• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON THETA-TYPE FUNCTIONS IN THE FORM (x;q)∞*

    2021-02-23 12:08:14ChangguiZHANG

    Changgui ZHANG

    Laboratoire P. Painlev′e (UMR - CNRS 8524), D′epartement de math′ematiques, FST,Universit′e de Lille, Cit′e scientifique, 59655 Villeneuve d’Ascq cedex, France E-mail: changgui.zhang@univ-lille.fr

    Abstract As in our previous work [14], a function is said to be of theta-type when its asymptotic behavior near any root of unity is similar to what happened for Jacobi theta functions. It is shown that only four Euler infinite products have this property. That this is the case is obtained by investigating the analyticity obstacle of a Laplace-type integral of the exponential generating function of Bernoulli numbers.

    Key words q-series; Mock theta-functions; Stokes phenomenon; continued fractions

    1 Introduction

    In his last letter to Hardy, Ramanujan wrote that he had discovered very interesting functions that he called mock ?-functions. As was said in Watson’s L.M.S.presidential address[10],the first three pages, where Ramanujan explained what he meant by “mock ?-functions”, are very obscure. Therefore, Watson quoted the following comment of Hardy:

    A mock ?-function is a function defined by a q-series convergent when|q|<1,for which we can calculate asymptotic formulae, when q tends to a “rational point” eof the unit circle,of the same degree of precision as those furnished for the ordinary ?-functions by the theory of linear transformation.

    In our previous work [14], we proposed definitions of what we call theta-type, false thetatype and mock theta-type functions, following directly from the above-mentioned comment of Hardy. The main goal of this paper is to determine the possible values of x for which the Euler q-exponential function (x;q)is of theta-type, where

    1.1 Statement of Main Theorem

    The above-named variable qmay be considered as the modular variable with respect to the root ζ. By considering the respective modular formulae,one can easily see that the ordinary ?-functions, as well as the famous Dedekind η-function, satisfy the condition in (1.2) for any root of unity ζ.

    Let U denote the set of the roots of unity. One remembers that η(τ)=q(q;q), where q =e(τ). Thus, one can observe that (q;q)∈Tfor any ζ ∈U. Furthermore, an elementary calculation shows that the following identities hold:

    Theorem 1.2 (Main theorem) Let (x,β)∈C×R be such that |x|=1 and β /=0, and consider x=xq. Then, the following conditions are equivalent:

    (1) one has (x;q)∈T, with ζ =1=e(0);

    (2) there exists a root of unity ζ =e=e(r) such that (x;q)∈T;

    1.2 Some Ideas for the Proof of Main Theorem

    If one takes the principal branch of the logarithm for both members of the above equation, one can observe the following fact:

    Remark 1.3 (Asymptotic form of the theta-type functions) Given ζ ∈U and f(q)∈T,there exists a quadruplet (υ,c,c,c)∈Q×(iR)×C×(iR) such that

    A modular-like formula has been found for (x;q)in [13, Th. 3.2] and [15, Th. 2.9], by means of one certain perturbed factor named P(z,τ), where x = e(z) and q = e(τ). Thus, it suffices to understand the analyticity obstacle of P(α+β τ,τ) around each given rational point τ =r ∈Q ∩[0,1). We shall obtain the condition for this function to be analytically continued at τ =0 by a Stokes analysis, with the help of the Ramis-Sibuya theorem [6, 8]. This analysis will be generalized for every r ∈Q ∩(0,1)by means of a series of transformations associated to the continued fraction of r; transformations often used in the classical theory of the modular functions.

    1.3 Plan for the Paper

    The rest of the paper is divided into three sections. In Section 2, we define a family of integrals involving the exponential generating function associated with the Bernoulli numbers.These integrals can be seen as being of Laplace type, and they will be used for stating an equivalent version of the above-mentioned result on (x;q); see Theorems 2.1 and 2.4.

    Section 3 is essentially devoted to the part ζ =1 of Theorem 1.5;see Theorem 3.1. By means of Theorems 2.1 and 2.4, we will see that the fact that a Euler q-exponential function, modulo some exponentially small term,can be analytically continued at τ =0 and may be interpreted as one problem of the analytic continuation inside the theory of the Gevrey asymptotic expansions;see Theorem 3.8 and the proof of Theorem 1.5 given in Subsection 3.3.

