• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas emission source term estimation with 1-step nonlinear partial swarm optimization-Tikhonov regularization hybrid method☆

    2018-05-25 19:07:52DenglongMaWeiTanZaoxiaoZhangJunHu

    Denglong Ma *,Wei Tan Zaoxiao Zhang ,Jun Hu

    1 School of Food Equipment Engineering and Science,Xi'an Jiaotong University,Xi'an 710049,China

    2 State Key Laboratory of Multiphase Flow in Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China

    3 School of Chemical Engineering and Technology,Xi'an Jiaotong University,Xi'an 710049,China

    4 School of Chemical Engineering,Northwest University,Xi'an 710069,China

    1.Introduction

    Gas emission may lead to potential safety risk,thus source estimation for emission event is vital to the safety management and risk treatment[1,2].For example,CO2gases stored in geological reservoir may flee from the site and leak into atmosphere[2].In this case,identifying the source parameters such as source strength and location is important to estimate the leakage source.Researchers have done many work about source term identification with different inverse problem solution methods.Corresponding to the forward gas dispersion process,the source estimation is an inverse problem,as shown in Fig.1.For forward dispersion,the concentration distribution is predicted with the information of source term,atmosphere and terrain condition.But in the inverse problem,the source terms like emission rate and location are required to be determined when the concentrations of leakage gases are known as well as atmosphere and terrain condition.

    Fig.1.Illustration of inverse gas emission process.

    To solve this problem,many methods have been proposed.Because inverse dispersion problem is ill-posed,the ill-conditional results are often obtained by solving the inverse dispersion equations directly.For instance,the solution results from inverse dispersion equations depend on the boundary condition and initial parameters greatly and output error may be caused by slight input variation.Therefore,different optimization methods were utilized to estimate the gas leakage source parameters and some parameters in other inverse problem[3-5].Cantelli[6],Chen[7],and Luo et al.[8]used optimization methods to reconstruct the source term under different cases.Ma et al.compared different optimization methods including simplex,pattern search,genetic algorithm(GA)and their hybrid algorithms to identify source parameters[9,10].Although optimization methods can deal with ill posed problem and estimate multiple parameters simultaneously,there are still some problems in error treatment and uncertainty analysis.Stochastic probability methods seem to be the better method with probability results,which are more acceptable than single estimate values with optimization methods to solve inverse problem.Zhao et al.proposed differential evolution and probability hybrid method to estimate kinetic parameters for biochemical systems[11].Cang et al.used Kalman filtering method to estimate catalytic activity using an unscented in condensation reaction[12].Hazarta[13],Kopka[14],Guo[15]and Zhang et al.[16]combined Bayesian inference and Markov Chain Monte Carlo(MCMC)method to estimate the gas emission parameters for point source,mobile source and indoor source.Flesch et al.proposed a computation process for forward and backward gas dispersion simulation in atmosphere under different space dimensions based on Lagraagian stochastic(LS)model[17].But both MCMC and LS method have the problem in low computation efficiency,especially for large computation space,as discussed by Ma et al.[18].Minimum relative entropy(MRE)method is also a probability method based on Bayesian interface.Neupauer et al.applied MRE method to solve linear inverse problem[19].Ma et al.coupled MRE method with particle swarm optimization(PSO)algorithm to estimate gas emission source[20].Their results showed that MRE-PSO method improved the computation efficiency greatly.However,MRE method depends on the prior information such as prior error,lower and upper boundary,which is always difficult to be known in the real case.Hence,it is necessary to find a source term identification method with high computation efficiency and probability estimation results but without needing prior error information.

    Parameter regularization method has been used to solve many inverse problems,especially for linear inverse problem[21-26].This method is based on the least squares solution,and it introduces a regularization operator and a regularization parameter to solve the ill-posed inverse problem.If the regularization parameter is found by the method like L-curve or GCV(Generalized Cross Validation),the prior noise information is not be required.Further,the confidence interval at different probability levels can be calculated with stochastic method in regularization method.Therefore,it is possible to use regularization method without prior error information to identify the source parameters with confidence intervals.Different regularization methods have been designed to solve inverse problem based on different regularization terms[21,22].Tikhonov regularization is one of the most widely-used methods,which is often applied for solving ill-posed inverse problem.Bozzoli et al.[23]estimated the local heat-transfer coefficient in laminar flow regime in coiled tubes by Tikhonov regularization method[23].Wei et al.employed Tikhonov regularization method to estimate the parameters of solute transport soil process[24].Yuan et al.used Tikhonov regularization method to identify the partial blockage parameters in natural gas pipeline under the case with random errors[25].For gas emission term identification problem,Kathirgamanathan proposed a computation process for contaminant gas emission rate estimation with Tikhonov regularization method[26].In order to estimate multiple source parameters,he further presented a nonlinear regularization process.But different parameters were estimated separately with repeated optimization process[26].Ma et al.transformed the nonlinear gas dispersion model to be a linear form and modified Tikhonov regularization equation,and then they proposed a linear regularization method coupled Tikhonov regularization and PSO algorithm to identify the emission rate,source location simultaneously[18].They also designed 2-step nonlinear PSO-Tikhonov regularization computation process according to Kathirgamanathan's idea.The results showed that linear PSO-Tikhonov method estimated multiple source parameters successfully and the computation efficiency was improved greatly compared with 2-step nonlinear PSO-Tikhonov method.However,the linear assumption in linear PSO-Tikhonov regularization method may bring some errors into estimation and the confidence intervals obtained by both linear and 2-step nonlinear PSO-Tikhonov method seem too wide.Therefore,a new nonlinear regularization method will be designed with nonlinear forward model to estimate multiple gas emission source parameters simultaneously.

