• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Ultrafine TbO1.81 and Tb2O3 Powders for Magneto-Optical Application

    2021-02-23 12:50:28IU
    人工晶體學報 2021年1期

    , ü , , , , IU

    (1.School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; 2.Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; 3.Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China; 4.Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China)

    Abstract:Ultrafine TbO1.81 and Tb2O3 powders were obtained from the pyrolytic precursor prepared via a wet chemical route using ammonium hydrogen carbonate (AHC) as the precipitant. The precipitation precursor has a chemical composition of hydrated terbium carbonate and exhibits one-dimensional nanorod morphology. The average width of the nanorods rises as the increase of AHC concentration. Calcining the precursor in air directly yields a round TbO1.81 nanopowder with an average particle size of ~140 nm through dehydration, decarbonation and particle growth processes. On the other hand, a Tb2O3 powder with a finer particle size of ~85 nm is reduced under flowing hydrogen atmosphere upon heating. The molar ratio of AHC to Tb3+ significantly affects the particle dispersion of final oxide products and the best molar ratio for the synthesis of well dispersed powder is 1∶1. The bandgap energies of TbO1.81 and Tb2O3 are ~1.67 eV and 5.20 eV, respectively.

    Key words:ultrafine powder; Tb2O3; TbO1.81; co-precipitation method; magneto-optical effect; morphology

    0 Introduction

    As is well known, the optical qualities of transparent ceramic materials generally depend on the performances of the starting particles, including purity, size, dispersion, morphology, et al. Up to now, the synthesis routes for terbium oxide powder mainly include combustion, sol-gel, chemical precipitation, and solvent extraction[18-20]. Among these methods, the wet chemical method has been proved to be a good way for the processing of readily sinterable particles as the starting materials in pore-free ceramic manufacture[21-23]. Saito et al[24]employed ammonium hydrogen carbonate as the precipitant to prepare the ultrafine Y2O3powder, with which the vacuum-sintered body presented good transparency even though without sintering additive. We synthesized red (Gd,Ln)2O3∶Eu(Ln=Y,Lu) phosphor powders by a co-precipitation method and studied compositional effects on photoluminescence[25]. With these sinterable particles, transparent red-light-emitting ceramics were subsequently fabricated, which exhibit potential application in the optical field[26].

    In the present work, ammonium hydrogen carbonate was utilized as the precipitant for the synthesis of ultrafine TbO1.81and Tb2O3particles. The effects of precipitant concentration and calcination atmosphere (air/hydrogen) on the properties of precipitation precursors and oxidation/reduction products were systematically investigated by X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), laser diffraction particle size analysis (LDPSA), thermogravimetry (TG), and UV-Vis absorption spectroscopy.

    1 Experimental

    The raw materials of Tb(NO3)3·6H2O (99.95% purity, Shanghai Diyang Chemical Co., Ltd., Shanghai, China) and ammonium hydrogen carbonate (AHC; AR pure, Shanghai Macklin Biochemical Co., Ltd., Shanghai, China) were respectively dissolved by distilled water to prepare 0.3 mol/L Tb(NO3)3solution as the mother liquor and 1.5 mol/L AHC solution as the precipitant. White precipitation was obtained by dropwise addition of AHC precipitant into Tb(NO3)3mother liquor at a rate of ~4 mL/min under mild stirring at ~25 ℃. The adding AHC content was metered by selected molar ratio (R) of AHC to Tb3+from 1 to 4. After aging for 24 h, the resulting suspension was separated by centrifugation and repeatedly washed using distilled water and absolute ethanol to remove byproducts. The centrifugal product was dried at 90 ℃ over 12 h and was then lightly ground in an agate mortar. For comparison, the obtained precursor powder was calcined in a tubular furnace at 1 000 ℃ for 3 h under flowing air and hydrogen (~150 mL/min), respectively.

