综合久久蜜桃| 日本精品一区二区三区蜜桃| 国产99久久九九免费精品| 长腿黑丝高跟| 国产1区2区3区精品| 国产一区二区在线av高清观看| 高潮久久久久久久久久久不卡| 国产精品免费一区二区三区在线| 天堂影院成人在线观看| a级片在线免费高清观看视频| 多毛熟女@视频| 精品人妻在线不人妻| 午夜成年电影在线免费观看| 80岁老熟妇乱子伦牲交| 国产aⅴ精品一区二区三区波| 午夜福利一区二区在线看| 熟女少妇亚洲综合色aaa.| 巨乳人妻的诱惑在线观看| 性欧美人与动物交配| 国产男靠女视频免费网站| 美女 人体艺术 gogo| 18禁观看日本| av片东京热男人的天堂| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区在线观看成人免费| 熟女少妇亚洲综合色aaa.| 在线观看免费视频网站a站| 夫妻午夜视频| 精品国产美女av久久久久小说| 日本三级黄在线观看| 男女做爰动态图高潮gif福利片 | 欧美一级毛片孕妇| 国产高清激情床上av| 亚洲avbb在线观看| 午夜福利欧美成人| √禁漫天堂资源中文www| 日韩精品免费视频一区二区三区| 国产av一区在线观看免费| 久久精品国产亚洲av香蕉五月| 黄色丝袜av网址大全| a级片在线免费高清观看视频| 成年女人毛片免费观看观看9| 欧美av亚洲av综合av国产av| 99久久综合精品五月天人人| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情 高清一区二区三区| 91老司机精品| 老汉色av国产亚洲站长工具| 我的亚洲天堂| 亚洲中文av在线| 9191精品国产免费久久| 中文字幕人妻丝袜制服| 色婷婷久久久亚洲欧美| 久久人妻福利社区极品人妻图片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av第一区精品v没综合| 美女国产高潮福利片在线看| 日韩高清综合在线| 国产一区二区三区视频了| 真人一进一出gif抽搐免费| 亚洲国产欧美日韩在线播放| 女警被强在线播放| 亚洲精品一区av在线观看| 少妇的丰满在线观看| 在线观看一区二区三区| 黑人猛操日本美女一级片| 国产av一区二区精品久久| 国产高清国产精品国产三级| 天堂√8在线中文| 中文字幕高清在线视频| 51午夜福利影视在线观看| 国产乱人伦免费视频| 亚洲人成电影观看| 老汉色∧v一级毛片| 性色av乱码一区二区三区2| av有码第一页| 久久热在线av| 久热这里只有精品99| 成人黄色视频免费在线看| 老司机在亚洲福利影院| 日韩视频一区二区在线观看| 黄色a级毛片大全视频| 国产av一区二区精品久久| 可以免费在线观看a视频的电影网站| 男人舔女人的私密视频| 欧美精品一区二区免费开放| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕一二三四区| 丁香六月欧美| avwww免费| 欧美黄色淫秽网站| 日本免费一区二区三区高清不卡 | 男人的好看免费观看在线视频 | 精品无人区乱码1区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产片内射在线| 长腿黑丝高跟| 欧美日韩国产mv在线观看视频| 久久精品国产亚洲av高清一级| 少妇 在线观看| 制服诱惑二区| 亚洲精品一区av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费观看网址| 美女福利国产在线| 亚洲av熟女| 亚洲熟女毛片儿| 中文字幕人妻熟女乱码| 午夜影院日韩av| 多毛熟女@视频| 88av欧美| 看免费av毛片| 国产欧美日韩精品亚洲av| 黄色a级毛片大全视频| 国产成人啪精品午夜网站| 18禁观看日本| 高清毛片免费观看视频网站 | a级毛片黄视频| 久久久久久大精品| 