    2.Principle

    Tikhonov regularization is based on the least square principle.But it is different from common least square method by introducing regularization operator and parameters.Tikhonov regularization method is often utilized to solve the linear inverse problem.The basic expression of the regularization form is shown with Eq.(1),

    where G is the transfer matrix of linear problem Gm=d with the size of M by N;m is the parameter matrix sized with N by 1;d is the measurement data with the length of M;λ is the regularization parameter,L is a regularization matrix and ‖?‖ denotes the Euclidian norm.MLis the length of the row of matrix L.

    The first term in Eq.(1)represents the errors from the model and data while the second term is that from the regularization process.The regularization parameter λ balances the errors between two terms.L is a sparse matrix,which are used to differentiate m for the purpose of regularization.‖Lm‖is a finite-difference approximation that is proportional to the first derivative of m.Here,the method presented by Aster et al.[27]was adopted to approximate the derivative of m.In this method,the problem can be discretized by simple collocation.When the regularization matrix is determined with certain method,the regularization parameter will dominate the estimation results.The selection of optimal regularization parameter is based on minimizing the total error.The regularization error approaches zero as λ → 0,while the error due to noise in the data increases as λ → 0.Discrepancy principle is a well-known method to determine the regularization parameter,but it relies on prior information on the noise level.On the other hand,methods such as generalized cross validation(GCV),L-curve and quasi-optimality criterion do not require any information about the noise level.Here,L-curve method was used to choose the regularization parameter,which was introduced by Hansen[28].

    The L-curve is simply a logarithmic plot of residual norm ‖Gm-d‖22versus the solution norm ‖Lm‖22for a set of admissible regularization parameter.In this way,the L-curve displays the compromise between the minimization of these two terms.The ‘corner’of the L-curve is defined as the point on the L-curve

    with the maximum curvature.Here the curvature k is given by

    where the differentiation is with respect to λ.

    With every element in the regularization set,the damped least squares problem like Eq.(1)is solved.If the problem has a linear form and satis fies the structure of common Tikhonov method,singular value decomposition(SVD)can be used to solve Eq.(1).But gas dispersion process is a classical nonlinear problem,if multiple source parameters are required to be determined,SVD is failure in this case.Particle swarm optimization(PSO)is a good method to solve the optimization problem and thus it can be used to obtain the optimal estimation m under certain regularization parameter.

    Because Eq.(1)is not proper to estimate multiple gas emission source parameters,Ma etal.[18]proposed linear PSO-Tikhonov method,as shown with Eq.(5),after transforming the nonlinear Gaussian dispersion model to be a linear form and modi fied Eq.(1)to be

    where m′is the transformed parameter matrix and N′is the length of m′.In this case m’can be estimated successfully with linear PSO-Tikhonov method and then the original estimation parameters can be obtained.

    Additionally,according to the presentation of Kathirgamanathan[26],the gas emission source parameters can be determined with two steps nonlinear method to solve the problem as Eq.(5).

    where m0is the matrix only including location parameters and m1is the source strength parameter.The transfer matrix G(m0)is a nonlinear function about location parameters and the source strength is linear to the concentration d.The source location parameters are determined if rst with an unit emission rate by optimization method.Then,the emission rate is calculated with the estimated location parameters in the previous step.The detail of linear PSO-Tikhonov and 2-step nonlinear method computation process were discussed in the paper of Ma et al.[18].

    Although linear PSO-Tikhonov method cost much less time than 2-step nonlinear method as discussed in Ma et al.[18],there are still some problems due to the assumption of linear transformation.Hence,1-step nonlinear PSOTikhonov method is designed to estimate multiple emission source parameters.Gaussian dispersion model is accepted as the forward dispersion model[29],as shown with Eq.(6)

    where C(x,y,z)is the concentration of the emission gas(g·m-3)at the downwind distance xm away from the source,ymlaterally from the centerline of the plume,and z m above ground level.Qcis the emission rate of the source(g·s-1).u is the wind speed(m·s-1).h is the effective height of the source above ground level(m).σyand σzare the standard deviations of a statistically normal plume in lateral and vertical dimensions,respectively.

    The source parameters including emission rate,downwind and crosswind distance to the certain sensor are required to be estimated when the emission gas concentrations at different sensors have been measured.In this case,the regularization equation becomes

    where the first term is a nonlinear form including all source parameters.The computation process of 1-step nonlinear PSO-Tikhonov regularization method is illustrated in Fig.2.

    Fig.2.Computation flow of 1-step nonlinear PSO-Tikhonov nonlinear method for source identification.

    First,an array with different regularization values is set.For every regularization parameter,the best estimation for source parameters will be obtained with PSO algorithm by the cost function of Eq.(7).It is noted from Fig.2 that 1-step nonlinear method proposed here only needs one PSO computation process with a certain regularization parameter.It will improve the computation efficiency compared with 2-step nonlinear PSO-Tikhonov method in the paper of Ma et al.[18].The curve of‖Gm-d‖22vs.‖Lm‖22under all regularization values is then plotted and the point with the maximum curvature is selected as the best estimation parameters.Finally,the confidence interval under certain probability level is calculated.The difference between 1-step nonlinear and linear PSO-Tikhonov method lies in the regularization term.Hence,the confidence intervals will be calculated with different method compared with linear inverse model.For nonlinear method,the confidence intervals can be determined with Eq.(8)[26,27].

    which is based on t-distribution.α is the probability level and f is the degree of freedom.Smiis the square roots of the diagonal elements of variance-covariance matrix S2(WTW)-1.S is given by

    Here,n is the length of data,r is the length of parameter vector.m=[Qc,x1,y1]and W is a matrix of the partial derivatives of G,which is obtained by W=[G J],where J is n×2 matrix,

    The variance-covariance matrix of estimated parameter^m is

    3.Case Study

    It was noticed from the research of Ma et al.[18]that the emission rate can be easily determined by common Tikhonov regularization with SVD solution method when the location is known.But if both the emission rate and location are required to be determined,SVD is valid.Therefore,the method proposed in this paper is designed to estimate source strength and location parameters simultaneously.The method will be tested with both simulation and experiment cases.