    The chemical composition of precipitation precursor was qualitatively characterized by Fourier transform infrared spectroscopy (FT-IR; Model Nicolet 6700, Thermo Fisher Scientific, Massachusetts, USA). The phase structures of the products were determined by X-ray diffraction (XRD; Model D8 Advance Davinci, Bruker, Karlsruhe, Germany) using nickel-filtered Cu Kαradiation as the incident X-ray source in the 2θrange of 5°~80°. The precursor sample was filled in a small alumina crucible and subjected to thermogravimetric analysis (TG; Model Diamond, PerkinElmer, Massachusetts, USA) in air at the ramp rate of 10 ℃/min up to 1 200 ℃. A field emission scanning electron microscope (FE-SEM; Model S-4800, Hitachi, Tokyo, Japan) was used to observe the particle morphologies. The dispersion of the calcination products was detected by laser diffraction particle size analysis (LDPSA, Model ZS90, Malvern Instruments, Malvern, UK). The absorption spectra of the calcination products were determined by an UV-Vis spectrophotometer (Model Lambda 950, Perkin-Elmer, Shelton, USA) in the wavelength range from 200 nm to 800 nm.

    2 Results and discussion

    Fig.1 FT-IR spectrum of the as-synthesized precipitation precursor

    Fig.1 displays the FT-IR spectrum of the as-synthesized precipitation precursor prepared atR=1 with an aging time of 24 h. This sample possesses characteristic hydrated carbonate structure. The broad peak at ~3 400 cm-1and the narrow absorption band at ~1 630 cm-1both arise from molecular water. The former derives from symmetricv1 and antisymmetricv3 vibrations and the latter is attributable to bending modev2. A group of absorption bands at ~1 500 cm-1, 1 420 cm-1, 1 090 cm-1, 850 cm-1, 760 cm-1, and 690 cm-1are diagnostic carbonate anion, among which the peaks at ~1 500+1 420 cm-1, ~1 090 cm-1, ~850 cm-1, and ~760+690 cm-1are caused by thev3,v1,v2, andv4 vibration modes, respectively[27].

    Fig.2 XRD patterns of the two typical precursors synthesized at R=1 and 4, and their calcination products calcined at 1 000 ℃ in air or hydrogen atmosphere

    Fig.2(a) shows X-ray diffraction patterns of the two precipitation precursors synthesized atR=1 and 4. The diffraction peak ofR=4 precursor is sharper than that ofR=1 counterpart, since a high AHC concentration would readily lead to better crystallinity. Their diffraction peaks can be both indexed to the orthorhombic rare-earth carbonate of Y2(CO3)3·nH2O (JCPDS No.24-1419) in accordance with the FT-IR result. The (202) diffraction of the precipitation precursor slightly shifts towards to the low angle side compared with the XRD standard card (2θ=19.18° for the precursor and 2θ=19.32° for the standard card), since the ionic radius of Tb3+(0.923 nm for CN=6) is larger than that of Y3+(0.090 0 nm for CN=6). Therefore, the chemical compositions of the two precursors can be both expressed as Tb(CO3)3·3.3H2O, where the number of crystal water in the precursor is determined from TG analysis.

    Fig.3 FE-SEM images of the precipitation precursors synthesized at R=1 and 4, and their corresponding calcination products obtained at 1 000 ℃ in air or hydrogen atmosphere

    As is well known, the hard agglomerates in ceramic particles is detrimental to sintering densification and frequently induce serious defects in the sintered body, such as big-size pores, crack-like cavities, white dots, and so forth. Particle size distribution in differential volume was found to be a good tool to effectively detect the agglomeration[30]. Fig.4 exhibits the LDPSA results of the oxidation and reduction products obtained fromR=1 and 4 precursors. The LDPSA curves of theR=1 and 4 oxidation products as well as theR=4 reduction product all show bimodal distribution with significantly large-size agglomerates. These particles may be hard to be densified into fully dense bulks by pressureless sintering, because this sintering technology frequently requires highly sinterable starting powder. However, theR=1 reduction product exhibits unimodal distribution and has an average particle size of ~331 nm, implying its relatively high sinterablity. With this excellent powder, the pore-free ceramic may be produced by advanced sintering technique (pressureless sintering plus hot isostatic pressure may be a good choice).