    Section 4 aims to obtain Theorem 1.5 for an arbitrary root ζ of unity; see Theorem 4.1.Lemma 4.8 will play a key role, especially in terms of permitting us to make use of both continued fractions and modular transforms. Finally, a complete scheme for proving our main result, Theorem 1.2, will be outlined at the end of the paper.

    2 A Laplace-type Integral Involving Bernoulli Exponential Generating Function

    In Subsection 2.1, we will introduce a family of Laplace-like integrals denoted as b, involving the exponential generating function of Bernoulli numbers. It will be shown that the term((z-1)/τ|-1/τ)in the right-hand side of (2.1)can be obtained from comparing these integrals in different directions; see Theorem 2.4. One will also see that the same integrals are closely linked to the function P(z,τ) used in Theorem 2.1, and an equivalent version of this theorem will come from this comparison; see Theorem 2.8 in Subsection 2.2.

    2.1 Bernoulli Integrals

    Figure 1 Half-planes Ud, V d,- and V d,+

    Proof This follows from [2, p. 36, (21.1)].□

    By (2.11), one finds that ((-1,∞)×(CR))?W∩W. In what follows, we will write CR=H ∪H, where H=-H={τ ∈C:?τ <0}.

    Theorem 2.4 Let (z,τ)∈W∩W. The following assertions hold:

    Figure 2 τ belongs to the common domain V d1,+∩V d2,- while the directions d1 and d2 are separated by the half-line ?τ

    Figure 3 The half-plane Zτ contains both the point τ and the segment (-1,∞)

    2.2 Functions related with Bernoulli Integrals

    3 Conditions for a Euler q-exponential Function to be of Theta-type at One

    We shall make use of the Gevrey asymptotic expansions for understanding the analytic obstacle at τ = 0 of the above-mentioned functions B and P. This is linked to the so-called Stokes’ phenomenon. One tool to treat this problem may be Ramis-Sibuya Theorem, which will be briefly explained in Subsection 3.1 in what follows.

    3.1 Ramis-Sibuya’s Theorem on Gevrey Asymptotic Expansions

    As a typical example, the Borel-sum function of a given divergent series,if it exists,admits this series as a Gevrey asymptotic expansion. A Gevrey type asymptotic expansion is also called an exponential asymptotic expansion, due to the following fact:

    Remark 3.2 ([6, p. 175, Th. 1.2.4.1 1)]) A function f admits the identically null series as a Gevrey asymptotic expansion at 0 in V if and only if f is exponentially small there,which means that, for all proper sub-sectors U in V, there exists C >0 and κ >0 such that, for all x ∈U, |f(x)|≤C e.

    In what follows,we will denote by A(V)the space of all functions that are exponentially small in V as indicated in Remark 3.2. More generally, when V = V(I;R), we will say that f ∈A(V) when f is exponentially small as x →xin V.

    Theorem 3.3 ([6,p. 176,Th. 1.3.2.1]) Let V,··· ,V, Vbe a family of open sectors at 0 in C such that V=V, V∩V/=? for 1 ≤j ≤m and that the whole union ∪Vcontains a neighborhood of 0 in C. For every j,let fbe a given analytic and bounded function in V. If

    On the other hand, if the statement in (3) is true, then both fand fequal to a same analytic and bounded function in the punctuated disc{0 <|x|<R}. By the Riemann removable singularities Theorem, one finds the statements (1) and (2).□

    3.2 Asymptotic expansion of Bernoulli integrals

    Proposition 3.6 Let (α,β) ∈Rand let I = (-π,π). If α >-1, then b(α+β τ,τ) is well-defined and analytic in V(I;R), and is bounded in every proper sub-sector of V(I;R)with R >0.

    Proof For all τ ∈C, let Dbe the sector containing 0 that is bounded by (-∞,-1]∪[-1,-1- ∞τ), where [-1,-1- ∞τ) denotes the half straight-line starting from -1 to ∞with the direction -τ. By combining (2.8) together with (2.9), one can find that, for all fixed τ ∈C(-∞,0], the function b(z,τ) is defined and analytic for z ∈D.

