• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the operation parameters on the Fischer-Tropsch synthesis in fluidized bed reactors☆

    2018-05-25 19:07:44XiaolaiZhangWeixinQianHaitaoZhangQiwenSunWeiyongYing

    Xiaolai Zhang ,Weixin Qian ,Haitao Zhang ,Qiwen Sun ,Weiyong Ying ,*

    1 Engineering Research Center of Large Scale Reactor Engineering and Technology,Ministry of Education,State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China

    2 State Key Laboratory of Coal Liquefaction and Coal Chemical Technology,Shanghai 201203,China

    1.Introduction

    Fischer-Tropsch synthesis(FTS)is demonstrated as a feasible and environmentally benign way for production of liquid to fuels from coal,natural gas and biomass via synthesis gas.Also,the synthetic fuels have high quality due to the absence of aromatics,sulfur,and nitrogen compounds[1].It is a strategic alternative technology for liquid fuels and chemical materials in case of oil shortage and more stringent environmental legislation on liquid fuels[2].

    Much attention has been paid for the development of FTStechnology in the pastfewyears.The FTS process is ra there xo thermal with a heat of reaction of about 170 kJ·mol-1[3],So,the sufficient capability of the heat removal is a critical point for developing the commercial F-T reactors.Increased temperature results in higher methane production and faster catalyst deactivation due to sintering and coking.In general,there are five main types of commercial F-T reactors are commonly used,which are known as multi tubular fixed-bed reactor(MTFBR),slurry phase reactor(SPR),circulating fluidized-bed reactor(CFBR),fluidized-bed reactor(FBR),and micro channel or micro structured reactors(MR)[4-11].

    It is generally considered that the main advantages of the MTFBR are easy scaling-up,less need for expensive demonstration units,and for separation of catalyst and liquid product,lower catalyst attrition and higher catalyst load[12].The big challenge in applying the fixed-bed technology is heat-removal.Krishna and Sie[13,14].mentioned that MTFBR cannot prevent axial and radial temperature profiles near the inlet of the reactor.Fixed-bed technology also imposes limits on the minimum catalyst particle size that can be applied.When the particles are very small,it will lead to a high pressure drop,While the particles are very large,the selectivity and activity will down.A clear advantage of a slurry-phase reactor is the well-mixed liquid phase resulting in nearly isothermal operation[3].Maret to and Krishna[15]showed that back mixing in slurry bubble-column reactors leads to significant decreases in conversion per pass and reactor productivity.CFBR has a much higher capacity than MTFBR and MR,but the circulation of a large amount of catalystresults in considerable compression of the recycle gas associated with capital and operation costs[16].As fluidized beds have excellent heat transfer,easy heat removal and temperature uniformity,the main advantages of FBR are lower operation and constructing costs and higher capacities[9].

    Because of the complexity of the FTS process,mathematical modeling and numerical simulation have been a focus of its researches for many years,among which a number of models have been proposed on fixed bed reactors,SPRs and MRs.These model can be roughly divided into three categories:(a)plug flow model[17,18];(b)pseudo-homogeneous models(both 1D[8,19-24]and 2D[5,25]);(c)computational fluid dynamics(CFD)models,with or without the FTS chemistry[11,26-28].However,studies on the simulation of FBRs are seldom reported.Fernandes[29,30]proposed a mathematical model of FBR to describe the effect of several operation parameters on syngas conversion and the distribution of hydrocarbons.In order to simulate the combination of fluidized and fixed bed membrane reactors,a one-dimensional heterogeneous model is made up based on the kinetics of the main reactions,the mass transfer equations and the heat transfer equations.The Sasol R&D group developed a pilot plant for the FTS[31],reporting similar selectivity and higher conversion than those in commercial CFBR.

    CFD models are advantageous for the optimization of many complex processes,especially for the gas-solid flow in FRBs with close and complex interactions between the two phases and the heat and mass transfer,etc.The underlying physico chemical processes can be clearly understood through CFD simulation[32-36].The Eulerian-Eulerian models combined with the kinetic theory are the most popular method for engineering simulation of gas-solid flow.The main features of the flows in fluidized beds has been obtained by either laminar or turbulence models[37-40].The turbulent interactions between the solid and the gas phase have been elucidated by several authors[41-43].Recently,the turbulence model enforced in the CFD code MFIX(Multiphase Flow with Inter phase Exchanges)developed by Simonin's group has predicted dilute gas-solid flows under an appropriate boundary conditions reasonably[44-46].

    In this work,the FTS process in a three-dimension(3D) fluidized bed reactor was numerically studied aiming to get a better description.Thus,a 3D model coupled with gas-solid momentum,mass and heat transport,and F-T reactions was employed.The operation parameters on the production rates,the temperature distribution and the selectivity were analyzed based on the simulations in this model.

    2.Models and Methods

    A 3D computational fluid dynamics(CFD)model coupled with FTS reaction which considered the fluid flow,the heat transfer and the mass transfer mechanism was employed in this paper.

    2.1.Conservation equations

    The gas-solid flow conservation equations is described briefly in Table 1,and more details can be found in[45,47].

    2.2.Constitutive correlations

    Constitutive correlations are required for closing the governing conservation equations.The gas-phase stress tensor always uses the Newtonian closure.The gas-solid momentum exchange coefficient(i.e.,the inter phase drag coefficient),which is a crucial parameter for the successful simulation,is taken the same as Syamlal et al.[47,48].The solid stress tensor is calculated from the kinetic theory of the granular[49],using two completely different models,for viscous shearing and plastic regimes[47,48],where an algebraic expression of the granular temperature Θmis used.The solid pressure,which considers the normal forces because of particle-particle interactions[47,49-52],includes a kinetic and a collisional term.The shear viscosity of particles is consisted of three parts,including the collision viscosity,the frictional viscosity and the kinetic viscosity[22].

    A transport equation for static enthalpy is used to describe the heat flux in gas phase,and in solid phase the heat transfer is considered similar to a continuous phase[53].The inter phase heat transfer resistance is regarded to be associated with the heat transfer coefficient and the temperature difference[54](Table 2).

    2.3.Chemical model

    There are many different authors proposed the kinetic mechanism during the F-T synthesis,which can be roughly divided into two categories:one is depended on the Langmuir Hinshel wood Hogan Watson(LHHW)model[55,56],while the other one is based on the power law of chemical rate expression[57,58].The mechanism of the Fe-HZSM5 Bifunctional Catalyst proposed by Marvast et al.[58].was adopted in this study.It was supposed that the F-T reaction include CO,H2,CO2,H2O,CH4,C2H4,C2H6,C3H8,n-C4H10,i-C4H10,and C5+species.The following reactions(1)-(8)were considered as dominating F-T reactions.