    Fig.4 LDPSA results of the calcination products in air and hydrogen atmosphere from R=1 and 4 precursors

    Fig.5 TG curve for the Tb(CO3)3·3.3H2O precursor

    Fig.5 shows the thermal decomposition processes of Tb(CO3)3·3.3H2O precursor. It can be seen from the TG curve that the carbonate converts into oxide via three main stages. The first step (below ~260 ℃) is primarily due to dehydration with a weight loss of -10.5%, which is close to the calculated weight loss of -10.6%. In the second stage (260~530 ℃), a weight loss of -19.5% (theoretical value: -20.5%) is assigned to decarbonation to yield the Tb2O2CO3and TbO1.81products. The final stage occurs above ~530 ℃, on which the pure TbO1.81product is produced by full decarbonation together with particle growth. The detailed thermal decomposition processes of the precursor can be described as follows:

    Optical properties of the TbO1.81and Tb2O3powders were studied by UV-Vis absorption spectra and the results are shown in Fig.6(a) and (b). A broad absorption band from 250 nm to 550 nm for the TbO1.81product was observed corresponding its brownish particle color to the naked eyes (inset in Fig.6(a)). On the other hand, the significant absorption band from 250~300 nm on Tb2O3absorption curve derives from 4f8→4f75d1transition of Tb3+caused by crystal-field interaction and spin-orbit coupling, while that from 350~400 nm originates from7F6→5D2,3transitions of Tb3+. The Tb2O3powder significantly absorbs the component of blue light in the visible spectrum and thus appears yellowish color (inset in Fig.6(b)).

    Fig.6 UV-Vis absorption spectra for the TbO1.81 and Tb2O3 powders and the plots of hν against (Ahν)2 obtained from their respective UV-Vis absorption spectra

    The relationship between the bandgap energy (Eg) and the absorption coefficient (α) can be expressed from Equation(1):

    αhν=B(hν-Eg)1/2

    (1)

    whereBis the absorption constant andhνis the incident photon energy. Hence a plot of (Ahν)2againsthνfrom the absorption spectra would result inEgvalue by extrapolation of the linear part of the curve to thex-axis. The estimated bandgap energies of TbO1.81and Tb2O3are ~1.67 and 5.20 eV, respectively (Fig. 6(c) and (d)). The bandgap value of Tb2O3powder is close to those of Ho2O3(~5.31 eV) and Er2O3(~5.29) particles[14,31]. Horoz et al[32]calculated the band structure of Tb2O3based on the density functional theory and estimated its energy gap to be ~3.82 eV. The mismatch between their computational result and our experimental value may ascribe to their underestimation on the size of the energy band gap in their adopted GGA (generalized gradient approximation) exchange-correlation function.

    3 Conclusion

    Ammonium hydrogen carbonate (AHC) is used as the precipitant for the synthesis of hydrated terbium carbonate precursor via a chemical precipitation route. A low AHC concentration leads to a precipitation precursor with clustered one-dimensional nanorod shape, while a higher AHC content results in dispersed nanorods with a broader width. After calcination in air, the precursor decomposes into a round TbO1.81powder via dehydration, decarbonation, and particle growth processes. On the other hand, the well dispersed Tb2O3powder can be reduced from theR=1 precursor upon heating under flowing hydrogen atmosphere. The bandgap energies of TbO1.81and Tb2O3are determined to be ~1.67 eV and 5.20 eV, respectively. The two oxide particles, especially the well-dispersed Tb2O3sample made in this work, may be utilized for the production of transparent Tb2O3ceramics for magneto-optical applications.