    If α >-1, one can easily see that α+β τ belongs to this half-plane Dwhen τ /∈R. This implies that b(α+β τ,τ) is well-defined and analytic in any sector V(I;R).

    The boundedness of this function over any proper sub-sector comes from direct estimates done for (2.7).□

    In a similar way,one can find that the statement of Proposition 3.6 remains true if b(z,τ)and I are replaced with b(z,τ) and (0,2π), respectively. Thus, one obtains the following:

    Theorem 3.7 Let (α,β) ∈Rand let b(z,τ) as in Definition 2.2. If α >-1, then b(α+β τ,τ) admits a Gevrey asymptotic expansion in any sector V(I;R) with I = (-π,π)and R >0.

    Moreover,b(α+β τ,τ) can be continued into an analytic function at τ =0 if and only if α=0 and β ∈Z.

    Proof Fix R >0, and let

    3.3 Proof of Theorem 3.1

    where ν ∈Q and λ ∈C.

    4 Asymptotic Behavior at an Arbitrary Root via Continued Fractions

    With regard to an arbitrary root ζ of unity, we shall establish the following result, which,together with Theorem 3.1, will imply Theorem 1.5:

    Theorem 4.1 Let r ∈Q ∩(0,1), ζ = e(r) and (α,β) ∈[0,1) × (0,1], and consider f(q)=(α+β τ|τ). Then f ∈Cif and only if α ∈{0,} and β ∈{,1}.

    First,one will observe,in§4.1,that the corresponding functions B and P used in Theorems 2.8 and 2.1 are analytic at each non-zero rational point τ =r. This allows us to establish one key lemma, Lemma 4.8, in Subsection 4.2, that permits us to pass an arbitrary rational value r to an other r. By iterating this procedure, one arrives at the case of r = 0, to which case Theorem 3.1 can be applied. This is realized in terms of the continued fractions relative to r and related modular transforms; see Theorem 4.9 in Subsection 4.3. We complete the proofs of Theorems 4.1, 1.5 and 1.2.

    4.1 Bernoulli Integral and Associated Functions on a Real Axis

    We will discuss the degenerate case τ ∈Rfor the functions b(z,τ), B(z,τ)and P(z,τ).In what follows, we will make use of the notational convention

    When ? →0,Wbecomes(0,∞)and-W-1 is reduced into C(-∞,-1]. By replacing τ with r in the partial lattice Δgiven by (4.2) for all τ ∈H, we will continue to write Δ= {n+mr : n ∈Z,m ∈Z}. It is easy to see that Δis discrete on the real axis if and only if r is a rational number. In this way, we shall make use of the following remark:

    Figure 4 b+(z,τ) is analytic for z ∈(-W∈c-1) and τ ∈W∈

    Figure 5 P(z,τ) is analytic for z ∈(-Wc∈-1)∩(Wc∈+1) and τ ∈W∈

    Similarly to Remark 4.3, one can observe the following property:

    4.2 One Key Lemma

    As in the definition of ?b(z,r) in (4.4), we will let [a] and {a} denote the integral and fractional part, respectively, of any given real a. Given each non-zero real r, consider the

    By noticing the relation τ-r= (τ -r)/(rτ), it follows from (4.13) that g(q) ∈Cif and only if ~g(q) ∈C. Thus, we shall use Theorems 2.8 and 2.1 to link f(q) with ~g(q) in the following fashion:

    4.3 Continued Fractions and Modular Transforms

    Theorem 4.9 Let (ν,r), τand z(τ) be given as in (4.18) and (4.19), with (α,β) ∈[0,1)×(0,1]. Let ζ=e(r) and q=e(τ) for j from 0 to ν. Consider

    Proof of Theorem 4.1 This follows directly from Theorem 4.9.□

    Proof of Theorem 1.5 In view of Theorems 3.1 and 4.1,it suffices to notice that,given ζ ∈U, one has (xq;q)∈Cif and only if the same holds by replacing β with β+1. This last equivalence can be deduced from the relation (xq;q)= (1-xq)(xq;q)and the fact that (1-xq)∈C, for C{0} constitutes a multiplicative group.□

    Proof of Theorem 1.2 By taking into account Remark 1.1 and Theorem 1.5,one needs only to observe that, for any positive integer n ∈Zand any root ζ ∈U, any finite product of the form (xq;q)does not belong to T, although the same function belongs to the larger class C.□