    3.1.Simulation case

    First,a simulation scenario is built to test the performance of source parameter estimation method.Here,the leakage source is set with the emission rate of 32 g·s-1and the source stack height of 0.006 m.The measurement height z=1 m and the wind speed at 1 m above ground u=6.7 m·s-1.The gases emitfrom the near surface and the roughness height of the ground z0is assumed as 0 m.The atmosphere is under Pasquill stability class “E”.The downwind distance of measurement sensor is 30,50,70,100 and 150 m away from the emission source and the crosswind distance is from 5 to 20 m with 5 m interval.Gaussian dispersion model is used to predict the concentrations at the sensors.A randomnoise with mean intensity of0.01 times of measure mentresults are added on the simulation results.The original point in sensor coordinate system locates at the position with the downwind distance from the source of 30 m and the crosswind distance of 5 m.The emission rate,downwind and crosswind distance of the original sensor are the estimate parameters.

    Fig.3.L-curve for simulation case with 1-step nonlinear PSO-Tikhonov method.

    Table 1 Results of source strength and location estimation by 1-step nonlinear PSO-Tikhonov method

    Based on the computation process of Fig.2,the L-curve of‖Gm-d‖22vs.‖Lm‖22with different values of λ is shown in Fig.3.Here,L is one order regularization matrix.

    Itis shown fromthe L-curve in Fig.3 thatthere is an obvious corner on the curve and the optimal regularization parameterin this case is 0.0346,where the curvature has the maximum value.The estimate results of source term at 95%probability level are listed in Table 1.The source term includesemission rate Qc,downwind distance x0and crosswind distance y0.The realvalue of estimate parameter m=[Qc,x0,y0]=[32,30,5].Itis seen from the results that the estimated valuesundersimulation case is very close to the real value.In order to evaluate the performance of the estimation method,the skillscore proposed by Ma etal.[9]was accepted.Sq,Sxand Syare the skill scores for emission rate,downwind and crosswind distance,respectively.The less skill score,the better estimation performance of the method.It is noted from Table 1 that the skill scores of 1-step nonlinear PSO-Tikhonov regularization method to identify the source parameters are all less than 0.1,which proves the feasibility of this method to estimate the source term.

    3.2.Experiment case

    Prairie Grass emission experiment is a classic gas emission experiment,where SO2gases was controlled to release with differentemission rates under different atmosphere conditions in open air[30].68 release experiments were sampled with sensor array.Here,two releases under different atmosphere conditions were selected to verify the method proposed in this paper,where release 17 was under stable atmospheric stability condition while release 33 was under unstable condition.

    The L-curve during the test process of release 17 with 1-step nonlinear PSO-Tikhonov regularization method is illustrated in Fig.4.The optimal regularization parameter in this case is 67.03.The results are listed in Table 1 too.The real value of source term in this experiment case is m=[Qc,x0,y0]=[56.5,47.55,15.45].The skill scores of the method to estimate source term in this case are larger than that in simulation case due to the data and model errors.But all skill scores are less than 0.5,especially the skill scores of location parameter.

    Further,the experiment case of release 33 was tested with 1-step nonlinear PSO-Tikhonov method.The L-curve in this process is shown in Fig.5.The optimal regularization parameter in this case is 0.6870,which is less than that in the case of release 17.It is also noted that the optimal regularization parameter in experiment case is larger than that in simulation case,which may result from the errors in data and forward model.The results based on release 33 case are also listed in Table 1.The real value of source term in this experiment case is m=[Qc,x0,y0]=[94.7,49.62,6.09].The results in Table 1 indicate that the skill score of the method in this case is also less than 0.5.Therefore,it is feasible to identify the source parameters by 1-step nonlinear PSOTikhonov method proposed in this paper.

    Fig.4.L-curve for Release 17 experiment with 1-step nonlinear PSO-Tikhonov method.

    Fig.5.L-curve for Release 33 experiment with 1step PSO-Tikhonov nonlinear method.

    4.Discussion

    In order to compare the performances of linear,nonlinear1-step and 2-step PSO-Tikhonov regularization method,the cases were tested with the same computer condition using Matlab software.The comparison results of computation time are illustrated in Fig.6.It is noted that the computation time with 1-step nonlinear PSO-Tikhonov method is about half of that with 2-step nonlinear method.Although linear PSOTikhonov method has the highest computation efficiency,its confidence interval seems too large as discussed in the paper of Ma et al.[18].The estimated results by 2-step nonlinear and linear PSO-Tikhonov method are summarized in Table 2.Compared with the results in Table 1,it is noticed that the confidence interval calculated by 1-step nonlinear method is more narrower than that by linear and 2-step nonlinear PSO-Tikhonov method and it seems more reasonable.

    Fig.6.Comparison of computational time with different PSO-Tikhonov source identification methods.

    Table 2 Results of source term parameters by 2-step nonlinear and linear PSO-Tikhonov regularization method with experiment case[18]

    Fig.7 shows the skill scores for different source parameters with different regularization methods.It is seen that the skill scores of different regularization methods are close to each other.But 1-step nonlinear PSO-Tikhonov regularization method has a better total performance in the case of simulation and release 33 experiment,especially for the parameter estimation of source strength and downwind distance.Therefore,the method proposed in this paper has some advantages in both confidence interval and estimation results.

    Fig.7.Comparison of estimation results with different PSO-Tikhonov regularization methods.

    Fig.8.Comparison of skill scores with 1-step nonlinear PSO-Tikhonov and single PSO algorithm.

    Single PSO algorithm was also used to test the source parameter estimation,which is compared with 1-step nonlinear PSO-Tikhonov regularization method,as shown with Fig.8.It is noted that the skill scores of 1-step nonlinear PSO-Tikhonov method are similar to that of single PSO method under the case of release 17.But the performance of the method proposed in this paper is better than that of single PSO in the case ofrelease 33.A more important property of 1-step nonlinear PSO-Tikhonov method than that of single PSO is reasonable confidence interval.Hence,1-step nonlinear PSO-Tikhonov regularization method is a potentially better method to estimate source parameters compared with the single PSO method.