    The reactions(1)-(7)are a general form for the rate equations.It is a function of the yield pressures of hydrogen and carbon monoxide,are expressed as:

    where P is partial pressure and k is the apparent rate constant.Table 3 presented the kinetic parameters.

    Table 1 Conservation equations([45,47])

    Table 2 Constitutive relations([45,47])

    Table 3 Kinetic parameters for FTS reactions in Eqs.(1)-(7)

    The water-gas shift(WGS)reaction is reversible as shown in Eq.(8).The corresponding reaction rate is presented as follows[59]:

    For a water-gas shift reaction,KWGSis the equilibrium constant,which is:

    3.Simulation Setup

    3.1.Reactor geometry

    The simulated fluidized bed is described in Fig.1,the inner diameter of which is 30 mm and the height is 500 mm.

    The synthesis gas enters from the bottom of the fluidized bed which consists of CO and H2.The Fischer-Tropsch synthesis takes place over the iron based catalyst powder,the effect is reflected on the reaction activation energy.After the reactions,the products and reactant leave from the outlet in the upper part of the reactor.All experiments were carried out at constant pressure conditions.

    3.2.Numerical method and parameters

    In this study,the MFIX,which is described in Section 2,is used.The discretization of all the governing non-linear partial differential equations is accomplished using the finite volume method on the staggered grid.It is found that the grid size of 1.0 mm×1.0 mm×2.0 mm is sufficient for neglecting the numerical errors due to the grid resolution.

    Fig.1.Schematic diagram of the simulated fluidized bed reactor.

    To solve the transport and reaction for the model a suitable time step should be used,to ensure the accuracy and stability during the calculation,was 0.00001 s in this study.The segregated solution strategy has been adopted to prevent the iterative divergent.In order to eliminate the pressure-velocity coupling,The traditional SIMPLE method was used.Convective fluxes of the transport equations were all approximated by the Super bee spatial scheme with a secondorder accuracy.Linear discretization for the pressure was adopted.A convergence criterion of 1×10-5was taken here for all the transport equations.

    3.3.Initial and boundary conditions

    The gas distribution is assumed to be uniform at the reactor entrance.In order to reach the desired bed expansion,the flow rate was regulated based on the particle size.The inlet gas temperature is fixed ata given value,and the reactor wall was assigned a series of given temperatures in different simulations.The gas phase used a no slip boundary and the solid phase used a free slip boundary.The outlet used a condition of the pressure outlet.Table 4 specifies the parameters in these initial and boundary conditions and the particle properties.

    Table 4Operating conditions and material properties of the simulated fluidized bed reactor

    4.Results and Discussion

    4.1.Model validation

    The data of the simulations and the experiments of Rahmati et al.[57]about the methane production rates are plotted in Fig.2.Compared with the experimental data,the average relative error of simulation results is 27.0%,which is in qualitatively agreement to the experiment.Considering the difference of the reaction conditions between the fixed bed reactor in the literature and in the fluidized bed reactor in this study,the simulation results are still reasonable for a qualitative study on the effective of major operation parameters,though quantitative relationships can hardly be found further.

    Fig.2.Methane production rates obtained from the simulation and from literature(Rahmati[57]).

    4.2.Effect of reaction temperature

    During the FT reactions,the surface temperature of the contact mixture must be kept at the required level,and the process is rather exothermal,therefore the cooling mode is vital to the FTS process.As seen in Fig.3(a),the effects of wall cooling temperature(300-556 K)on the production selectivity,which is defined as Xi/Xprodcuction(Xiand Xproductionare the mass flow rate of the ith product and all products leaving the reactor,respectively).The selectivity of C5+decreases quickly with the rise of the cooling temperature,especially when temperature exceeds 450 K.The C5+selectivity is 56.4%at 300 K of the cooling temperature.And to 550 K,it is less than 20%while the light production,especially methane,which is not the product of choice in modern FTS[31]increases when the cooling temperature was raised,especially after it exceeded 450 K.The phenomenon was also observed by Zhu et al.[60].

    Fig.3.Effect of the cooling temperature on the production selectivity and the production rates(inlet gas temperature=560 K,inlet H2:CO mole ratio=1.13,P=1700 kPa,D p=200 μm).

    Fig.4 presents the axial temperature distribution at different cooling temperatures for the gas phase.In general,with the growing of the cooling temperature the average bed temperature in the reactor rises,which causes all production rates to increase with the rising of the cooling temperature(see Fig.3(b)).Based on the Arrhenius equation,the value of the activation energy of Eq.(1)is greater than the activation energy of Eq.(7),the increase of methane production with the temperature could be much faster than the methane production of C5+.This might be the reason that the C5+selectivity sharply decreased when reaction temperature was raised.Other production selectivity has little change with the temperature within 10.0%.It should be noted that the cooling temperature is different from the average bed temperature in corresponding condition.For the cooling temperatures of 450.0 K and 556.0 K,the temperature differences are 45.0 K and 69.3 K,which are 1.22 times of those for the cooling temperatures of 500.0 K and 520 K.Larger temperature differences must lead to more energy loss.

    Fig.4.The axial temperature distribution of gas phase at different cooling temperature.(Inlet gas temperature=560 K,inlet H2:CO mole ratio=1.13,P=1700 kPa,D p=200 μm).

    4.3.Effect of particle size

    Fig.5.Effect of catalyst particle diameter on the production selectivity and the production rates(inlet gas temperature=560 K,inlet H2:CO mole ratio=1.13,P=1700 kPa,bed height=50 cm,cooling temperature=520 K).

    The FTS product distributions of the catalyst with the different particle diameters(Dp)are shown in Fig.5.For C5+production,with the rise of the particle diameter the selectivity firstly grows,the maximum value of 33.4%is achieved at 200 μm diameter,which then slightly decreases.While the change trend of the methane production rate is opposite to it.The phenomena can be clearly explained by the axial temperature distribution of the gas phase as plotted in Fig.6.It illustrates that the axial temperature difference is larger for smaller particle,which reaches the largest value of 65.0 K for 100 μm particles,and the lowest value of 7.1 Kfor200μmparticles.The peak value of the temperature for100μm particles is also the maximum at 588.3 K.Because the FTS is a strong exothermic reaction,the small particles tend to aggregate,which leads to poor heat transfer.Meanwhile,smaller particles have higher reaction activity[61].These cause higher solid and gas temperature and uneven temperature distribution.As observed above,when the reaction temperature is high,the C5+production rate is low.This may explain that with the growth of the catalyst particle diameter,the production rates sharply increase and then decrease,as shown in Fig.5(b).