    Addendum After having finished a first version of our paper, we learned that the interesting work [4] is closely related to the present paper. Indeed, let α >0 and μ ∈[0,1) be as in[4, Theorem 1]. By combining [4, (3.2) & (3.3)] together with (1.2) and (1.4), one can observe the following result:

    Remark 4.10 One has(e(μ)q;q)∈Tonly if the following conditions are satisfied for all integers k ≥2:

    高清黄色对白视频在线免费看| 丝袜喷水一区| 在线观看美女被高潮喷水网站| 蜜臀久久99精品久久宅男| 高清视频免费观看一区二区| 伦理电影大哥的女人| 亚洲,欧美,日韩| 欧美人与善性xxx| 午夜免费男女啪啪视频观看| 精品99又大又爽又粗少妇毛片| 国语对白做爰xxxⅹ性视频网站| 婷婷色综合www| 少妇人妻精品综合一区二区| 亚洲人与动物交配视频| 亚洲人与动物交配视频| 久久久精品区二区三区| 欧美成人精品欧美一级黄| av在线app专区| 秋霞伦理黄片| 日韩,欧美,国产一区二区三区| 日日摸夜夜添夜夜添av毛片| 80岁老熟妇乱子伦牲交| 久热这里只有精品99| 99国产精品免费福利视频| 性高湖久久久久久久久免费观看| 国产一区二区三区综合在线观看 | 午夜精品国产一区二区电影| 97在线人人人人妻| 99re6热这里在线精品视频| 国产极品天堂在线| 观看美女的网站| 久久99热6这里只有精品| 亚洲人成网站在线观看播放| 欧美精品一区二区免费开放| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| 国产成人精品在线电影| 爱豆传媒免费全集在线观看| 国产日韩一区二区三区精品不卡 | 久久毛片免费看一区二区三区| 天天操日日干夜夜撸| 亚洲精品乱久久久久久| 色视频在线一区二区三区| 国产亚洲精品久久久com| 日本欧美国产在线视频| 老司机亚洲免费影院| 国产亚洲一区二区精品| 另类精品久久| 精品亚洲乱码少妇综合久久| 80岁老熟妇乱子伦牲交| 国产精品不卡视频一区二区| 精品国产露脸久久av麻豆| 男的添女的下面高潮视频| 日韩av在线免费看完整版不卡| 日本av免费视频播放| 日韩不卡一区二区三区视频在线| 亚洲一级一片aⅴ在线观看| 最后的刺客免费高清国语| 国产在线一区二区三区精| 岛国毛片在线播放| 少妇人妻久久综合中文| 在现免费观看毛片| 日韩精品免费视频一区二区三区 | .国产精品久久| 最新的欧美精品一区二区| 成人黄色视频免费在线看| 99久久中文字幕三级久久日本| 亚州av有码| 亚洲欧洲日产国产| 日本av手机在线免费观看| 国产亚洲精品久久久com| 亚洲精品456在线播放app| 中文字幕久久专区| 亚洲精品一二三| 久久久国产精品麻豆| 欧美日韩成人在线一区二区| 最新中文字幕久久久久| 爱豆传媒免费全集在线观看| 狂野欧美激情性xxxx在线观看| 18禁在线无遮挡免费观看视频| 国产精品一二三区在线看| 精品亚洲成国产av| 欧美激情极品国产一区二区三区 | 黄色配什么色好看| 日本-黄色视频高清免费观看| 蜜臀久久99精品久久宅男| 日韩三级伦理在线观看| 亚洲av免费高清在线观看| 丝袜喷水一区| 两个人的视频大全免费| 日本av手机在线免费观看| 特大巨黑吊av在线直播| 久久久国产精品麻豆| 亚洲av.av天堂| 国产成人a∨麻豆精品| 