• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ENTROPICAL OPTIMAL TRANSPORT,SCHR¨ODINGER’S SYSTEM AND ALGORITHMS*

    2021-02-23 12:09:00LimingWU

    Liming WU

    Institute for Advanced Study in Mathematics, Harbin’s Institute of Technology, Harbin 150001, China;Laboratoire de Math′ematiques Blaise Pascal, CNRS-UMR 6620, Universit′e Clermont-Auvergne(UCA), 63000 Clermont-Ferrand, France E-mail: Li-Ming.Wu@uca.fr

    Abstract In this exposition paper we present the optimal transport problem of Monge-Amp`ere-Kantorovitch (MAK in short) and its approximative entropical regularization. Contrary to the MAK optimal transport problem,the solution of the entropical optimal transport problem is always unique, and is characterized by the Schr¨odinger system. The relationship between the Schr¨odinger system, the associated Bernstein process and the optimal transport was developed by L′eonard [32, 33] (and by Mikami [39] earlier via an h-process). We present Sinkhorn’s algorithm for solving the Schr¨odinger system and the recent results on its convergence rate. We study the gradient descent algorithm based on the dual optimal question and prove its exponential convergence, whose rate might be independent of the regularization constant. This exposition is motivated by recent applications of optimal transport to different domains such as machine learning, image processing, econometrics, astrophysics etc..

    Key words entropical optimal transport; Schr¨odinger system; Sinkhorn’s algorithm; gradient descent

    1 Introduction

    1.1 From Monge-Amp`ere to Kantorovitch

    Let μ0(dx)=f0(x)dx,μ1(dx)=f1(x)dx be two absolutely continuous probability measures on Rd. The problem of Monge-Amp`ere (Monge [41], 1781) is to find an optimal transport T :Rd→Rdsuch that

    where J(T) is the Jacobian determinant of T. Intuitively T should be monotone, i.e., T =?Φ for some convex function function Φ:Rd→R. We obtain the Monge-Amp`ere equation

    Here B(S) denotes the Borel σ-field of S. A coupling Q of (μ0,μ1) is called a transport plan from μ0to μ1, and the minimiser QKis called optimal transport plan.

    The advantage of Kantorovitch’s problem is that if the transport cost function c : S2→[0,+∞] is lower semi-continuous on S2, QKexists.

    The disadvantage is that QKis in general not unique.

    Example 1.1 S0=S1=R, c(x,y)=|x-y|,

    1.2 Some recent progress in the theory

    Definition 1.2 (Wasserstein metric) Let d be a metric on S, lower semi-continuous on S2, and p ∈[1,+∞). Then

    is called Lp-Wasserstein distance between μ0,μ1; it is a metric on Mp1(S,d) of probability measures μ on S so that dp(x0,x) is μ(dx)-integrable (for some or any fixed point x0∈S).

    A classical book on Wasserstein distance is Rachev and R¨uschendorff[46, 47].

    Theorem 1.3 (Brenier [4] (1991)) Let S = Rd, c(x,y) = |x-y|2. If μ0(dx) = f0(x)dx,then Kantorovitch’s problem is equivalent to Monge’s problem: QKis the image measure of the application x →(x,Tx) of μ0for some deterministic mapping T. Moreover, T is unique,is given by T = ?Φ for some convex function Φ, and is the solution of the Monge-Amp`ere equation which is unique up to a difference of a constant.

    The progress made in the study of the optimal transport problem in the last thirty years has been spectacular. Otto and Villani, along with their collaborators,developed a differential theory on M21(Rd) and showed that many PDEs are the gradient flow of some entropy or energy functional. Lott-Villani and Sturm built a geometric theory on M21(M)for a Riemannian manifold or Alexandrov-Gromov’s space M. Figalli used optimal transport to solve some PDEs.The reader is referred to the books of Villani [55, 56].