    5.Conclusions

    Since previously proposed 2-step nonlinear and linear PSOTikhonov regularization method have some problems in computation time and confidence interval,a new 1-step nonlinear hybrid method coupled with Tikhonov regularization and PSOalgorithmwas presented in this paper,which was also tested with simulation and experiment cases.

    The test results showed that 1-step nonlinear PSO-Tikhonov regularization method is feasible to estimate multiple emission source parameters with reasonable confidence intervals at certain probability level.

    The computation time of1-step nonlinear PSO-Tikhonov regularization method is about half of that of 2-step nonlinear method while it is longer than that of linear PSO-Tikhonov method to estimate multiple source parameters.

    Although the skill scores of 1-step nonlinear,2-step nonlinear and linear PSO-Tikhonov method to estimate source parameters are close to each other,the skill scores of 1-step nonlinear method are better in some cases than other two methods,especially for source strength and downwind distance estimation.

    Compared with 2-step nonlinear and linear PSO-Tikhonov regularization method proposed previously,1-step nonlinear method obtains more reasonable confidence interval at certain probability level.

    1-step nonlinear PSO-Tikhonov method discussed in this paper can identify multiple source parameters with the similar skill score with single PSO method.But it performs better in some cases.Moreover,1-step nonlinear PSO-Tikhonov method can provide reasonable confidence interval additionally compared with single PSO method.

    Therefore,1-step nonlinear PSO-Tikhonov method proposed in this paper is a potential good method to identify contaminant gas emission source term although it still has some problems.

    Nomenclature

    C concentration of the emission gas,g·m-3

    d measurement data

    f degree of freedom

    G transfer matrix of inverse problem

    h effective height of the source above ground level,m

    k curvature of L-curve

    L regularization matrix

    M length of measurement data

    MLlength of the row of regularization matrix

    m parameter matrix

    N length of parameter matrix

    S skill scores for estimate parameter

    Smvariance-covariance matrix of regularization form

    u wind speed,m·s-1

    x downwind distance,m

    x0downwind distance of original sensor to the source,m

    y crosswind distance,m

    y0crosswind distance of original sensor to the source,m

    z measurement height above ground level,m

    z0roughness height of the ground surface,m

    α probability level,100%

    λ regularization parameter

    σistandard deviations of a statistically normal plume,m

    Subscripts

    x downwind direction

    y crosswind direction

    q emission rate

    [1]Y.Xu,Z.Y.Wang,Q.X.Zhu,An improved hybrid genetic algorithm for chemical plant layout optimization with novel non-overlapping and toxic gas dispersion constraints,Chin.J.Chem.Eng.21(4)(2013)412-419.

    [2]D.L.Ma,J.Q.Deng,Z.X.Zhang,CO2leakage identification in geosequestration based on real time correlation analysis between atmospheric O2and CO2,Chin.J.Chem.Eng.22(6)(2014)634-642.

    [3]C.L.Fan,F.R.Sun,L.Yang,A numerical method on inverse determination of heat transfer coefficient based on the rmographic temperature measurement,Chin.J.Chem.Eng.16(6)(2008)901-908.

    [4]X.J.Wu,C.Y.Cui,S.Hu,Z.H.Li,C.D.Wu,The velocity measurement of two-phase lf ow based on particle swarm optimization algorithm and nonlinear blind source separation,Chin.J.Chem.Eng.20(2)(2012)346-351.

    [5]J.Lang,J.Zhao,Modeling and optimization for oil well production scheduling,Chin.J.Chem.Eng.24(10)(2016)1423-1430.

    [6]A.Cantelli,F.D'Orta,A.Cattini,F.Sebastianelli,L.Cedola,Application of genetic algorithm for the simultaneous identification of atmospheric pollution sources,Atmos.Environ.115(2015)36-46.

    [7]Z.Q.Chen,Research on Source Identification Approaches for Hazardous Chemical Releases(Ph.D.Thesis)Beijing University of Chemical Technology,Beijing,2013(In Chinese).

    [8]P.Luo,The inverse study of the liquefied gas source intensity based on the MATLAB(Master Thesis)Harbin University of Science and Technology,Harbin,2015(In Chinese).

    [9]D.L.Ma,J.Q.Deng,Z.X.Zhang,Comparison and improvements of optimization methods for gas emission source identification,Atmos.Environ.81(2013)188-198.

    [10]A.J.Lazzús,Prediction of flash point temperature of organic compounds using a hybrid method of group contribution+neural network+particle swarm optimization,Chin.J.Chem.Eng.18(5)(2010)817-823.

    [11]C.Zhao,Q.L.Xu,S.M.Lin,X.L.Lin,Hybrid differential evolution for estimation of kinetic parameters for biochemical systems,Chin.J.Chem.Eng.21(2)(2013)155-162.

    [12]W.T.Cang,H.Z.Yang,Estimation of catalytic activity using an unscented Kalman filtering in condensation reaction,Chin.J.Chem.Eng.23(12)(2015)1965-1969.

    [13]A.Hazarta,J.F.Giovannelli,S.Dubostc,L.Chatellierc,Inverse transport problem of estimating point-like source using a Bayesian parametric method with MCMC,Signal Process.96(Part B)(2014)346-361.

    [14]P.Kopka,A.Wawrzynczak,M.Borysiewicz,Application of the approximate Bayesian computation methods in the stochastic estimation of atmospheric contamination parameters for mobile sources,Atmos.Environ.145(2016)201-212.

    [15]S.D.Guo,R.Yang,W.G.Weng,Source inversion of toxic gas dispersion in urban areas based on the MCMC method,J.Tsinghua Univ.(Sci.&Technol.)49(5)(2009)11-16(In Chinese).