久久99热6这里只有精品| 男人添女人高潮全过程视频| 精品人妻在线不人妻| 人妻制服诱惑在线中文字幕| 高清午夜精品一区二区三区| 日韩av在线免费看完整版不卡| 搡女人真爽免费视频火全软件| 中文精品一卡2卡3卡4更新| 久久久久精品性色| 欧美人与善性xxx| 国产欧美日韩综合在线一区二区| 亚洲av免费高清在线观看| av专区在线播放| 亚洲激情五月婷婷啪啪| 又粗又硬又长又爽又黄的视频| 午夜福利视频精品| 久久久久网色| 午夜激情福利司机影院| 久久久a久久爽久久v久久| 两个人免费观看高清视频| 国产白丝娇喘喷水9色精品| 欧美日韩成人在线一区二区| 91精品伊人久久大香线蕉| 丝瓜视频免费看黄片| 美女脱内裤让男人舔精品视频| 免费不卡的大黄色大毛片视频在线观看| 女性被躁到高潮视频| 丁香六月天网| 性高湖久久久久久久久免费观看| 男的添女的下面高潮视频| 26uuu在线亚洲综合色| 国产精品三级大全| 国产高清有码在线观看视频| 亚洲国产精品成人久久小说| 久久久久久人妻| videos熟女内射| 久久久久国产网址| 母亲3免费完整高清在线观看 | 欧美日本中文国产一区发布| 亚洲国产欧美在线一区| 蜜桃国产av成人99| 亚洲欧美精品自产自拍| xxxhd国产人妻xxx| 91成人精品电影| 欧美日韩综合久久久久久| 欧美亚洲 丝袜 人妻 在线| 欧美日韩在线观看h| 成人黄色视频免费在线看| 日韩大片免费观看网站| 日日爽夜夜爽网站| 国产一级毛片在线| 久久亚洲国产成人精品v| 免费高清在线观看日韩| 男人操女人黄网站| 青春草亚洲视频在线观看| 欧美xxxx性猛交bbbb| 丁香六月天网| 黄色配什么色好看| 久久久亚洲精品成人影院| 精品久久国产蜜桃| 午夜91福利影院| 日韩 亚洲 欧美在线| 国产色爽女视频免费观看| 精品酒店卫生间| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| tube8黄色片| 亚洲精品自拍成人| 日韩欧美精品免费久久| 国产伦理片在线播放av一区| 国产精品国产三级国产av玫瑰| 亚洲五月色婷婷综合| 岛国毛片在线播放| 男女高潮啪啪啪动态图| 国产爽快片一区二区三区| 日本黄大片高清| 久久人人爽av亚洲精品天堂| 亚洲欧美色中文字幕在线| 蜜臀久久99精品久久宅男| 在线观看免费高清a一片| 国产一区有黄有色的免费视频| 亚洲精品日韩在线中文字幕| 国产成人免费无遮挡视频| 亚洲第一av免费看| 免费播放大片免费观看视频在线观看| a级毛片黄视频| 精品少妇黑人巨大在线播放| 日韩av免费高清视频| 啦啦啦啦在线视频资源| 国产av码专区亚洲av| 伦理电影免费视频| 亚洲av成人精品一区久久| 在线观看免费日韩欧美大片 | 日本-黄色视频高清免费观看| 久久久久人妻精品一区果冻| 一级爰片在线观看| 少妇人妻 视频| 国产精品久久久久久精品电影小说| 免费看光身美女| 中国三级夫妇交换| 飞空精品影院首页| 日韩av在线免费看完整版不卡| 久久韩国三级中文字幕| 97超碰精品成人国产| 一区二区av电影网| 免费看av在线观看网站| 成人毛片a级毛片在线播放| 黄色毛片三级朝国网站| 国产伦理片在线播放av一区| 日本猛色少妇xxxxx猛交久久| 免费看av在线观看网站| 欧美三级亚洲精品| 91久久精品国产一区二区成人| 美女中出高潮动态图| 亚洲色图 男人天堂 中文字幕 | 秋霞在线观看毛片| 欧美三级亚洲精品| 亚洲成人手机| 97超碰精品成人国产| 日日撸夜夜添| 18禁观看日本| 国产午夜精品久久久久久一区二区三区| 春色校园在线视频观看| 黄色一级大片看看| 一级二级三级毛片免费看| 一个人免费看片子| 久久精品国产自在天天线| 五月天丁香电影| 免费大片黄手机在线观看| 午夜久久久在线观看| 蜜桃久久精品国产亚洲av| 