    1.3 Applications

    The optimal transport plan itself(either as a coupling QKor a Monge map T when it exists)has recently found many applications in data science, and in particular in image processing. It has, for instance, been used for

    (1) contrast equalization, cf. Delon [15] (2004);

    (2) texture synthesis, cf. Gutierrez et al. [26] (2017);

    (3) image matching, see Zhu et al. [59] (2007), Museyko et al. [42] (2009), Li et al. [34](2013), Wang et al. [58] (2013);

    (4) image fusion, cf. Courty et al. [9] (2016);

    (5) medical imaging, cf. Wang et al. [57] (2011);

    (6) shape registration,see Makihara and Yagi [37] (2010),Lai and Zhao [31] (2017), Su et al. [54] (2015);

    (7) image watermarking, cf. Mathon et al. [38] (2014);

    (8) for reconstructing the early universe in astrophysics,cf. Frisch et al. [21] (2002);

    (9) in economics, to interpret matching data, cf. Galichon [23] (2016).

    (10) to perform sampling, cf. Reich [48] (2013),Oliver [43] (2014)and Bayesian inference,cf. Kim et al. [28] (2013), El Moselhy and Marzouk [17] (2012).

    For a review of applications of optimal transport to signal processing and machine learning,see Kolouri et al. [29]. For optimal transport in applied mathematics, see Santambrogio [51];in economics see Erlander [18], Erlander and Stewart [18].

    1.4 How to compute the optimal transport?

    Kantorovitch’s optimal transport plan is a problem of linear progamming(Dantzig[13,14]).For computation purposes we suppose that μ0(resp. μ1) is supported by a finite subset S0={x1,··· ,xm} (resp. S1={y1,··· ,yj}) in S. Then C(μ0,μ1) is a convex simplex, the cost of a transport plan Q

    The set of extreme points of C(μ0,μ1) is identified as all permutations on {1,··· ,n}, i.e.,any extreme transport plan Q=(qij) is characterized by

    for some permutation σ. Hence there are n!extreme points for this optimal assignment problem.

    2 Entropy Regularization of Kantorovitch’s Optimal Transport: the Finite Case

    and (μ0?~A)(xi,yj)=μ0(i)~aij.

    The minimization of relative entropy with given marginal distributions or with general constraints was studied by Csiszar [11]. The entropy optimisation (2.1) is closely related to the optimal transport by the following simple computation: letting qij= Q(xi,yj), Q(j|i) =qij/μ0(i), which is the conditional probability of yjgiven xiunder Q, we have

    for any Kantorovitch optimal transport plan QK.

    QEis called entropical optimal transport plan.

    Proof As the entropy functional H(Q|μ0?~A) is strictly convex and inf-compact, then its minimiser QE=(qEij) on the convex and compact set C(μ0,μ1) exists and it is unique.

    Exchanging the roles of μ0and μ1, we obtain (2.4). For the last claim, see Peyr′e and Cuturi[44, Sect.4].□

    Remark 2.2 The key new idea of using ~A (or A) in (2.2) for relating the maximum entropy problem to optimal transport comes from L′eonard[32,33](earlier,Mikami[39]related the h-process to optimal transport), see the recent monographs [40, 44] for the history and a rich list of references. Our presentation beginning with (2.1) is inspired by [10, 32, 33].

    3 Schr¨odinger’s System

    From now on we assume always that cij:=c(xi,yj)<+∞,μ0(i)μ1(j)>0 for all (i,j).

    Theorem 3.1 (a) Q ∈C(μ0,μ1) is the minimiser QEof (2.1) iffthere are a pair of everywhere positive functions ψ,φ on S0= {xi,i = 1,··· ,m},S1= {yj,j = 1,··· ,n} such that

    The inverse that QEmust be of form (3.1) is the Gibbs principle, proven by Csiszar [11](valid in the actual finite case).

    (b) This is obvious from part (a), because Q given by (3.1) belongs to C(μ0,μ1) iff(ψ,φ)satisfies the Schr¨odinger system.