    成人午夜精彩视频在线观看| 香蕉丝袜av| 2021少妇久久久久久久久久久| 精品第一国产精品| 日韩av不卡免费在线播放| 18禁国产床啪视频网站| 欧美国产精品va在线观看不卡| 亚洲国产av影院在线观看| 大话2 男鬼变身卡| 天天躁夜夜躁狠狠躁躁| 一区二区三区乱码不卡18| 国产亚洲欧美精品永久| 国产国语露脸激情在线看| 久久99蜜桃精品久久| 亚洲中文av在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜福利视频在线观看免费| 激情视频va一区二区三区| 一本久久精品| 91在线精品国自产拍蜜月| 多毛熟女@视频| 五月伊人婷婷丁香| 男的添女的下面高潮视频| 亚洲,欧美精品.| 丝袜在线中文字幕| 亚洲精品日本国产第一区| 91久久精品国产一区二区三区| 亚洲欧美成人综合另类久久久| a级毛片在线看网站| 亚洲精品美女久久av网站| 天堂中文最新版在线下载| 国产精品麻豆人妻色哟哟久久| 亚洲av免费高清在线观看| 国产高清国产精品国产三级| 国产成人91sexporn| 香蕉国产在线看| 制服丝袜香蕉在线| 成年人免费黄色播放视频| 欧美成人精品欧美一级黄| 2021少妇久久久久久久久久久| 中国国产av一级| 69精品国产乱码久久久| 久久精品人人爽人人爽视色| 青春草视频在线免费观看| 99热这里只有是精品在线观看| 好男人视频免费观看在线| 一级a做视频免费观看| 日产精品乱码卡一卡2卡三| 亚洲精品美女久久久久99蜜臀 | 亚洲 欧美一区二区三区| 色吧在线观看| 欧美日韩成人在线一区二区| 国产精品久久久久久久电影| 久久亚洲国产成人精品v| 在线观看一区二区三区激情| 久久国产精品男人的天堂亚洲 | 亚洲av国产av综合av卡| a级毛片在线看网站| 欧美精品人与动牲交sv欧美| freevideosex欧美| 久久免费观看电影| 欧美精品一区二区大全| 成人免费观看视频高清| 久久精品国产亚洲av涩爱| 内地一区二区视频在线| 亚洲精品日本国产第一区| 亚洲 欧美一区二区三区| 色哟哟·www| 搡女人真爽免费视频火全软件| 亚洲av日韩在线播放| 亚洲,欧美,日韩| 97在线人人人人妻| 婷婷色av中文字幕| 欧美精品亚洲一区二区| 午夜福利影视在线免费观看| 国产免费视频播放在线视频| 国产成人免费观看mmmm| 精品国产一区二区久久| 最新的欧美精品一区二区| 18在线观看网站| 少妇被粗大猛烈的视频| 99久久中文字幕三级久久日本| 免费av中文字幕在线| 黄色毛片三级朝国网站| 五月天丁香电影| 黄网站色视频无遮挡免费观看| 久久久久久久大尺度免费视频| 亚洲国产成人一精品久久久| av在线app专区| 日韩电影二区| 免费在线观看完整版高清| 精品人妻熟女毛片av久久网站| 亚洲一码二码三码区别大吗| av在线观看视频网站免费| 18禁裸乳无遮挡动漫免费视频| √禁漫天堂资源中文www| 搡老乐熟女国产| 美女xxoo啪啪120秒动态图| 久久久精品94久久精品| 黑人猛操日本美女一级片| 国产综合精华液| 色视频在线一区二区三区| 久久久久久久精品精品| 亚洲 欧美一区二区三区| 精品少妇内射三级| 中文字幕精品免费在线观看视频 | 在线观看www视频免费| 亚洲国产精品国产精品| 高清视频免费观看一区二区| 色网站视频免费| 丝袜人妻中文字幕| 精品国产乱码久久久久久小说| av又黄又爽大尺度在线免费看| 国产精品一区二区在线不卡| 99久久综合免费| 男人爽女人下面视频在线观看| 99热这里只有是精品在线观看| 国产一级毛片在线| 久久久a久久爽久久v久久| 蜜桃在线观看..