    4.4.Effect of superficial gas velocity

    Fig.6.Axial gas temperature distribution with different diameter catalyst particle(inlet gas temperature=560 K,inlet H2:CO mole ratio=1.13,P=1700 kPa,bed height=50 cm,cooling temperature=520 K).

    Fig.7.The production selectivity versus catalyst particle diameter(inlet gas temperature=560 K,inlet H2:CO mole ratio=1.63,P=1700 kPa,bed height=50 cm,cooling temperature=520 K).

    The effect of superficial gas velocity is given in Fig.7.The superficial gas velocity greatly effects on the production rates.As the super ficialgas velocity is 8 times lower than Umf,the product rates are nearly linear growth when the superficial gas velocity is growing,then decreases.For a fluidized bed reactor,the rate-limiting step is usually decided by mass transport or surface reaction kinetics[62,63].It can be concluded that when the syngas velocity is 8 times lower than Umf,the mass transport limits the process,but when velocity is 8 times over Umf,the limitation is the reaction kinetics.When the syngas velocity is 8 times less than Umf,the C5+selectivity and its production rate show the opposite trend shown in Fig.7(a).

    Fig.8 shows the axial gas temperature distribution for different superficial gas velocities.For smaller gas velocity,bed temperature is lower,which may explain the above phenomena.As the superficial gas velocity grows,the gas residence time is shorter,which will reduce the reaction rate and the generation of the heat.Moreover,the heat transfer rate among the gas and solid phase is higher.

    Fig.8.Axial temperature distribution for different superficial gas velocity(inlet gas temperature=560 K,inlet H2:CO mole ratio=1.63,P=1700 kPa,bed height=50 cm,cooling temperature=520 K).

    4.5.Effect of bed height

    Fig.9.Effect of bed height on the selectivity and rate of the products(inlet gas temperature=560 K,inlet H2:CO mole ratio=1.13,P=1700 kPa,D p=200 μm,superficial gas velocity=8U mf,cooling temperature=520 K).

    Fig.9 illustrates the effects of bed height on FTS products.Methane,propane,ethane and C5+production rates slightly increase at the average rates of about 5.0 × 10-5mol·cm-3·s-1per cm bed height.Higher bed height can provide more particle-surface area,which leads to more heat generation and bed temperature rise.Thus,the selectivity of C5+slightly declines when the bed height is increased,while the methane selectivity has increased accordingly as shown in Fig.8(a).Other production selectivity has less change.

    5.Conclusions

    The FTS process in a fluidized bed was simulated using the CFD code MFIX for gas-solid flow and heat and mass transfer,together with a reaction kinetic model of Marvast et al.[58].The effect of the operation parameters was investigated.It was found that the effective reaction rate and selectivity depended on the cooling temperature(reaction temperature),the particle diameter,the superficial gas velocity and the bed height.The order of significance of the effects is:the reaction temperature>the particle diameter>the super ficial gas velocity>the bed height.The selectivity of C5+decreased sharply with the rising of the reaction temperature,but less affected by other reaction parameters.The results of the simulations emphasize that temperature control is important.Product yields are dependent on operating conditions especially the temperature.

    Generally,the continuum model used in this study agrees reasonably with the experiments in terms of reaction rate and C5+selectivity.However,improvements are required for the model to further investigate the fluidized bed reactors for FTS process.

    Nomenclature

    Cpspecific heat capacity,kJ·mol-1·K-1

    e restitution coefficient

    g gravity,m·s-2

    gomradial distribution function at contact

    H heat transfer,kJ·mol-1

    I interaction force representing the momentum transfer,m·s-2

    P phase pressure,Pa

    Rlthe inter phase mass trans ferterms between the gas and solid phase

    T the temperature,K

    U velocity component,m·s-1

    Xlnmass fraction of n species in the l th phase

    α volume fraction

    ΔH the heat of reaction,kJ·mol-1

    ??q conductive heat flux,kJ·mol-1

    δijKronecker Delta

    Θmthe granular temperature,K

    κ2solid granular conductivity,W·m-1·K-1

    μ,μbbulk viscosity,Pa·s

    μmshear viscosity,Pa·s

    ρ density,kg·m-3

    τijsecond-order stress tensor

    particle relaxation time,s

    collisional time-scale,s

    Subscripts

    g gas phase

    i,jindices to identify vector and tensor components

    l liguid phase

    m solid phase

    WGS water-gas shift

    [1]M.R.Rahimpour,M.H.Khademi,A.M.Bahmanpour,A comparison of conventional and optimized thermally coupled reactors for Fischer-Tropsch synthesis in GTL technology,Chem.Eng.Sci.65(23)(2010)6206-6214.

    [2]K.J.Woo,S.H.Kang,S.M.Kim,et al.,Performance of a slurry bubble column reactor for Fischer-Tropsch synthesis:Determination of optimum condition,Fuel Process.Technol.91(4)(2010)434-439.

    [3]R.M.de Deugd,F.Kapteijn,J.A.Moulijn,Trends in Fischer-Tropsch reactor technology—Opportunities for structured reactors,Top.Catal.26(1-4)(2013)29-39.

    [4]P.Narataruksa,S.Tungkamani,K.Pana-Sup pamassadu,et al.,Conversion enhancement of tubular fixed-bed reactor for Fischer-Tropsch synthesis using static mixer,J.Nat.Gas Chem.21(4)(2012)435-444.

    [5]X.P.Dai,P.Z.Liu,Y.Shi,et al.,Fischer-Tropsch synthesis in a bench-scale two-stage multitubular fixed-bed reactor:Simulation and enhancement in conversion and diesel selectivity,Chem.Eng.Sci.105(2014)1-11.

    [6]G.P.Laan,A.Beenackers,R.Krishna,Multicomponent reaction engineering model for Fe-catalysed Fischer-Tropsch synthesis in commercial scale bubble column slurry reactors,Chem.Eng.Sci.(1999)54.

    [7]S.T.Sie,R.Krishna,Fundamentals and selection of advanced Fischer-Tropsch reactors,Appl.Catal.A Gen.186(1)(1999)55-70.