    Remark 3.2 The system of equations (3.2) for a given reference kernel K instead of ~aijwas introduced by Schr¨odinger [52] (1931). The existence and the uniqueness of a solution of the Schr¨odinger system was proved first by Beurling [2] (1960). Later, the Schr¨odinger system related to the maximum entropy principle and to Bernstein processes was studied by Cruzeiro et al. [10]. Its relationship with optimal transport was found by Mikami [39] via the h-process and L′eonard [32, 33] by means of the maximum entropy principle.

    Remark 3.3 The Gibbs principle for the mimimiser QEof the relative entropy with the two given marginal distributions was first investigated by Csiszar [11], but when the reference measure μ0?~A becomes general(in the general state space case),part(a)above may be wrong.For this subtle question see L′eonard [32, 33] and the references therein.

    4 Sinkhorn’s Algorithm

    In what follows, for simplification of notation, we will identify xias i, and yjas j. For instance, f(i)= f(xi), g(j)= g(yj), cij=c(xi,yj). Given an everywhere positive function φ0on S1, Sinkhorn’s algorithm goes as follows:

    The proof of the convergence of this algorithm is attributed to Sinkhorn [53] (1964). This algorithm was later extended in infinite dimensions by R¨uschendorf [49] (1995). Sinkhorn’s algorithm has received renewed attention in econometrics after Galichon and Salani′e[22](2010),and in data science(including machine learning,vision,graphics and imaging)after Cuturi[12](2013),who showed that Sinkhorn’s algorithm provides an efficient and scalable approximation to optimal transport, thanks to seamless parallelization when solving several optimal transport problems simultaneously (notably on GPUs).

    A crucial tool for the analysis of the convergence rate of Sinkhorn’s algorithm is the Hilbert metric on everywhere positive functions up to a constant factor. For two positive functions u,v >0 on S1, u ~v if u = cv for some constant c. The Hilbert metric on (0,+∞)n/ ~is defined by

    In other words, a totally positive matrix K is always a contraction in the Hilbert metric(as λ(K)<1).

    Theorem 4.2 (a) (Sinkhorn [53] (1964)) For Sinkhorn’s algorithm, (ψk,φk) →(ψ,φ)in dH, a solution of the Schr¨odinger system (3.2).

    (b)(Franklin and Lorenz[20](1989))based on Theorem 4.1) For Qk(i,j)=ψk(i)aijφk(j)(k ≥1),

    Remark 4.3 If ε >0 is very small, as λ(A) = 1-O(e-C/ε), the theoretical geometric convergence rate in Theorem 4.2(b) is bad; as is emphasized in [44, 45], the convergence of Sinkhorn’s algorithm deteriorates when ε is too small in numerical practice.

    Remark 4.4 For more recent progress on Sinkhorn’s algorithm for solving Schr¨odinger’s system, see Di Marino and Gerolin [16].

    5 Dual Problem: A Gradient Descent Algorithm

    As the convergence of Sinkhorn’s algorithm deteriorates when the regularization parameter ε becomes small, it is natural to check other algorithms. See Peyr′e and Cuturi [44, 45] for different refinements and generalizations of Sinkhorn’s algorithm. The purpose of this section is to propose the gradient descent algorithm for the dual optimisation problem, to prove its exponential convergence with a rate λ in terms of some Poincar′e inequality(Theorem 5.2),and to show that λ may be independent of ε ∈(0,1) in some particular case (Corollary 5.5).

    The dual problem of (2.3) is ([44, Section 4])

    We see that ?(f,g)Φ(f,g)=0 iff(ψ,φ)=(ef/ε,eg/ε) satisfies Schr¨odinger’s system (3.2). Thus we obtain, by Theorem 3.1,

    Then the maximiser (f*,g*) of (5.2) exists and is unique. This also gives another proof of the existence and the uniqueness of Schr¨odinger’s system in Theorem 3.1 in the finite case.