久久免费观看电影| 免费观看的影片在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 不卡视频在线观看欧美| 夫妻午夜视频| 天天影视国产精品| 美女国产视频在线观看| 中文字幕免费在线视频6| 国产精品 国内视频| 久久午夜福利片| 亚洲精华国产精华液的使用体验| 国产亚洲欧美精品永久| 99热这里只有精品一区| 最近中文字幕2019免费版| 一区在线观看完整版| 亚洲人成网站在线播| 免费大片黄手机在线观看| 国产成人精品婷婷| 国产精品一二三区在线看| 国产成人一区二区在线| 人人妻人人澡人人看| 亚洲av免费高清在线观看| 久久亚洲国产成人精品v| a级毛片在线看网站| 久久影院123| 精品99又大又爽又粗少妇毛片| 国产成人精品久久久久久| 一级二级三级毛片免费看| 亚洲人成网站在线播| 欧美三级亚洲精品| 国产精品一区二区在线不卡| 丝瓜视频免费看黄片| 日韩人妻高清精品专区| 国产av国产精品国产| 久久久久久久亚洲中文字幕| 中文天堂在线官网| 啦啦啦中文免费视频观看日本| 97在线人人人人妻| 免费高清在线观看视频在线观看| av卡一久久| 在线观看一区二区三区激情| 欧美亚洲 丝袜 人妻 在线| av卡一久久| 久久狼人影院| 国产极品天堂在线| 91精品国产国语对白视频| av在线老鸭窝| 91午夜精品亚洲一区二区三区| 国产免费视频播放在线视频| 成年女人在线观看亚洲视频| 国产 一区精品| 能在线免费看毛片的网站| 国产亚洲精品第一综合不卡 | 精品少妇黑人巨大在线播放| 亚洲美女黄色视频免费看| 黑人欧美特级aaaaaa片| 亚洲av不卡在线观看| .国产精品久久| 亚洲精品色激情综合| 亚洲欧美中文字幕日韩二区| av视频免费观看在线观看| 欧美bdsm另类| 精品一区二区三区视频在线| 日韩,欧美,国产一区二区三区| 亚洲av.av天堂| a 毛片基地| 成年人免费黄色播放视频| 爱豆传媒免费全集在线观看| 青春草国产在线视频| 99视频精品全部免费 在线| 午夜激情久久久久久久| 亚洲av综合色区一区| 不卡视频在线观看欧美| 国产成人91sexporn| 成人无遮挡网站| tube8黄色片| av网站免费在线观看视频| 少妇的逼好多水| 国产深夜福利视频在线观看| 搡女人真爽免费视频火全软件| 久久精品久久久久久久性| 久久久亚洲精品成人影院| 99久国产av精品国产电影| 日韩熟女老妇一区二区性免费视频| 国产成人av激情在线播放 | 七月丁香在线播放| av线在线观看网站| 亚洲美女视频黄频| 高清毛片免费看| 男人操女人黄网站| 国产精品蜜桃在线观看| av福利片在线| 欧美成人精品欧美一级黄| 在线观看免费日韩欧美大片 | 久久精品久久久久久噜噜老黄| 久久精品久久久久久久性| 亚洲av中文av极速乱| 曰老女人黄片| 交换朋友夫妻互换小说| 曰老女人黄片| 国产成人精品无人区| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| 高清欧美精品videossex| 成人亚洲欧美一区二区av| 久久韩国三级中文字幕| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 国产欧美亚洲国产| 卡戴珊不雅视频在线播放| 99re6热这里在线精品视频| 丰满迷人的少妇在线观看| 午夜视频国产福利| 欧美少妇被猛烈插入视频| 成人综合一区亚洲| 久久久国产一区二区| 丝袜喷水一区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品麻豆人妻色哟哟久久| 国产成人91sexporn| 乱人伦中国视频| 久久精品久久久久久噜噜老黄| 国产精品久久久久久久久免| 观看av在线不卡| 妹子高潮喷水视频| 欧美日韩视频精品一区| 