| 女性生殖器流出的白浆| 中文天堂在线官网| 国产熟女午夜一区二区三区| 爱豆传媒免费全集在线观看| www.熟女人妻精品国产 | 丁香六月天网| 熟妇人妻不卡中文字幕| 少妇精品久久久久久久| 国产精品人妻久久久久久| 免费在线观看完整版高清| 成人亚洲精品一区在线观看| 最近最新中文字幕大全免费视频 | 亚洲中文av在线| 精品福利永久在线观看| 亚洲av中文av极速乱| 哪个播放器可以免费观看大片| 日本wwww免费看| 又粗又硬又长又爽又黄的视频| av在线播放精品| 精品国产国语对白av| 久久99热6这里只有精品| 一级爰片在线观看| 欧美激情极品国产一区二区三区 | 中文字幕精品免费在线观看视频 | av播播在线观看一区| av福利片在线| 少妇人妻久久综合中文| 色婷婷av一区二区三区视频| 成人国产av品久久久| 视频在线观看一区二区三区| 只有这里有精品99| 波多野结衣一区麻豆| xxx大片免费视频| 亚洲内射少妇av| 中文字幕av电影在线播放| 最后的刺客免费高清国语| 大片免费播放器 马上看| 成人无遮挡网站| 午夜91福利影院| 日韩欧美精品免费久久| 精品国产国语对白av| 性色avwww在线观看| 成年人午夜在线观看视频| 国产精品久久久久久精品电影小说| 亚洲国产欧美在线一区| 国产男人的电影天堂91| 国产亚洲欧美精品永久| 亚洲精品国产色婷婷电影| 自拍欧美九色日韩亚洲蝌蚪91| 免费不卡的大黄色大毛片视频在线观看| 国产男人的电影天堂91| 2018国产大陆天天弄谢| 搡女人真爽免费视频火全软件| 桃花免费在线播放| av片东京热男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 爱豆传媒免费全集在线观看| 日韩中文字幕视频在线看片| 国产一区二区三区av在线| 视频在线观看一区二区三区| 午夜日本视频在线| 欧美人与性动交α欧美精品济南到 | 秋霞伦理黄片| 日韩精品免费视频一区二区三区 | 日韩视频在线欧美| 自线自在国产av| 精品亚洲成a人片在线观看| 晚上一个人看的免费电影| 在线观看www视频免费| 欧美成人午夜精品| 久久久国产欧美日韩av| 国产探花极品一区二区| av网站免费在线观看视频| 欧美人与性动交α欧美精品济南到 | 久久综合国产亚洲精品| 好男人视频免费观看在线| 天堂俺去俺来也www色官网| 中文字幕亚洲精品专区| 久久久国产欧美日韩av| 韩国精品一区二区三区 | 成人手机av| 看非洲黑人一级黄片| 日本vs欧美在线观看视频| 日韩大片免费观看网站| 狂野欧美激情性xxxx在线观看| 中文字幕精品免费在线观看视频 | 岛国毛片在线播放| 精品国产一区二区三区久久久樱花| 在线天堂最新版资源| 国产成人精品久久久久久| av播播在线观看一区| 最新中文字幕久久久久| 国产精品国产三级国产av玫瑰| 观看av在线不卡| 只有这里有精品99| 亚洲av成人精品一二三区| 久久人人爽人人爽人人片va| 在线观看国产h片| 丝袜美足系列| 老司机亚洲免费影院| 一级黄片播放器| 国产69精品久久久久777片| 在线观看人妻少妇| 欧美激情国产日韩精品一区| 国产免费现黄频在线看| 全区人妻精品视频| 午夜福利在线观看免费完整高清在| 天天躁夜夜躁狠狠久久av| 观看av在线不卡| 亚洲精品乱久久久久久| 久久人人爽人人爽人人片va| 中文字幕最新亚洲高清| 国产成人a∨麻豆精品| 在现免费观看毛片| 久久99热6这里只有精品| 在线亚洲精品国产二区图片欧美| 国产成人精品一,二区| 久久毛片免费看一区二区三区| 欧美+日韩+精品| 日韩熟女老妇一区二区性免费视频| 亚洲欧美精品自产自拍| 亚洲精品,欧美精品| 极品人妻少妇av视频| 制服人妻中文乱码| 