    Step 2 (Bipartite graph and Poincar′e inequality) We want to get some quantitative lower bound of ?2V on H. For this purpose, consider the bipartite graph W = {1,··· ,m}∪{1′,··· ,n′} with the set E of (non-oriented) edges {i,j′}, i = 1,··· ,m; j = 1,··· ,n (we add a prime to j to distinguish xiand yjeven when they are at the same position). Introduce the function h:W →R associated with (a,b)∈Rm×Rnby

    for all t ≥t0. We get (5.8), again by Gronwall’s inequality.□

    Remark 5.4 The spectral gap λ1(f,g) for the Dirichlet form E(f,g)defined in (5.10) is a well-studied object in graph theory (Chung [8], Ma et al. [36], Cheng et al. [7]). The first rough lower bound can be obtained in the following way: first,

    When ε >0 is too small,this might be bad,as with the estimate in Theorem 4.2 for Sinkhorn’s algorithm. However we can do much better.

    Corollary 5.5 Assume that the bipartite graph W = {i,j′|1 ≤i ≤m,1 ≤j ≤n}equipped with the edges subset

    which yields the desired result.

    Remark 5.6 When the optimal transport plan QKfor Kantorovitch’s problem is unique such that W, equipped with the edges set E0:= {{i,j′};QK(xi,yj) >0} is connected, then(W,E0) is a tree (because QKmust be an extreme point of C(μ0,μ1)). For this tree case, see W. Liu et al. [35] for a sharp estimate of the spectral gap λ(E0).

    The gradient descent or stochastic gradient descent algorithms(if m is very big)for finding the minimiser of-Ψ(g)were studied in Genevay et al. [24];see also Peyr′e-Cuturi[44,45]. However whether the gradient descent algorithm for finding the minimiser of -Ψ(g) is exponentially convergent with a quantifiable rate is still an unsolved question.

    This, indeed, is also our main motivation to study directly the gradient descent algorithm(5.4) and to show its exponential convergence in Theorem 5.2. The bipartite graph structure and the Poincar′e inequality used for proving Theorem 5.2 show that the unsolved question stated above for finding the maximiser of Ψ(g) is a quite delicate question, worthy of being studied further.

    To the memory of Professor Yu Jiarong I was a young teacher-researcher at the Sino-French Center of Mathematics in Wuhan University during 1987-1993 when Prof. Yu presided there. His encouragement and support were always strong and precious. His sincerity,kindness and warmness towards the people he worked with and to mathematics are in our mind forever.

    Acknowledgements I am grateful to Christian L′eonard for conversations on this fascinating subject, to Wei Liu and Yuling Jiao of Wuhan University for the communication of several references, to Xiangdong Li for the kind invitation to the conference on optimal transport held on May 2021 at AMSS, Chinese Academy of Sciences, where the material of this exposition paper was reported.