中文字幕制服av| 观看av在线不卡| 嘟嘟电影网在线观看| 久久99蜜桃精品久久| 日韩一区二区三区影片| 国产精品无大码| 另类精品久久| 欧美bdsm另类| 老熟女久久久| 美女国产视频在线观看| 久久久久久久亚洲中文字幕| 一边亲一边摸免费视频| 80岁老熟妇乱子伦牲交| 亚洲国产精品一区三区| 日本黄色日本黄色录像| 中文字幕av电影在线播放| 岛国毛片在线播放| av国产久精品久网站免费入址| 免费高清在线观看日韩| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| 嫩草影院入口| 99国产综合亚洲精品| 午夜福利影视在线免费观看| 我的老师免费观看完整版| 国产精品熟女久久久久浪| 国产成人精品久久久久久| 五月天丁香电影| 国产女主播在线喷水免费视频网站| av女优亚洲男人天堂| 人妻夜夜爽99麻豆av| 女性被躁到高潮视频| 永久免费av网站大全| 国产精品久久久久久精品电影小说| 欧美精品人与动牲交sv欧美| 麻豆精品久久久久久蜜桃| 国产精品成人在线| 午夜精品国产一区二区电影| 桃花免费在线播放| 日韩电影二区| 在线观看国产h片| 亚洲性久久影院| 色视频在线一区二区三区| 成年人免费黄色播放视频| 国产免费视频播放在线视频| 美女脱内裤让男人舔精品视频| 我要看黄色一级片免费的| 亚洲av日韩在线播放| 曰老女人黄片| 亚洲精品,欧美精品| 欧美亚洲日本最大视频资源| 国产精品秋霞免费鲁丝片| 久久精品国产鲁丝片午夜精品| 少妇人妻久久综合中文| 日韩视频在线欧美| 搡老乐熟女国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩一本色道免费dvd| 麻豆乱淫一区二区| 3wmmmm亚洲av在线观看| 国产在线一区二区三区精| 亚洲一级一片aⅴ在线观看| 精品一区二区三卡| 中国国产av一级| 精品人妻熟女毛片av久久网站| 黄色毛片三级朝国网站| 夜夜看夜夜爽夜夜摸| 成年人午夜在线观看视频| 久久免费观看电影| 亚洲精品456在线播放app| 国产国语露脸激情在线看| 亚洲图色成人| 国产欧美另类精品又又久久亚洲欧美| 80岁老熟妇乱子伦牲交| 精品少妇久久久久久888优播| 欧美+日韩+精品| 亚洲色图综合在线观看| 全区人妻精品视频| 亚洲欧美一区二区三区国产| 国产一区二区三区av在线| 成年av动漫网址| av免费在线看不卡| 日韩电影二区| 国产综合精华液| 色5月婷婷丁香| 一二三四中文在线观看免费高清| 熟女电影av网| 日韩 亚洲 欧美在线| 街头女战士在线观看网站| 中文字幕亚洲精品专区| 一本—道久久a久久精品蜜桃钙片| 成年女人在线观看亚洲视频| 人人澡人人妻人| 国产白丝娇喘喷水9色精品| 夜夜骑夜夜射夜夜干| 两个人的视频大全免费| 欧美丝袜亚洲另类| 少妇人妻久久综合中文| 午夜免费观看性视频| 欧美性感艳星| 欧美最新免费一区二区三区| 日韩亚洲欧美综合| 91国产中文字幕| 亚洲不卡免费看| 久久久久久久久久久丰满| 边亲边吃奶的免费视频| 在线 av 中文字幕| av播播在线观看一区| 内地一区二区视频在线| 97超视频在线观看视频| 欧美变态另类bdsm刘玥| av天堂久久9| 人妻 亚洲 视频| 国产男人的电影天堂91| 尾随美女入室| 日日爽夜夜爽网站| 岛国毛片在线播放| 啦啦啦视频在线资源免费观看| 人体艺术视频欧美日本| 黄色视频在线播放观看不卡| 亚洲美女黄色视频免费看| 亚洲图色成人| 精品久久国产蜜桃| 亚洲国产日韩一区二区| 欧美 亚洲 国产 日韩一| 亚洲精品亚洲一区二区| 99热这里只有精品一区| 午夜激情久久久久久久| 亚洲久久久国产精品| 精品卡一卡二卡四卡免费| 久久99一区二区三区| 日本黄色片子视频| 国产成人免费观看mmmm| 少妇的逼水好多| 