    [16]T.Zhang,H.Zhou,S.Wang,Inverse identification of the release location,temporal rates,and sensor alarming time of an airborne pollutant source,Indoor Air 25(4)(2015)415-427.

    [17]T.K.Flesch,J.D.Wilson,L.A.Harper,B.P.Crenna,R.R.Sharpe,Deducing ground-to-air emissions from observed trace gas concentrations:a field trial,J.Appl.Meteorol.44(2005)475-484.

    [18]D.L.Ma,W.Tan,Z.X.Zhang,Hu Jun,Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm,J.Hazard.Mater.325(2017)239-250.

    [19]R.M.Neupauer,B.Borchers,J.L.Wilson,Comparison of inverse methods for reconstructing the release history of a groundwater contamination source,Water Resour.Res.36(2000)2469-2475.

    [20]D.L.Ma,S.M.Wang,Z.X.Zhang,Hybrid algorithm of minimum relative entropyparticle swarm optimization with regularization parameters for gas source term identification,Atmos.Environ.94(2014)637-640.

    [21]R.M.Neupauer,A Comparison of Two Methods for Recovering the Release History of a Groundwater Contamination Source(Master Dissertation)New Mexico Institute of Mining and Technology,Socorro,New Mexico,1999.

    [22]D.L.Ma,Z.X.Zhang,Leakage source parameters identification for CO2sequestration based on Occam method,Energy Procedia 63(2014)3815-3820.

    [23]F.Bozzoli,L.Cattani,S.Rainieri,F.S.Bazán,L.S.Borges,Estimation of the local heat transfer coefficient in the laminar flow regime in coiled tubes by the Tikhonov regular is ation method,Int.J.Heat Mass Transf.72(2014)352-361.

    [24]H.Wei,W.J.Dang,S.Wei,Parameter identification of solute transport with spatial fractional advection-dispersion equation via Tikhonov regularization,Optik 129(2017)8-14.

    [25]Z.M.Yuan,Z.B.Deng,M.Z.Jiang,Extended partial blockage detection in a gas pipeline based on Tikhonov regularization,J.Nat.Gas Sci.Eng.27(Part 1)(2015)130-137.

    [26]P.Kathirgamanathan,Source Parameter Estimation of Atmospheric Pollution from Accidental Releases of Gas(Ph.D.Thesis)Massey University,New Zealand,2003.

    [27]R.C.Aster,B.Borchers,C.H.Thurber,Parameter Estimation and Inverse Problems,Second edition Elsevier Inc.,Oxford,2013.

    [28]C.P.Hansen,Rank-De ficient and Discrete ill-Posed Problems,SIAM,Philadelphia,PA,1997.

    [29]S.R.Hanna,G.A.Briggs,R.P.Hosker,Handbook on Atmospheric Diffusion,U.S.Department of Energy,Technical Information Center,USA,1982.

    [30]M.L.Barad,Project prairie grass,a field program in diffusion,Geophysical Research,Paper 1(59),Air Force Cambridge Centre,Massachusetts,USA,1958.