亚洲 欧美一区二区三区| videossex国产| 精品少妇内射三级| 啦啦啦视频在线资源免费观看| 狂野欧美激情性xxxx在线观看| 亚洲精品av麻豆狂野| 欧美精品亚洲一区二区| 婷婷色av中文字幕| tube8黄色片| 成年人免费黄色播放视频| 欧美精品一区二区大全| 大香蕉久久成人网| 国产成人免费观看mmmm| 中文字幕最新亚洲高清| 久久精品国产综合久久久 | 亚洲在久久综合| 免费观看av网站的网址| 最新的欧美精品一区二区| 久久这里只有精品19| 中国国产av一级| 亚洲精品国产av成人精品| 热re99久久精品国产66热6| av在线老鸭窝| 在线精品无人区一区二区三| 欧美xxⅹ黑人| av免费观看日本| 亚洲内射少妇av| 亚洲婷婷狠狠爱综合网| 一级黄片播放器| 亚洲少妇的诱惑av| 亚洲,欧美精品.| 天堂中文最新版在线下载| 日本色播在线视频| 一级毛片 在线播放| 久久久久人妻精品一区果冻| 国产1区2区3区精品| a 毛片基地| 91成人精品电影| 久久精品国产亚洲av涩爱| 亚洲精品aⅴ在线观看| 人人妻人人澡人人看| 国产成人精品婷婷| 丝袜美足系列| 久久精品久久久久久久性| 精品亚洲成a人片在线观看| 国产又色又爽无遮挡免| 岛国毛片在线播放| 满18在线观看网站| 国产精品一国产av| 国产精品人妻久久久影院| 丰满迷人的少妇在线观看| 高清欧美精品videossex| 国产精品99久久99久久久不卡 | 97人妻天天添夜夜摸| 飞空精品影院首页| 国产xxxxx性猛交| 国产伦理片在线播放av一区| 日本黄大片高清| 免费不卡的大黄色大毛片视频在线观看| 色哟哟·www| 午夜免费鲁丝| 男人爽女人下面视频在线观看| 亚洲av在线观看美女高潮| 成年动漫av网址| 日韩熟女老妇一区二区性免费视频| 亚洲精品视频女| 亚洲av男天堂| 一区二区三区四区激情视频| 97精品久久久久久久久久精品| 男女无遮挡免费网站观看| 最近中文字幕2019免费版| 69精品国产乱码久久久| 91久久精品国产一区二区三区| 国产在视频线精品| 精品99又大又爽又粗少妇毛片| 欧美激情 高清一区二区三区| 亚洲av欧美aⅴ国产| 国产精品秋霞免费鲁丝片| 啦啦啦视频在线资源免费观看| 久久免费观看电影| 亚洲精品,欧美精品| 一级毛片电影观看| 成年人午夜在线观看视频| 亚洲av在线观看美女高潮| 久久久久精品人妻al黑| 母亲3免费完整高清在线观看 | 久久久久久久亚洲中文字幕| kizo精华| 男女边摸边吃奶| 免费在线观看黄色视频的| 久久午夜综合久久蜜桃| 久久人人爽人人片av| 国产精品不卡视频一区二区| 伦精品一区二区三区| 亚洲av国产av综合av卡| 国产成人免费观看mmmm| av电影中文网址| 精品国产一区二区三区四区第35| av.在线天堂| 日韩三级伦理在线观看| 久久久久久久精品精品| 国产成人欧美| 午夜福利乱码中文字幕| 欧美xxⅹ黑人| 亚洲av福利一区| 9热在线视频观看99| 日本91视频免费播放| 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 最近中文字幕高清免费大全6| 晚上一个人看的免费电影| 看免费av毛片| 国产精品成人在线| 久久午夜综合久久蜜桃| 少妇人妻精品综合一区二区| 成人综合一区亚洲| 99精国产麻豆久久婷婷| 精品久久久久久电影网| 丰满少妇做爰视频| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 国产欧美另类精品又又久久亚洲欧美| 热99国产精品久久久久久7| 十八禁高潮呻吟视频| 99精国产麻豆久久婷婷| 