    [8]N.Rados,M.H.Al-Dahhan,M.P.Dudukovic,Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors,Catal.Today 79(2003)211-218.

    [9]M.E.Dry,High quality diesel via the Fischer-Tropsch process—A review,J.Chem.Technol.Biotechnol.77(1)(2002)43-50.

    [10]L.C.Almeida,O.Sanz,J.D'olhaberriague,et al.,Micro channel reactor for Fischer-Tropsch synthesis:Adaptation of a commercial unit for testing micro channel blocks,Fuel 110(2013)171-177.

    [11]M.S.Shin,N.Park,M.J.Park,et al.,Computational fluid dynamics model of a modular multichannel reactor for Fischer-Tropsch synthesis:Maximum utilization of catalytic bed by micro channel heat exchangers,Chem.Eng.J.234(2013)23-32.

    [12]J.J.C.Geerlings,J.H.Wilson,G.J.Kramer,et al.,Fischer-Tropsch technology—From active site to commercial process,Appl.Catal.A Gen.186(1)(1999)27-40.

    [13]R.Krishna,S.T.Sie,Design and scale-up of the Fischer-Tropsch bubble column slurry reactor,Fuel Process.Technol.64(1)(2000)73-105.

    [14]S.T.Sie,R.Krishna,Fundamentals and selection of advanced Fischer-Tropsch reactors,Appl.Catal.A Gen.186(1)(1999)55-70.

    [15]C.Maretto,R.Krishna,Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis,Catal.Today 52(2)(1999)279-289.

    [16]B.Jager,M.E.Dry,T.Shingles,et al.,Experience with a new type of reactor for Fischer-Tropsch synthesis,Catal.Lett.7(1)(1990)293-301.

    [17]M.R.Rahimpour,S.M.Jokar,Z.Jamshidnejad,A novel slurry bubble column membrane reactor concept for Fischer-Tropsch synthesis in GTL technology,Chem.Eng.Res.Des.90(3)(2012)383-396.

    [18]L.C.Almeida,O.Sanz,D.Merino,et al.,Kinetic analysis and microstructured reactors modeling for the Fischer-Tropsch synthesis over a Co-Re/Al2O3catalyst,Catal.Today 215(2013)103-111.

    [19]Y.N.Wang,Y.Y.Xu,Y.W.Li,et al.,Heterogeneous modeling for fixed-bed Fischer-Tropsch synthesis:Reactor model and its applications,Chem.Eng.Sci.58(3)(2003)867-875.

    [20]M.R.Rahimpour,H.Elekaei,A comparative study of combination of Fischer-Tropsch synthesis reactors with hydrogen-perm selective membrane in GTL technology,Fuel Process.Technol.90(6)(2009)747-761.

    [21]M.Bayat,M.R.Rahimpour,B.Moghtaderi,Genetic algorithm strategy(GA)for optimization of a novel dual-stage slurry bubble column membrane configuration for Fischer-Tropsch synthesis in gas to liquid(GTL)technology,J.Nat.Gas Sci.Eng.3(4)(2011)555-570.

    [22]N.A.Mamonov,L.M.Kustov,S.A.Alkhimov,et al.,One-dimensional heterogeneous model of a Fischer-Tropsch synthesis reactor with a fixed catalyst bed in the isothermal granules approximation,Catal.Ind.5(3)(2013)223-231.

    [23]N.Moazami,H.Mahmoudi,K.Rahbar,et al.,Catalytic performance of cobalt-silica catalyst for Fischer-Tropsch synthesis:Effects of reaction rates on efficiency of liquid synthesis,Chem.Eng.Sci.134(2015)374-384.

    [24]N.Moazami,M.L.Wyszynski,H.Mahmoudi,et al.,Modelling of a fixed bed reactor for Fischer-Tropsch synthesis of simulated N2-rich syngas over Co/SiO2:Hydrocarbon production,Fuel 154(2015)140-151.

    [25]N.Park,J.R.Kim,Y.Yoo,et al.,Modeling of a pilot-scale fixed-bed reactor for ironbased Fischer-Tropsch synthesis:Two-dimensional approach for optimal tube diameter,Fuel 122(2014)229-235.

    [26]J.Na,K.S.Kshetrimayum,U.Lee,et al.,Multi-objective optimization of microchannel reactor for Fischer-Tropsch synthesis using computational fluid dynamics and genetic algorithm,Chem.Eng.J.313(2017)1521-1534.

    [27]Y.Li,G.Xie,T.Lei,et al.,A CFD model for gas uniform distribution in turbulent flow for the production of titanium pigment in chloride process,Chin.J.Chem.Eng.24(6)(2016)749-756.

    [28]S.Wang,B.Shao,R.Liu,et al.,Comparison of numerical simulations and experiments in conical gas-solid spouted bed,Chin.J.Chem.Eng.23(10)(2015)1579-1586.

    [29]F.A.N.Fernandes,E.M.M.Sousa,Fischer-Tropsch synthesis product grade optimization in a fluidized bed reactor,AIChE J.52(8)(2006)2844-2850.

    [30]M.R.Rahimpour,H.Elekaei,Optimization of a novel combination of fixed and fluidized-bed hydrogen-per mselective membrane reactors for Fischer-Tropsch synthesis in GTL technology,Chem.Eng.J.152(2)(2009)543-555.

    [31]M.E.Dry,Practical and theoretical aspects of the catalytic Fischer-Tropsch process,Appl.Cat al.A Gen.138(2)(1996)319-344.

    [32]X.Lan,C.Xu,G.Wang,et al.,CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors,Chem.Eng.Sci.64(17)(2009)3847-3858.

    [33]C.Wu,Y.Cheng,Y.Ding,et al.,CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking(FCC)process,Chem.Eng.Sci.65(1)(2010)542-549.

    [34]Q.Xue,T.J.Heindel,R.O.Fox,A CFD model for biomass fast pyrolysis in fluidized-bed reactors,Chem.Eng.Sci.66(11)(2011)2440-2452.

    [35]K.Papadikis,S.Gu,A.V.Bridgwater,CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors.Part B:Heat,momentum and mass transport in bubbling lf uidised beds,Chem.Eng.Sci.64(5)(2009)1036-1045.

    [36]K.Papadikis,S.Gu,A.V.Bridgwater,CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors:Modelling the impact of biomass shrinkage,Chem.Eng.J.149(1)(2009)417-427.