    国产人妻一区二区三区在| 久久99热这里只频精品6学生| 大又大粗又爽又黄少妇毛片口| 国产中年淑女户外野战色| 久久精品久久精品一区二区三区| 欧美国产精品一级二级三级 | 亚洲精品日韩av片在线观看| 黄片无遮挡物在线观看| 噜噜噜噜噜久久久久久91| 插阴视频在线观看视频| 久久精品久久久久久久性| 国产成人a区在线观看| 成人亚洲精品一区在线观看 | 下体分泌物呈黄色| 亚洲丝袜综合中文字幕| 日本-黄色视频高清免费观看| 搡女人真爽免费视频火全软件| 国产 一区精品| 亚洲欧美精品专区久久| 青青草视频在线视频观看| 国产美女午夜福利| 赤兔流量卡办理| 身体一侧抽搐| 亚洲av福利一区| 一区二区三区乱码不卡18| 午夜精品国产一区二区电影| 色综合色国产| 3wmmmm亚洲av在线观看| 午夜福利视频精品| 高清毛片免费看| 国产探花极品一区二区| 国产 一区精品| 久久人人爽av亚洲精品天堂 | 日韩中字成人| 91久久精品国产一区二区成人| 国产中年淑女户外野战色| 80岁老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| 美女xxoo啪啪120秒动态图| 国产在视频线精品| 免费少妇av软件| 久久久久久久久久成人| 精品国产乱码久久久久久小说| 在线观看美女被高潮喷水网站| 最近2019中文字幕mv第一页| 欧美日本视频| 亚洲一区二区三区欧美精品| 成人特级av手机在线观看| 国产精品久久久久久精品电影小说 | 国产精品久久久久久精品古装| 在线播放无遮挡| 婷婷色麻豆天堂久久| 久久久精品94久久精品| 青春草国产在线视频| 国产午夜精品一二区理论片| 成人毛片a级毛片在线播放| 亚洲自偷自拍三级| 国产美女午夜福利| 欧美激情国产日韩精品一区| 免费播放大片免费观看视频在线观看| 久久韩国三级中文字幕| 乱码一卡2卡4卡精品| av福利片在线观看| 国产男人的电影天堂91| 亚洲欧美一区二区三区国产| 午夜免费男女啪啪视频观看| 亚洲av国产av综合av卡| 嫩草影院新地址| 一级av片app| 人人妻人人爽人人添夜夜欢视频 | 搡女人真爽免费视频火全软件| 亚洲成人手机| 久久久久久久国产电影| 成人亚洲精品一区在线观看 | 欧美3d第一页| 亚洲中文av在线| 成人国产麻豆网| 嫩草影院入口| 精品亚洲成a人片在线观看 | 日韩一区二区三区影片| 久久亚洲国产成人精品v| 国产极品天堂在线| av在线播放精品| 香蕉精品网在线| 人妻制服诱惑在线中文字幕| 亚洲怡红院男人天堂| 少妇猛男粗大的猛烈进出视频| 高清毛片免费看| 最近中文字幕2019免费版| 99久久中文字幕三级久久日本| 免费观看的影片在线观看| 在线观看一区二区三区激情| 午夜福利高清视频| 国产亚洲欧美精品永久| 久久久久精品性色| 99国产精品免费福利视频| 婷婷色综合大香蕉| 婷婷色综合www| 夜夜爽夜夜爽视频| 一区二区三区精品91| 青春草亚洲视频在线观看| 国产视频内射| 大香蕉久久网| 亚洲av.av天堂| 日韩欧美精品免费久久| 久热这里只有精品99| 中文字幕av成人在线电影| 亚洲怡红院男人天堂| 最近手机中文字幕大全| 少妇的逼水好多| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 成人二区视频| 国产淫语在线视频| 精品国产露脸久久av麻豆| 国产亚洲av片在线观看秒播厂| 99热这里只有精品一区| 久久精品国产亚洲网站| 国产成人aa在线观看| 少妇熟女欧美另类| 蜜桃亚洲精品一区二区三区| 如何舔出高潮| 亚洲图色成人| 美女中出高潮动态图| 中国美白少妇内射xxxbb| 久久国产精品大桥未久av | 亚洲av欧美aⅴ国产| 只有这里有精品99| 观看av在线不卡| 日韩不卡一区二区三区视频在线| 又粗又硬又长又爽又黄的视频| 91在线精品国自产拍蜜月| 成年av动漫网址| 色网站视频免费| 久久人人爽人人爽人人片va| 免费看日本二区| 三级经典国产精品| 国产国拍精品亚洲av在线观看| 亚洲四区av| 国产午夜精品一二区理论片| 免费人妻精品一区二区三区视频| 天天躁日日操中文字幕| 国产一区亚洲一区在线观看| 热re99久久精品国产66热6| 国产成人精品福利久久| 黑人高潮一二区| 乱系列少妇在线播放| 在线播放无遮挡| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 国产精品不卡视频一区二区| 99热网站在线观看| 国产精品一二三区在线看| 看免费成人av毛片| 亚洲自偷自拍三级| 日韩一区二区三区影片| 久久久久久久久久久免费av| 大码成人一级视频| 色视频www国产| 伦理电影大哥的女人| 99久久中文字幕三级久久日本| 国产 精品1| 午夜免费男女啪啪视频观看| 亚洲av.av天堂| 国产精品99久久99久久久不卡 | 在线亚洲精品国产二区图片欧美 | 大香蕉久久网| 亚洲欧洲日产国产| 成年av动漫网址| 男女免费视频国产| av在线播放精品| 国产高清三级在线| 五月伊人婷婷丁香| 国内精品宾馆在线| 欧美+日韩+精品| 亚洲怡红院男人天堂| 下体分泌物呈黄色| av福利片在线观看| 欧美一区二区亚洲| 亚洲国产精品国产精品| 日日啪夜夜撸| 性色avwww在线观看| 一级毛片aaaaaa免费看小| 久久久午夜欧美精品| 久久97久久精品| av在线老鸭窝| 久久精品国产自在天天线| 一二三四中文在线观看免费高清| 国产欧美日韩精品一区二区| 一区在线观看完整版| 婷婷色综合www| 国产精品不卡视频一区二区| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 寂寞人妻少妇视频99o| 激情 狠狠 欧美| 国产久久久一区二区三区| 边亲边吃奶的免费视频| 一区二区三区四区激情视频| h视频一区二区三区| 成人黄色视频免费在线看| 欧美zozozo另类| 精品久久久噜噜| 国产 一区精品| 亚洲四区av| 不卡视频在线观看欧美| 