久久精品久久精品一区二区三区| 国产av码专区亚洲av| 最近的中文字幕免费完整| 日本色播在线视频| 精品亚洲成国产av| 久久午夜综合久久蜜桃| 老司机影院毛片| av女优亚洲男人天堂| 国产一区二区在线观看日韩| av在线老鸭窝| 18禁在线播放成人免费| 九九在线视频观看精品| 亚洲精品第二区| 日韩精品有码人妻一区| 欧美97在线视频| 一级二级三级毛片免费看| 欧美最新免费一区二区三区| 51国产日韩欧美| 五月伊人婷婷丁香| 欧美97在线视频| 中国国产av一级| 欧美+日韩+精品| 久久精品久久精品一区二区三区| 国产欧美亚洲国产| 看非洲黑人一级黄片| 精品一区二区免费观看| 免费黄频网站在线观看国产| 爱豆传媒免费全集在线观看| 国产日韩欧美亚洲二区| 一本—道久久a久久精品蜜桃钙片| 乱码一卡2卡4卡精品| 我的女老师完整版在线观看| 涩涩av久久男人的天堂| 亚洲av福利一区| 亚洲精品久久成人aⅴ小说 | 久久影院123| 久久毛片免费看一区二区三区| 欧美另类一区| 国产av一区二区精品久久| 男女国产视频网站| 亚洲精品一二三| 亚洲情色 制服丝袜| 日韩在线高清观看一区二区三区| kizo精华| 国产高清国产精品国产三级| 另类亚洲欧美激情| a级毛片免费高清观看在线播放| 精品一品国产午夜福利视频| 又粗又硬又长又爽又黄的视频| 久久久国产欧美日韩av| 桃花免费在线播放| 乱码一卡2卡4卡精品| 亚洲一级一片aⅴ在线观看| 国产日韩欧美在线精品| 大片电影免费在线观看免费| 日韩电影二区| av一本久久久久| 国产不卡av网站在线观看| 一级二级三级毛片免费看| 大香蕉久久网| 2021少妇久久久久久久久久久| 一级,二级,三级黄色视频| 妹子高潮喷水视频| 少妇被粗大猛烈的视频| 99热这里只有精品一区| 美女国产视频在线观看| 久久久久久久亚洲中文字幕| 大片电影免费在线观看免费| 成人午夜精彩视频在线观看| 黑人欧美特级aaaaaa片| 久久久久国产网址| 亚洲高清免费不卡视频| 肉色欧美久久久久久久蜜桃| av女优亚洲男人天堂| 亚洲av国产av综合av卡| 国产视频内射| 制服诱惑二区| 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 亚洲人成网站在线观看播放| 人妻人人澡人人爽人人| 亚洲av中文av极速乱| 精品亚洲成a人片在线观看| 18禁在线播放成人免费| 日本黄大片高清| 亚洲精品国产av蜜桃| 国产一区二区在线观看av| 夜夜爽夜夜爽视频| 欧美人与性动交α欧美精品济南到 | 午夜免费男女啪啪视频观看| 9色porny在线观看| 午夜福利,免费看| 91在线精品国自产拍蜜月| 欧美最新免费一区二区三区| 国产老妇伦熟女老妇高清| 免费高清在线观看视频在线观看| 三上悠亚av全集在线观看| 日韩三级伦理在线观看| 蜜桃在线观看..| 91久久精品国产一区二区成人| 天堂中文最新版在线下载| a级毛片黄视频| 国产黄色免费在线视频| 性色av一级| 国产黄频视频在线观看| 欧美 日韩 精品 国产| av播播在线观看一区| 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说| 少妇熟女欧美另类| 成人黄色视频免费在线看| 欧美成人午夜免费资源| 日韩中文字幕视频在线看片| 日韩一区二区视频免费看| 丰满迷人的少妇在线观看| 五月开心婷婷网| 国产精品熟女久久久久浪| 蜜臀久久99精品久久宅男| 亚洲精品国产av蜜桃| 久久久久视频综合| 国产成人午夜福利电影在线观看| 亚洲色图综合在线观看| 高清午夜精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲熟女精品中文字幕| 高清毛片免费看| 一边亲一边摸免费视频| 国产一级毛片在线| 国产av精品麻豆|