    [37]M.J.V.Goldschmidt,J.A.M.Kuipers,W.P.M.Van Swaaij,Hydrodynamic modelling of dense gas- fluidised beds using the kinetic theory of granular flow:Effect of coef ficient of restitution on bed dynamics,Chem.Eng.Sci.56(2)(2001)571-578.

    [38]S.Benyahia,H.Arastoopour,T.M.Knowlton,et al.,Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase,Powder Technol.112(1)(2000)24-33.

    [39]A.Almuttahar,F.Taghipour,Computational fluid dynamics of high density circulating fluidized bed riser:Study of modeling parameters,Powder Technol.185(1)(2008)11-23.

    [40]A.Neri,D.Gidaspow,Riser hydrodynamics:Simulation using kinetic theory,AIChE J.46(1)(2000)52-67.

    [41]S.Dasgupta,R.Jackson,S.Sundaresan,Turbulent gas-particle flow in vertical risers,AIChE J.40(2)(1994)215-228.

    [42]E.J.Bolio,J.L.Sinclair,Gas turbulence modulation in the pneumatic conveying of massive particles in vertical tubes,Int.J.Multiphase Flow 21(6)(1995)985-1001.

    [43]C.M.Hrenya,J.L.Sinclair,Effects of particle-phase turbulence in gas-solid flows,AIChE J.43(4)(1997)853-869.

    [44]J.He,O.Simonin,Non-equilibrium prediction of the particle-phase stress tensor in vertical pneumatic conveying,ASME 166(1993)253-263.

    [45]R.Garg,J.Galvin,T.Li,Open-source MFIX-DEMsoftware forgas-solids flows:PartI—Veri fication studies,Powder Technol.220(2012)122-137.

    [46]S.Benyahia,M.Syamlal,T.J.O'Brien,Evaluation of boundary conditions used to model dilute,turbulent gas/solids flows in a pipe,Powder Technol.156(2)(2005)62-72.

    [47]S.Benyahia,M.Syamlal,T.J.O'Brien,Study of the ability of multiphase continuum models to predict core-annulus flow,AIChE J.53.10(2007)2549-2568.

    [48]P.C.Johnson,R.Jackson,Frictional-collisional constitutive relations for granular materials,with application to plane shearing,J.Fluid Mech.176(1987)67-93.

    [49]C.Lun,S.B.Savage,D.J.Jeffrey,et al.,Kinetic theories of granular flow:Simple shear of inelastic particles and general deformations of nearly elastic particles,J.Fluid Mech.140(1984)223-256.

    [50]D.Gidaspow,L.Huilin,Collisional viscosity of FCC particles in a CFB,AIChE J.42(9)(1996)2503-2510.

    [51]L.Huilin,H.Yurong,D.Gidaspow,Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow,Chem.Eng.Sci.58(7)(2003)1197-1205.

    [52]D.G.Schaeffer,Instability in the evolution equations describing incompressible granular flow,J.Differ.Equ.66(1)(1987)19-50.

    [53]M.Syamlal,D.Gidaspow,Hydrodynamics of fluidization:Prediction of wall to bed heat transfer coefficients,AIChE J.31(1)(1985)127-135.

    [54]D.J.Gunn,Transfer of heat or mass to particles in fixed and fluidised beds,Int.J.Heat Mass Transf.21(4)(1978)467-476.

    [55]H.Atashi,F.Siami,A.A.Mirzaei,et al.,Kinetic study of Fischer-Tropsch process on titania-supported cobalt-manganese catalyst,J.Ind.Eng.Chem.16(6)(2010)952-961.

    [56]J.Yang,Y.Liu,J.Chang,et al.,Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst,Ind.Eng.Chem.Res.42(21)(2003)5066-5090.

    [57]M.Rahmati,M.Mehdi,M.Bargah-Soleimani,Rate equations for the Fischer-Tropsch reaction on a promoted iron catalyst,Can.J.Chem.Eng.79(5)(2001)800-804.

    [58]M.A.Marvast,M.Sohrabi,S.Zarrinpashne,et al.,Fischer-Tropsch synthesis:Modeling and performance study for Fe-HZSM5 bifunctional catalyst,Chem.Eng.Technol.28(1)(2005)78-86.

    [59]Y.N.Wang,Y.Y.Xu,H.W.Xiang,et al.,Modeling of catalyst pellets for Fischer-Tropsch synthesis,Ind.Eng.Chem.Res.40(20)(2001)4324-4335.

    [60]X.Zhu,X.Lu,X.Liu,et al.,Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2,SiO2,and SiC supported cobalt catalysts,Chem.Eng.J.247(2014)75-84.

    [61]G.Chabot,R.Guilet,P.Cognet,et al.,A mathematical modeling of catalytic milli- fixed bed reactor for Fischer-Tropsch synthesis:In fluence of tube diameter on Fischer Tropsch selectivity and thermal behavior,Chem.Eng.Sci.127(2015)72-83.

    [62]F.M.Dautzenberg,M.Mukherjee,Process intensification using multifunctional reactors,Chem.Eng.Sci.56(2)(2001)251-267.

    [63]P.Zhang,J.H.Duan,G.H.Chen,et al.,Effect of bed characters on the direct synthesis of dimethyl dichlorosilane in fluidized bed reactor,Sci.Rep.UK 5(2015)1-8.