日韩av免费高清视频| 国产精品久久久久成人av| 国产伦理片在线播放av一区| 自拍欧美九色日韩亚洲蝌蚪91 | 成人高潮视频无遮挡免费网站| 最近最新中文字幕免费大全7| 韩国av在线不卡| 欧美日韩综合久久久久久| 国产亚洲最大av| 亚洲精品乱码久久久v下载方式| 国产爱豆传媒在线观看| 一级毛片我不卡| 熟女av电影| 日日撸夜夜添| 18禁动态无遮挡网站| 欧美精品一区二区大全| 美女福利国产在线 | 亚洲一级一片aⅴ在线观看| 国产亚洲一区二区精品| 午夜福利高清视频| 美女cb高潮喷水在线观看| 欧美激情国产日韩精品一区| 国国产精品蜜臀av免费| 在线观看一区二区三区激情| 九九久久精品国产亚洲av麻豆| 久久久久国产精品人妻一区二区| 亚洲国产高清在线一区二区三| 伦理电影免费视频| 国产日韩欧美在线精品| 美女主播在线视频| 建设人人有责人人尽责人人享有的 | 亚洲精品日韩av片在线观看| 亚洲精品第二区| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 成人综合一区亚洲| 国产成人免费观看mmmm| 91精品国产九色| 午夜福利网站1000一区二区三区| 丰满少妇做爰视频| 欧美激情极品国产一区二区三区 | 欧美高清成人免费视频www| 免费播放大片免费观看视频在线观看| 亚洲成人一二三区av| 国产高清不卡午夜福利| 我的女老师完整版在线观看| 国产在视频线精品| 国产亚洲一区二区精品| 晚上一个人看的免费电影| 国产黄片美女视频| 色吧在线观看| 欧美xxxx性猛交bbbb| 青春草视频在线免费观看| 身体一侧抽搐| 夫妻午夜视频| 天堂俺去俺来也www色官网| 亚洲久久久国产精品| 少妇丰满av| 国产在视频线精品| 夜夜爽夜夜爽视频| 国产成人精品久久久久久| 亚洲精品色激情综合| 51国产日韩欧美| 亚洲精华国产精华液的使用体验| 亚洲精品乱码久久久久久按摩| 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| 中文资源天堂在线| 久久精品久久久久久噜噜老黄| 一级毛片我不卡| 在线观看免费视频网站a站| av在线观看视频网站免费| 国产高清有码在线观看视频| 久久精品国产亚洲av天美| 亚洲第一区二区三区不卡| 国国产精品蜜臀av免费| 亚洲成人一二三区av| 久久av网站| 一本—道久久a久久精品蜜桃钙片| 成人二区视频| 欧美亚洲 丝袜 人妻 在线| 欧美激情极品国产一区二区三区 | 伊人久久精品亚洲午夜| 人人妻人人添人人爽欧美一区卜 | 18禁裸乳无遮挡动漫免费视频| 中文字幕制服av| av在线观看视频网站免费| 男人爽女人下面视频在线观看| 看免费成人av毛片| 国产精品一区二区在线不卡| 久热这里只有精品99| 亚洲精品色激情综合| 欧美成人午夜免费资源| 日韩不卡一区二区三区视频在线| 国产欧美日韩一区二区三区在线 | 老司机影院毛片| 人人妻人人添人人爽欧美一区卜 | 各种免费的搞黄视频| 亚洲精品乱码久久久v下载方式| 国产精品无大码| 最近2019中文字幕mv第一页| 在线观看av片永久免费下载| 熟女人妻精品中文字幕| 精品人妻偷拍中文字幕| 日本一二三区视频观看| 高清午夜精品一区二区三区| av国产久精品久网站免费入址| 国产欧美亚洲国产| 嫩草影院新地址| 欧美老熟妇乱子伦牲交| 亚洲av电影在线观看一区二区三区| 久久精品熟女亚洲av麻豆精品| 久久久成人免费电影| 国产无遮挡羞羞视频在线观看| 午夜福利高清视频| 欧美xxxx性猛交bbbb| 国产免费一级a男人的天堂| 最近手机中文字幕大全| 免费观看av网站的网址| 99久国产av精品国产电影| 亚洲成人av在线免费| 国产综合精华液| 一级毛片aaaaaa免费看小| 五月玫瑰六月丁香| 成人综合一区亚洲| 国产男人的电影天堂91| 国产高清三级在线| 精品午夜福利在线看| 观看免费一级毛片| 国产欧美另类精品又又久久亚洲欧美| 中文在线观看免费www的网站| 亚洲欧美成人综合另类久久久| 国产一级毛片在线| 日本午夜av视频| 欧美3d第一页| 亚洲成人中文字幕在线播放| 三级国产精品片| 国产乱人视频| 最近的中文字幕免费完整| 成人毛片a级毛片在线播放| 久久久色成人| av.在线天堂| 亚洲va在线va天堂va国产| 网址你懂的国产日韩在线| 最近中文字幕高清免费大全6| 亚洲性久久影院| 久久ye,这里只有精品| a级一级毛片免费在线观看| 免费久久久久久久精品成人欧美视频 | 99精国产麻豆久久婷婷| 最近手机中文字幕大全| 日本黄大片高清| 日本欧美国产在线视频| 午夜福利网站1000一区二区三区| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 亚洲成人中文字幕在线播放| 国产爽快片一区二区三区| 男女下面进入的视频免费午夜| 欧美极品一区二区三区四区| 日韩制服骚丝袜av| 国产亚洲av片在线观看秒播厂| 国产精品一及| 97在线人人人人妻| 日韩三级伦理在线观看| 亚洲第一av免费看| 国产亚洲午夜精品一区二区久久| 蜜桃在线观看..| 精品一区在线观看国产| 国产精品不卡视频一区二区| 校园人妻丝袜中文字幕| 看十八女毛片水多多多| 国语对白做爰xxxⅹ性视频网站| 精品国产露脸久久av麻豆| 午夜福利影视在线免费观看| 高清黄色对白视频在线免费看 | 美女中出高潮动态图| 国产国拍精品亚洲av在线观看| 国产淫语在线视频| 国产高清国产精品国产三级 | 六月丁香七月| 欧美区成人在线视频| 插阴视频在线观看视频| 国产免费一级a男人的天堂| 在线免费十八禁| 日韩人妻高清精品专区| 韩国av在线不卡| 国产精品偷伦视频观看了| 欧美丝袜亚洲另类| 日韩av不卡免费在线播放| 2021少妇久久久久久久久久久| 大香蕉久久网| 观看美女的网站| 嘟嘟电影网在线观看| 国产黄频视频在线观看| 在线观看一区二区三区| 18禁在线无遮挡免费观看视频| 国产毛片在线视频| 一级片'在线观看视频| 少妇精品久久久久久久| 