爱豆传媒免费全集在线观看| 亚洲国产色片| 国产毛片在线视频| 亚洲天堂av无毛| videossex国产| 精品国产一区二区三区四区第35| 日产精品乱码卡一卡2卡三| 大片免费播放器 马上看| 久久婷婷青草| 在线观看免费日韩欧美大片| 欧美日韩国产mv在线观看视频| 日韩电影二区| 91aial.com中文字幕在线观看| 精品国产国语对白av| 巨乳人妻的诱惑在线观看| 日本色播在线视频| av不卡在线播放| 国产不卡av网站在线观看| 亚洲国产精品专区欧美| 美女国产高潮福利片在线看| 亚洲精品美女久久av网站| 大码成人一级视频| 成人二区视频| 免费大片黄手机在线观看| 一本—道久久a久久精品蜜桃钙片| 少妇被粗大猛烈的视频| 欧美日韩视频高清一区二区三区二| 在线亚洲精品国产二区图片欧美| 精品熟女少妇av免费看| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 18在线观看网站| 久久青草综合色| 一个人免费看片子| 免费高清在线观看日韩| 日韩三级伦理在线观看| 另类精品久久| 插逼视频在线观看| 在线观看美女被高潮喷水网站| 久久久国产欧美日韩av| 在线看a的网站| 青青草视频在线视频观看| 乱码一卡2卡4卡精品| 成人毛片60女人毛片免费| 黄色怎么调成土黄色| 在线观看人妻少妇| 黄片无遮挡物在线观看| 一级毛片我不卡| 久久婷婷青草| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 久久久久久人妻| 日本黄大片高清| 啦啦啦视频在线资源免费观看| 秋霞伦理黄片| www.色视频.com| 麻豆精品久久久久久蜜桃| 肉色欧美久久久久久久蜜桃| 国产成人av激情在线播放| 久久精品国产亚洲av天美| 22中文网久久字幕| 看免费av毛片| 国产一区有黄有色的免费视频| 街头女战士在线观看网站| 99久国产av精品国产电影| 亚洲成av片中文字幕在线观看 | 蜜桃国产av成人99| 精品熟女少妇av免费看| 中国国产av一级| 亚洲国产精品国产精品| 国产黄色免费在线视频| av国产久精品久网站免费入址| 亚洲欧美色中文字幕在线| 只有这里有精品99| 男人爽女人下面视频在线观看| 99热这里只有是精品在线观看| 亚洲色图综合在线观看| 免费人成在线观看视频色| 视频区图区小说| 国产精品一二三区在线看| 亚洲欧美一区二区三区黑人 | 国产亚洲最大av| 国产精品蜜桃在线观看| 一级毛片黄色毛片免费观看视频| 高清av免费在线| 欧美成人精品欧美一级黄| 大香蕉久久成人网| 国产黄色视频一区二区在线观看| 一级毛片黄色毛片免费观看视频| 在线观看美女被高潮喷水网站| 天天影视国产精品| 亚洲天堂av无毛| 曰老女人黄片| 久久女婷五月综合色啪小说| 国产精品免费大片| 欧美成人午夜免费资源| 在线看a的网站| 久久久久久久精品精品| 色婷婷久久久亚洲欧美| 性高湖久久久久久久久免费观看| 国产日韩一区二区三区精品不卡| 在线观看一区二区三区激情| 一级毛片 在线播放| 韩国av在线不卡| 母亲3免费完整高清在线观看 | 最新中文字幕久久久久| 妹子高潮喷水视频| 亚洲av国产av综合av卡| av不卡在线播放| 欧美日本中文国产一区发布| 日韩制服骚丝袜av| 99热6这里只有精品| 伦理电影大哥的女人| 99热网站在线观看| 国产精品一二三区在线看| 免费女性裸体啪啪无遮挡网站| 综合色丁香网| 午夜免费观看性视频| 日韩三级伦理在线观看| 亚洲精品中文字幕在线视频| 亚洲第一区二区三区不卡| 国产av国产精品国产| 精品视频人人做人人爽| 精品国产乱码久久久久久小说| 日韩免费高清中文字幕av| 