    成年人午夜在线观看视频| 中文字幕人妻丝袜制服| bbb黄色大片| 黑人欧美特级aaaaaa片| 97人妻天天添夜夜摸| 男女午夜视频在线观看| 岛国毛片在线播放| av福利片在线| av国产精品久久久久影院| 下体分泌物呈黄色| 精品人妻在线不人妻| 99国产综合亚洲精品| 久久香蕉激情| 中文字幕最新亚洲高清| 亚洲精品在线美女| 国产一区二区三区综合在线观看| 国产熟女午夜一区二区三区| 国产在线精品亚洲第一网站| 国产精品久久久久久精品古装| 在线永久观看黄色视频| 这个男人来自地球电影免费观看| 两个人看的免费小视频| 激情视频va一区二区三区| 丰满的人妻完整版| 嫁个100分男人电影在线观看| 夫妻午夜视频| 日韩中文字幕欧美一区二区| 午夜福利,免费看| 日韩人妻精品一区2区三区| 久久久久国产一级毛片高清牌| 欧美乱码精品一区二区三区| av天堂在线播放| 久久香蕉国产精品| 热99re8久久精品国产| 亚洲 欧美一区二区三区| 一区二区三区激情视频| 久久久久精品人妻al黑| 亚洲熟女精品中文字幕| 我的亚洲天堂| 纯流量卡能插随身wifi吗| 高清视频免费观看一区二区| 两性夫妻黄色片| 制服人妻中文乱码| 国产亚洲一区二区精品| 老汉色av国产亚洲站长工具| 操出白浆在线播放| 欧美最黄视频在线播放免费 | 国产亚洲av高清不卡| 久久精品熟女亚洲av麻豆精品| 国产亚洲精品久久久久5区| 久久这里只有精品19| 国产精品电影一区二区三区 | 黄色片一级片一级黄色片| 亚洲 欧美一区二区三区| 欧美 日韩 精品 国产| 天堂动漫精品| 三级毛片av免费| 美女福利国产在线| 国产亚洲精品第一综合不卡| 久久人妻福利社区极品人妻图片| 中出人妻视频一区二区| 变态另类成人亚洲欧美熟女 | 女人高潮潮喷娇喘18禁视频| 18禁美女被吸乳视频| 中文字幕色久视频| 色婷婷久久久亚洲欧美| 波多野结衣av一区二区av| 俄罗斯特黄特色一大片| 欧美另类亚洲清纯唯美| 国产亚洲欧美98| 王馨瑶露胸无遮挡在线观看| 久久久国产欧美日韩av| 久久精品91无色码中文字幕| 精品久久久久久久久久免费视频 | 国产欧美日韩一区二区三区在线| 国产欧美亚洲国产| 99久久精品国产亚洲精品| 在线观看免费高清a一片| 日韩免费av在线播放| 亚洲熟妇熟女久久| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| 国产主播在线观看一区二区| 欧美成狂野欧美在线观看| 黄片播放在线免费| 伊人久久大香线蕉亚洲五| 美女高潮到喷水免费观看| bbb黄色大片| 亚洲av片天天在线观看| 国产男靠女视频免费网站| 深夜精品福利| 777久久人妻少妇嫩草av网站| 日日摸夜夜添夜夜添小说| 王馨瑶露胸无遮挡在线观看| 777久久人妻少妇嫩草av网站| 亚洲欧美日韩另类电影网站| 免费在线观看影片大全网站| 国产精品九九99| 久99久视频精品免费| 成人精品一区二区免费| 国产成人系列免费观看| 丝袜人妻中文字幕| 美女福利国产在线| av在线播放免费不卡| 中亚洲国语对白在线视频| 成人影院久久| 自线自在国产av| 国内毛片毛片毛片毛片毛片| √禁漫天堂资源中文www| 丝袜美足系列| 超色免费av| 欧美亚洲 丝袜 人妻 在线| 99久久精品国产亚洲精品| 黄色丝袜av网址大全| 黄色毛片三级朝国网站| 国产精品1区2区在线观看. | 老熟女久久久| 午夜福利欧美成人| 99精品欧美一区二区三区四区| 极品教师在线免费播放| 中文欧美无线码| 亚洲免费av在线视频| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩瑟瑟在线播放| 欧美激情 高清一区二区三区| 国产av又大| 一级毛片精品| 日韩 欧美 亚洲 中文字幕| 最近最新免费中文字幕在线| 91老司机精品| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 我的亚洲天堂| 丝瓜视频免费看黄片| 中文字幕人妻丝袜制服| 精品久久久久久久久久免费视频 | www.自偷自拍.com| 夜夜爽天天搞| 美女福利国产在线| 亚洲欧美色中文字幕在线| 一级,二级,三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 老汉色∧v一级毛片| 成人免费观看视频高清| 欧美中文综合在线视频| 91字幕亚洲| 日韩欧美免费精品| 黄色a级毛片大全视频| av线在线观看网站| 天堂中文最新版在线下载| 黑人猛操日本美女一级片| 在线观看www视频免费| 欧美日韩中文字幕国产精品一区二区三区 | 精品少妇一区二区三区视频日本电影| 日韩熟女老妇一区二区性免费视频| 首页视频小说图片口味搜索| 热re99久久精品国产66热6| 久久香蕉国产精品| 男女高潮啪啪啪动态图| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 日日爽夜夜爽网站| 精品人妻在线不人妻| 后天国语完整版免费观看| 热re99久久国产66热| 亚洲国产毛片av蜜桃av| 欧美乱妇无乱码| 中文字幕高清在线视频| 国产精品久久久人人做人人爽| 欧美乱妇无乱码| 久久午夜综合久久蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 欧美乱妇无乱码| 欧美乱码精品一区二区三区| 国产精品二区激情视频| 久久草成人影院| 黄网站色视频无遮挡免费观看| 美女高潮到喷水免费观看| 99久久综合精品五月天人人| 黄色 视频免费看| 久久中文字幕一级| 91老司机精品| 国产主播在线观看一区二区| 免费不卡黄色视频| 黑人巨大精品欧美一区二区mp4| 久久香蕉国产精品| 久久ye,这里只有精品| 大型黄色视频在线免费观看| 亚洲精品自拍成人| 亚洲自偷自拍图片 自拍| 亚洲精品一二三| 午夜老司机福利片| 成人特级黄色片久久久久久久| 女人久久www免费人成看片| 欧美一级毛片孕妇| 国产视频一区二区在线看| 岛国毛片在线播放| 黄色丝袜av网址大全| www.