免费高清在线观看视频在线观看| 国产精品99久久99久久久不卡 | 91精品一卡2卡3卡4卡| 五月玫瑰六月丁香| 国产大屁股一区二区在线视频| 亚洲精品aⅴ在线观看| 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类| 婷婷色麻豆天堂久久| 热99国产精品久久久久久7| 久久国产精品大桥未久av | 亚洲成人中文字幕在线播放| 国产精品国产三级国产专区5o| 亚洲成人av在线免费| 嫩草影院入口| 性高湖久久久久久久久免费观看| 欧美性感艳星| 欧美老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 能在线免费看毛片的网站| 亚洲欧美成人精品一区二区| 色哟哟·www| 老师上课跳d突然被开到最大视频| 亚洲伊人久久精品综合| 99久国产av精品国产电影| 人人妻人人澡人人爽人人夜夜| 久久人人爽av亚洲精品天堂 | 高清av免费在线| 国产亚洲一区二区精品| 国产爱豆传媒在线观看| 2021少妇久久久久久久久久久| 亚洲av二区三区四区| 久久99热这里只频精品6学生| 亚洲精品一二三| 麻豆国产97在线/欧美| 又黄又爽又刺激的免费视频.| 亚洲欧美精品专区久久| 少妇 在线观看| 亚洲精品aⅴ在线观看| 高清欧美精品videossex| 国产 一区 欧美 日韩| 下体分泌物呈黄色| 精品熟女少妇av免费看| 久久久精品94久久精品| 亚洲三级黄色毛片| 中国三级夫妇交换| 国产深夜福利视频在线观看| 美女主播在线视频| 国产精品久久久久久精品古装| 日韩av不卡免费在线播放| 在线 av 中文字幕| 国产av码专区亚洲av| 毛片一级片免费看久久久久| 国产毛片在线视频| 我要看日韩黄色一级片| 亚洲第一av免费看| 国产一区亚洲一区在线观看| 精品亚洲乱码少妇综合久久| 精品午夜福利在线看| 免费看不卡的av| 精品少妇久久久久久888优播| h日本视频在线播放| 亚洲av免费高清在线观看| 91午夜精品亚洲一区二区三区| 精品一区二区三区视频在线| 大话2 男鬼变身卡| 在线 av 中文字幕| 欧美精品一区二区大全| a 毛片基地| av网站免费在线观看视频| 18禁裸乳无遮挡免费网站照片| 欧美激情国产日韩精品一区| 久久久久人妻精品一区果冻| 另类亚洲欧美激情| 午夜激情久久久久久久| 亚洲第一av免费看| 中文精品一卡2卡3卡4更新| av在线app专区| 日日撸夜夜添| 97在线人人人人妻| 高清日韩中文字幕在线| 久久久久久久亚洲中文字幕| 国产精品一及| 亚洲国产毛片av蜜桃av| 亚洲怡红院男人天堂| 国产大屁股一区二区在线视频| 18禁裸乳无遮挡动漫免费视频| 国产亚洲av片在线观看秒播厂| 国产一区二区在线观看日韩| 中文字幕亚洲精品专区| 少妇被粗大猛烈的视频| 久久久成人免费电影| 嘟嘟电影网在线观看| 久久精品国产自在天天线| av国产久精品久网站免费入址| 99国产精品免费福利视频| 99九九线精品视频在线观看视频| 亚洲欧美成人精品一区二区| 我要看日韩黄色一级片| 亚洲久久久国产精品| 国产高清有码在线观看视频| 亚洲中文av在线| 国产免费视频播放在线视频| 大香蕉久久网| 久久 成人 亚洲| 色综合色国产| 大片免费播放器 马上看| 99视频精品全部免费 在线| 六月丁香七月| 看十八女毛片水多多多| 午夜福利视频精品| 亚洲av二区三区四区| 国产精品三级大全| 亚洲精华国产精华液的使用体验| 久久ye,这里只有精品| 亚洲国产精品999| 视频中文字幕在线观看| 欧美老熟妇乱子伦牲交| xxx大片免费视频| 亚洲精品一区蜜桃| 欧美bdsm另类| 老师上课跳d突然被开到最大视频| 少妇的逼好多水| 国产成人精品一,二区| 亚洲欧美精品专区久久| 国产亚洲一区二区精品| 只有这里有精品99| 亚洲欧美清纯卡通| 午夜精品国产一区二区电影| 美女主播在线视频| 极品教师在线视频| 亚洲成人中文字幕在线播放| 嘟嘟电影网在线观看| 成人黄色视频免费在线看| 久久久久久久大尺度免费视频| 精华霜和精华液先用哪个| 九九爱精品视频在线观看| 又大又黄又爽视频免费| 精品人妻一区二区三区麻豆| 国产欧美另类精品又又久久亚洲欧美| 精品久久久噜噜| 夫妻午夜视频| 亚洲无线观看免费| 观看美女的网站| 伦理电影大哥的女人| 97热精品久久久久久| 日本黄大片高清| 日韩 亚洲 欧美在线| 久久久午夜欧美精品| 国产v大片淫在线免费观看| 亚洲欧美成人综合另类久久久| av在线app专区| 亚洲av福利一区| 人妻 亚洲 视频| 久久人人爽av亚洲精品天堂 | 男女免费视频国产| 国产视频内射| 黑人高潮一二区| 国产在线视频一区二区| 丝袜脚勾引网站| 哪个播放器可以免费观看大片| 男女无遮挡免费网站观看| 啦啦啦中文免费视频观看日本| 亚洲精品aⅴ在线观看| 亚洲美女搞黄在线观看| 激情 狠狠 欧美| 欧美三级亚洲精品| 特大巨黑吊av在线直播| 国国产精品蜜臀av免费| 欧美区成人在线视频| 免费看av在线观看网站| 2018国产大陆天天弄谢| 五月开心婷婷网| 一级黄片播放器| 最近最新中文字幕免费大全7| 亚洲久久久国产精品| 亚洲欧美中文字幕日韩二区| 搡女人真爽免费视频火全软件| 91精品一卡2卡3卡4卡| 毛片女人毛片| 少妇丰满av| 国产精品人妻久久久久久| 高清欧美精品videossex| 欧美日韩精品成人综合77777| 久热这里只有精品99| 一级毛片我不卡| 亚洲天堂av无毛| 日韩电影二区| 好男人视频免费观看在线| 中文欧美无线码| 国产色婷婷99| 18禁在线无遮挡免费观看视频| 亚洲精品,欧美精品| 国产色婷婷99| 18禁在线无遮挡免费观看视频| 黄片无遮挡物在线观看| h视频一区二区三区| 亚洲国产最新在线播放| 哪个播放器可以免费观看大片| 成人午夜精彩视频在线观看| 亚洲va在线va天堂va国产| 亚洲成人中文字幕在线播放| 少妇的逼水好多| 久久国内精品自在自线图片| 婷婷色综合大香蕉| 亚洲精华国产精华液的使用体验| 国产精品熟女久久久久浪|