亚洲欧美激情综合另类| 在线观看www视频免费| 精品久久久久久久毛片微露脸| svipshipincom国产片| 国产在线观看jvid| 美女 人体艺术 gogo| 精品电影一区二区在线| 中文字幕人妻熟女乱码| 国产99白浆流出| 国产精品成人在线| 激情视频va一区二区三区| 亚洲人成电影观看| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| 9热在线视频观看99| cao死你这个sao货| 美女国产高潮福利片在线看| 久久99一区二区三区| 欧美激情久久久久久爽电影 | 18美女黄网站色大片免费观看| 亚洲一区中文字幕在线| 男女下面插进去视频免费观看| 欧美日韩瑟瑟在线播放| 亚洲av第一区精品v没综合| 亚洲人成网站在线播放欧美日韩| 日本wwww免费看| 一区二区日韩欧美中文字幕| 免费一级毛片在线播放高清视频 | 成熟少妇高潮喷水视频| 免费高清视频大片| 不卡av一区二区三区| 中文欧美无线码| 99国产极品粉嫩在线观看| 精品久久久久久成人av| 99国产精品免费福利视频| 精品国产国语对白av| 18美女黄网站色大片免费观看| 亚洲 国产 在线| 老司机午夜福利在线观看视频| 日韩欧美一区视频在线观看| 真人做人爱边吃奶动态| 亚洲国产欧美一区二区综合| 亚洲 国产 在线| 欧美中文综合在线视频| 色综合站精品国产| 亚洲欧美精品综合一区二区三区| 热99re8久久精品国产| 欧美黑人精品巨大| 窝窝影院91人妻| 香蕉丝袜av| 女性被躁到高潮视频| 交换朋友夫妻互换小说| 大码成人一级视频| 日韩国内少妇激情av| 久久久国产精品麻豆| 看片在线看免费视频| 国产精品九九99| 50天的宝宝边吃奶边哭怎么回事| 少妇被粗大的猛进出69影院| 国内久久婷婷六月综合欲色啪| 婷婷六月久久综合丁香| 日本三级黄在线观看| 久久精品国产清高在天天线| 精品第一国产精品| 久久精品国产清高在天天线| 欧美久久黑人一区二区| www.999成人在线观看| 免费观看精品视频网站| 国产亚洲欧美在线一区二区| 男男h啪啪无遮挡| 精品国产乱码久久久久久男人| 欧美精品啪啪一区二区三区| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区mp4| 久久性视频一级片| 欧美亚洲日本最大视频资源| 日本一区二区免费在线视频| 99国产极品粉嫩在线观看| 首页视频小说图片口味搜索| 精品国产一区二区三区四区第35| 美女扒开内裤让男人捅视频| 欧美老熟妇乱子伦牲交| 免费观看精品视频网站| 亚洲精品国产精品久久久不卡| 日韩国内少妇激情av| 99香蕉大伊视频| 男女做爰动态图高潮gif福利片 | 久久青草综合色| av网站免费在线观看视频| 韩国精品一区二区三区| 最新美女视频免费是黄的| 国产伦人伦偷精品视频| 午夜视频精品福利| 男女高潮啪啪啪动态图| 国产有黄有色有爽视频| 国产成人欧美| 国产精品 欧美亚洲| av在线天堂中文字幕 | 一级片免费观看大全| 人人妻,人人澡人人爽秒播| 久久热在线av| 热99国产精品久久久久久7| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利欧美成人| 看黄色毛片网站| 国产精华一区二区三区| 午夜福利欧美成人| 丝袜美足系列| 高清毛片免费观看视频网站 | 午夜老司机福利片| 少妇被粗大的猛进出69影院| 亚洲专区字幕在线| 亚洲人成电影免费在线| 久久天堂一区二区三区四区| 老司机深夜福利视频在线观看| 99香蕉大伊视频| 久久天堂一区二区三区四区| 欧美 亚洲 国产 日韩一| 国产极品粉嫩免费观看在线| 国产91精品成人一区二区三区| 日韩免费高清中文字幕av| 中文字幕人妻熟女乱码| 91麻豆精品激情在线观看国产 | 国产精品偷伦视频观看了| 国产又色又爽无遮挡免费看| 日日夜夜操网爽| 日韩大码丰满熟妇|