自偷自拍.com| 久久九九热精品免费| 欧美日韩国产mv在线观看视频| 人妻 亚洲 视频| 欧美人与性动交α欧美精品济南到| 80岁老熟妇乱子伦牲交| 午夜精品久久久久久毛片777| 亚洲va日本ⅴa欧美va伊人久久| 美女高潮喷水抽搐中文字幕| 大片电影免费在线观看免费| 日本五十路高清| 麻豆av在线久日| 真人做人爱边吃奶动态| 欧美午夜高清在线| 精品久久蜜臀av无| 天天躁夜夜躁狠狠躁躁| 成人手机av| 好看av亚洲va欧美ⅴa在| 午夜免费观看网址| 老司机午夜十八禁免费视频| 成人特级黄色片久久久久久久| 亚洲九九香蕉| 欧美精品av麻豆av| 国产亚洲精品第一综合不卡| 十八禁人妻一区二区| 色综合婷婷激情| 久久精品国产清高在天天线| 国产成人免费观看mmmm| 久久香蕉精品热| 91成年电影在线观看| 欧美国产精品一级二级三级| 亚洲 国产 在线| 夜夜爽天天搞| 香蕉久久夜色| videosex国产| 成人18禁高潮啪啪吃奶动态图| 十八禁高潮呻吟视频| 在线观看免费日韩欧美大片| 久久久久国产精品人妻aⅴ院 | 日日夜夜操网爽| 免费黄频网站在线观看国产| 日韩有码中文字幕| 黑人巨大精品欧美一区二区mp4| 俄罗斯特黄特色一大片| 看片在线看免费视频| 国产精品国产av在线观看| 精品一区二区三区四区五区乱码| 国产一区二区三区视频了| 51午夜福利影视在线观看| 免费观看精品视频网站| 一进一出好大好爽视频| 亚洲国产中文字幕在线视频| 精品亚洲成a人片在线观看| 国产精品成人在线| 777久久人妻少妇嫩草av网站| 久久国产精品大桥未久av| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三| 两人在一起打扑克的视频| 超碰97精品在线观看| 男女下面插进去视频免费观看| 久久 成人 亚洲| 午夜福利一区二区在线看| 亚洲欧美激情综合另类| 少妇粗大呻吟视频| 超色免费av| 亚洲国产精品合色在线| 叶爱在线成人免费视频播放| 99精品在免费线老司机午夜| 99精品欧美一区二区三区四区| 亚洲avbb在线观看| 久久国产乱子伦精品免费另类| 欧美乱妇无乱码| 激情在线观看视频在线高清 | 九色亚洲精品在线播放| 亚洲一码二码三码区别大吗| 国产精品久久久久成人av| 大香蕉久久网| 99精品在免费线老司机午夜| 99re6热这里在线精品视频| 免费久久久久久久精品成人欧美视频| 国产精品久久久av美女十八| 日韩一卡2卡3卡4卡2021年| 亚洲精品中文字幕在线视频| 18禁裸乳无遮挡免费网站照片 | 国产三级黄色录像| 免费在线观看日本一区| 国产免费av片在线观看野外av| 国产精品久久视频播放| 午夜福利影视在线免费观看| 久久久国产精品麻豆| 亚洲成a人片在线一区二区| 下体分泌物呈黄色| 国产成人精品久久二区二区91| 黑人操中国人逼视频| 91精品三级在线观看| av一本久久久久| tube8黄色片| 99久久国产精品久久久| 三上悠亚av全集在线观看| 又大又爽又粗| 老熟妇乱子伦视频在线观看| 亚洲七黄色美女视频| 亚洲午夜理论影院| 亚洲av电影在线进入| 怎么达到女性高潮| 久久久久精品人妻al黑| 人妻丰满熟妇av一区二区三区 | 成年女人毛片免费观看观看9 | 久久性视频一级片| 日韩中文字幕欧美一区二区| 久久亚洲真实| 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 精品久久久精品久久久| 国产精品自产拍在线观看55亚洲 | 少妇裸体淫交视频免费看高清 | 在线国产一区二区在线| 久久亚洲精品不卡| 在线观看免费午夜福利视频| 欧美精品亚洲一区二区| 老司机影院毛片| 成人18禁在线播放| 成人av一区二区三区在线看| 国产精品av久久久久免费| 美女扒开内裤让男人捅视频| 日韩中文字幕欧美一区二区| 国产一区二区三区在线臀色熟女 | www.熟女人妻精品国产| 超碰97精品在线观看| 亚洲人成77777在线视频| 成人影院久久| 久久国产乱子伦精品免费另类| 午夜精品在线福利| 成年人午夜在线观看视频| 亚洲av日韩精品久久久久久密| 美女 人体艺术 gogo| 中文字幕av电影在线播放| 身体一侧抽搐| 亚洲av电影在线进入| 国产极品粉嫩免费观看在线| 看片在线看免费视频| 在线视频色国产色| 久久性视频一级片| 美女国产高潮福利片在线看| 久久香蕉国产精品| 最近最新中文字幕大全电影3 | 2021天堂中文幕一二区在线观| 男人和女人高潮做爰伦理| 日本熟妇午夜| 国产高清视频在线观看网站| 亚洲欧美精品综合久久99| 人妻夜夜爽99麻豆av| 中亚洲国语对白在线视频| 免费无遮挡裸体视频| 亚洲av熟女| 日本熟妇午夜| 亚洲熟妇熟女久久| 成熟少妇高潮喷水视频| 免费人成视频x8x8入口观看| 亚洲av中文字字幕乱码综合| 一级a爱片免费观看的视频| 日本a在线网址| 精品久久久久久久久久久久久| 亚洲成人久久性| 99在线人妻在线中文字幕| av女优亚洲男人天堂| 国产精品国产高清国产av| а√天堂www在线а√下载| 熟妇人妻久久中文字幕3abv| 欧美激情在线99| 日韩精品中文字幕看吧| 中亚洲国语对白在线视频| 亚洲av二区三区四区| 日本 欧美在线| 午夜免费男女啪啪视频观看 | 一本久久中文字幕| 欧美激情久久久久久爽电影| 国产一区二区三区在线臀色熟女| 啦啦啦观看免费观看视频高清| 在线观看一区二区三区| 首页视频小说图片口味搜索| 成人国产一区最新在线观看| 国产精华一区二区三区| 岛国在线观看网站| 中文字幕熟女人妻在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕日韩| 少妇裸体淫交视频免费看高清| 午夜久久久久精精品| 色噜噜av男人的天堂激情| e午夜精品久久久久久久| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品三级大全| 日韩欧美在线二视频| 久久精品人妻少妇| 一本一本综合久久| 伊人久久大香线蕉亚洲五| 免费在线观看亚洲国产| 97人妻精品一区二区三区麻豆| 国产成人欧美在线观看| 热99在线观看视频| 两个人看的免费小视频| 国产精品三级大全| av专区在线播放| 久久精品国产亚洲av香蕉五月| 