欧美人与善性xxx| 色吧在线观看| 另类精品久久| 亚洲国产精品一区二区三区在线| 制服人妻中文乱码| 久久婷婷青草| 亚洲成国产人片在线观看| 男人舔女人的私密视频| 欧美日韩成人在线一区二区| 日韩欧美精品免费久久| 99国产精品免费福利视频| 国产一区亚洲一区在线观看| 内地一区二区视频在线| 国产 一区精品| 99热6这里只有精品| 欧美xxⅹ黑人| 2021少妇久久久久久久久久久| 国产高清不卡午夜福利| 在线观看免费高清a一片| 欧美老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久 | 亚洲精华国产精华液的使用体验| 午夜激情久久久久久久| 天天影视国产精品| 日韩三级伦理在线观看| 精品亚洲乱码少妇综合久久| 日本av免费视频播放| 99热全是精品| 亚洲激情五月婷婷啪啪| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 午夜福利视频精品| 成年人免费黄色播放视频| 青春草亚洲视频在线观看| 一个人免费看片子| 亚洲av成人精品一二三区| 热re99久久精品国产66热6| 永久免费av网站大全| 午夜福利影视在线免费观看| 国产精品一区二区在线观看99| av国产精品久久久久影院| 亚洲国产精品999| 国产精品欧美亚洲77777| 在线观看一区二区三区激情| 一区二区av电影网| 狠狠精品人妻久久久久久综合| 国产福利在线免费观看视频| 亚洲四区av| 国产av码专区亚洲av| 欧美另类一区| 精品一区二区三卡| 日韩中文字幕视频在线看片| 丁香六月天网| 日韩大片免费观看网站| 午夜影院在线不卡| 欧美精品国产亚洲| 国产午夜精品一二区理论片| 成人漫画全彩无遮挡| 国产一区二区三区综合在线观看 | 国产日韩欧美在线精品| 一边亲一边摸免费视频| 国产又色又爽无遮挡免| 久久午夜综合久久蜜桃| 欧美激情 高清一区二区三区| 久久青草综合色| 日韩,欧美,国产一区二区三区| 人人妻人人添人人爽欧美一区卜| 久久久欧美国产精品| 高清av免费在线| 日本欧美视频一区| 一本色道久久久久久精品综合| 久久久久久久亚洲中文字幕| 午夜久久久在线观看| 久久精品aⅴ一区二区三区四区 | 久久久久久久久久久久大奶| 老司机影院成人| 精品国产露脸久久av麻豆| 午夜福利影视在线免费观看| 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 纵有疾风起免费观看全集完整版| 老司机亚洲免费影院| 91午夜精品亚洲一区二区三区| 一边摸一边做爽爽视频免费| av在线观看视频网站免费| 国产欧美日韩一区二区三区在线| 日韩伦理黄色片| 国产精品久久久久久精品古装| 亚洲天堂av无毛| 久久久久久人妻| 久久精品久久久久久噜噜老黄| 亚洲美女搞黄在线观看| 国产精品秋霞免费鲁丝片| 久久精品国产亚洲av天美| 免费不卡的大黄色大毛片视频在线观看| 美女中出高潮动态图| 夫妻午夜视频| a级片在线免费高清观看视频| 国产高清国产精品国产三级| 久久亚洲国产成人精品v| av在线播放精品| 人体艺术视频欧美日本| 国产 精品1| 69精品国产乱码久久久| 国产日韩欧美亚洲二区| 一级a做视频免费观看| 亚洲,欧美精品.| 久久 成人 亚洲| 99精国产麻豆久久婷婷| 黄色视频在线播放观看不卡| 波多野结衣一区麻豆| 久久精品国产a三级三级三级| 国产成人91sexporn| 又黄又爽又刺激的免费视频.| 国产片内射在线| 99re6热这里在线精品视频| 日日爽夜夜爽网站| 免费av不卡在线播放| 午夜老司机福利剧场| 免费大片黄手机在线观看| 一区二区三区四区激情视频|