少妇的丰满在线观看| 亚洲精品在线美女| 久久久久久久精品吃奶| 18+在线观看网站| 国产国拍精品亚洲av在线观看 | 少妇高潮的动态图| 中国美女看黄片| 亚洲电影在线观看av| 亚洲成av人片免费观看| 小说图片视频综合网站| 久久九九热精品免费| 我的老师免费观看完整版| 欧美日韩一级在线毛片| 午夜影院日韩av| 老司机福利观看| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看| 黄色日韩在线| 久久国产精品影院| a级毛片a级免费在线| 国产精品永久免费网站| 精品久久久久久,| 欧美成狂野欧美在线观看| 香蕉久久夜色| 中文字幕人妻丝袜一区二区| 欧美一级毛片孕妇| 中文字幕av成人在线电影| 一本久久中文字幕| 色综合婷婷激情| 国产主播在线观看一区二区| 国产视频内射| 成人av一区二区三区在线看| 在线观看免费午夜福利视频| 亚洲美女黄片视频| 欧美国产日韩亚洲一区| 天堂√8在线中文| 免费av观看视频| 69人妻影院| 波野结衣二区三区在线 | 欧美一级a爱片免费观看看| 亚洲精品国产精品久久久不卡| netflix在线观看网站| 亚洲av第一区精品v没综合| 国产精品98久久久久久宅男小说| 亚洲成av人片免费观看| av天堂在线播放| 亚洲欧美精品综合久久99| 色综合亚洲欧美另类图片| 国产精品一区二区免费欧美| 久久久久国产精品人妻aⅴ院| 欧美性猛交黑人性爽| 人妻丰满熟妇av一区二区三区| 黑人欧美特级aaaaaa片| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器| 亚洲人成网站在线播放欧美日韩| 观看美女的网站| 中文字幕av在线有码专区| www.999成人在线观看| 国产aⅴ精品一区二区三区波| 国内揄拍国产精品人妻在线| 色视频www国产| 嫩草影视91久久| 免费看日本二区| 免费av毛片视频| 窝窝影院91人妻| 亚洲av一区综合| av天堂中文字幕网| 可以在线观看的亚洲视频| 欧美日本亚洲视频在线播放| 亚洲精品乱码久久久v下载方式 | 国产高清三级在线| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 午夜福利视频1000在线观看| 日韩欧美国产一区二区入口| 国产成人啪精品午夜网站| www.999成人在线观看| 中文资源天堂在线| 国产精品久久视频播放| 亚洲 国产 在线| 91麻豆av在线| 亚洲国产欧洲综合997久久,| 国产成+人综合+亚洲专区| 久久精品91无色码中文字幕| 好男人电影高清在线观看| 婷婷丁香在线五月| 国产精品一区二区三区四区久久| 国产伦在线观看视频一区| 久久精品91无色码中文字幕| 久久精品人妻少妇| 亚洲国产中文字幕在线视频| 国产黄a三级三级三级人| 日韩国内少妇激情av| 一边摸一边抽搐一进一小说| 久久欧美精品欧美久久欧美| 日本在线视频免费播放| 欧美一区二区国产精品久久精品| 激情在线观看视频在线高清| 午夜精品久久久久久毛片777| 欧美av亚洲av综合av国产av| 国产在线精品亚洲第一网站| 香蕉丝袜av| 中文亚洲av片在线观看爽| 成人性生交大片免费视频hd| 日韩成人在线观看一区二区三区| 九色国产91popny在线| 国产精品自产拍在线观看55亚洲| 麻豆成人av在线观看| 欧美日韩一级在线毛片| 男人舔女人下体高潮全视频| 99精品在免费线老司机午夜| 欧美激情在线99| 悠悠久久av| 久久草成人影院| 亚洲av免费在线观看| 亚洲午夜理论影院| 性色avwww在线观看| 又粗又爽又猛毛片免费看| 亚洲久久久久久中文字幕| 99在线人妻在线中文字幕| 亚洲最大成人中文| 久9热在线精品视频| 日韩成人在线观看一区二区三区| 日本一本二区三区精品| 日本免费a在线| 精品一区二区三区视频在线观看免费| 又爽又黄无遮挡网站| 美女高潮喷水抽搐中文字幕| 老司机深夜福利视频在线观看| 成人无遮挡网站| 国产爱豆传媒在线观看| 法律面前人人平等表现在哪些方面| www.999成人在线观看| 欧美绝顶高潮抽搐喷水| 好男人在线观看高清免费视频| 国产真实伦视频高清在线观看 | 久久久久久久午夜电影| 一个人看的www免费观看视频| 在线观看免费午夜福利视频| 久久亚洲精品不卡| 麻豆一二三区av精品| 99久久无色码亚洲精品果冻| 嫩草影视91久久| 成人18禁在线播放| 听说在线观看完整版免费高清| 九九在线视频观看精品| 夜夜夜夜夜久久久久| 午夜免费观看网址| 欧美+日韩+精品| 亚洲五月婷婷丁香| 亚洲自拍偷在线| 国产高清三级在线| av在线天堂中文字幕| 国产老妇女一区| 成年免费大片在线观看| 欧美黑人欧美精品刺激| 日本熟妇午夜| 日韩有码中文字幕| www.色视频.com| 久久久久免费精品人妻一区二区| 黄片大片在线免费观看| 丁香欧美五月| 国产精品野战在线观看| 最近最新免费中文字幕在线| 亚洲真实伦在线观看| 九色国产91popny在线| 搡老妇女老女人老熟妇| 一进一出抽搐gif免费好疼| 国产成人啪精品午夜网站| 国产精品爽爽va在线观看网站| 国产精品亚洲一级av第二区| 女人被狂操c到高潮| 哪里可以看免费的av片| 99国产精品一区二区三区| 亚洲欧美日韩高清专用| 亚洲片人在线观看| 91在线观看av| 亚洲av免费高清在线观看| 欧美bdsm另类| 亚洲国产欧美网| 日韩欧美精品免费久久 | 黄色视频,在线免费观看| 精品一区二区三区视频在线观看免费| 人妻久久中文字幕网| 国产一区二区在线av高清观看| 久久国产精品影院| 国产成人欧美在线观看| 亚洲精品粉嫩美女一区| 小说图片视频综合网站| 亚洲精品456在线播放app | 午夜免费观看网址| 内射极品少妇av片p| 熟女人妻精品中文字幕| 午夜免费观看网址| 伊人久久精品亚洲午夜| 亚洲人与动物交配视频| 黄片小视频在线播放| 色老头精品视频在线观看| 精品无人区乱码1区二区| 美女高潮喷水抽搐中文字幕| 手机成人av网站| 久久久久性生活片| 亚洲精品美女久久久久99蜜臀| 搞女人的毛片| 黄色片一级片一级黄色片| 亚洲av美国av| 久久久久国产精品人妻aⅴ院| 老司机午夜十八禁免费视频|