    美女高潮的动态| 少妇熟女欧美另类| 女性被躁到高潮视频| 国产老妇伦熟女老妇高清| 免费黄色在线免费观看| 国产无遮挡羞羞视频在线观看| 成人二区视频| 最近最新中文字幕大全电影3| 国产91av在线免费观看| 成人美女网站在线观看视频| 男人添女人高潮全过程视频| 一级毛片aaaaaa免费看小| 日韩电影二区| 小蜜桃在线观看免费完整版高清| 日韩成人伦理影院| 色5月婷婷丁香| 简卡轻食公司| 成年免费大片在线观看| 国产91av在线免费观看| 国产成人a区在线观看| 欧美老熟妇乱子伦牲交| 人人妻人人澡人人爽人人夜夜| 欧美日韩一区二区视频在线观看视频在线| 男的添女的下面高潮视频| 国产在线免费精品| 边亲边吃奶的免费视频| 纯流量卡能插随身wifi吗| 精品人妻熟女av久视频| 黄色视频在线播放观看不卡| 少妇 在线观看| 99热6这里只有精品| 性色av一级| 久久久久久久亚洲中文字幕| videos熟女内射| av黄色大香蕉| 国产v大片淫在线免费观看| 成人二区视频| 中文字幕亚洲精品专区| 久久久久久久亚洲中文字幕| 国产午夜精品一二区理论片| 国产成人一区二区在线| 欧美区成人在线视频| 国产爱豆传媒在线观看| 亚洲无线观看免费| 国产伦精品一区二区三区四那| 人妻制服诱惑在线中文字幕| 老司机影院毛片| 午夜福利在线观看免费完整高清在| 亚洲精品乱码久久久久久按摩| av免费观看日本| 久久久久久伊人网av| 我要看日韩黄色一级片| 91在线精品国自产拍蜜月| 水蜜桃什么品种好| 在线亚洲精品国产二区图片欧美 | 欧美日韩国产mv在线观看视频 | 狠狠精品人妻久久久久久综合| 久久这里有精品视频免费| 99国产精品免费福利视频| 插逼视频在线观看| 日本av免费视频播放| 搡女人真爽免费视频火全软件| 五月玫瑰六月丁香| 日本爱情动作片www.在线观看| 欧美zozozo另类| av国产久精品久网站免费入址| 美女cb高潮喷水在线观看| 性色avwww在线观看| 亚洲国产色片| 青春草国产在线视频| 国产大屁股一区二区在线视频| 看十八女毛片水多多多| 只有这里有精品99| 日韩三级伦理在线观看| 91久久精品国产一区二区三区| 91在线精品国自产拍蜜月| 久久 成人 亚洲| 在线免费观看不下载黄p国产| 欧美日韩亚洲高清精品| 亚洲人成网站高清观看| 亚洲经典国产精华液单| 久久99蜜桃精品久久| 亚洲av欧美aⅴ国产| 亚洲激情五月婷婷啪啪| 国产精品无大码| 日韩av免费高清视频| 亚洲高清免费不卡视频| 午夜激情福利司机影院| 亚洲美女搞黄在线观看| 成年女人在线观看亚洲视频| 国产毛片在线视频| 国产成人午夜福利电影在线观看| 不卡视频在线观看欧美| 波野结衣二区三区在线| 国产爱豆传媒在线观看| 久久精品久久久久久噜噜老黄| 国产亚洲欧美精品永久| 免费观看性生交大片5| 2021少妇久久久久久久久久久| 性色av一级| 国产高清三级在线| 亚洲av在线观看美女高潮| 国产91av在线免费观看| 大又大粗又爽又黄少妇毛片口| 熟女av电影| 国产欧美亚洲国产| 人妻夜夜爽99麻豆av| 最黄视频免费看| 99热网站在线观看| 久久久国产一区二区| 观看美女的网站| 国产在视频线精品| 妹子高潮喷水视频| 新久久久久国产一级毛片| 国产精品人妻久久久久久| 欧美日韩一区二区视频在线观看视频在线| 国产黄片美女视频| 深夜a级毛片| 国产精品av视频在线免费观看| 国产精品秋霞免费鲁丝片| 有码 亚洲区| 国模一区二区三区四区视频| 免费看日本二区| 国产成人一区二区在线| 午夜福利在线在线| 中国三级夫妇交换| 美女国产视频在线观看| 草草在线视频免费看| 多毛熟女@视频| 天美传媒精品一区二区| 噜噜噜噜噜久久久久久91| 91精品伊人久久大香线蕉| 亚洲国产精品一区三区| 日韩免费高清中文字幕av| 青春草国产在线视频| 亚洲三级黄色毛片| 免费大片黄手机在线观看| 久久精品人妻少妇| 亚洲自偷自拍三级| 亚洲综合精品二区| 狠狠精品人妻久久久久久综合| 99re6热这里在线精品视频| 亚洲一区二区三区欧美精品| 国产黄片美女视频| 在线观看av片永久免费下载| 又粗又硬又长又爽又黄的视频| 亚洲婷婷狠狠爱综合网| 婷婷色av中文字幕| 在线观看人妻少妇| 夫妻性生交免费视频一级片| 亚洲熟女精品中文字幕| 免费av中文字幕在线| 99久久精品国产国产毛片| 成年av动漫网址| www.av在线官网国产| 久久热精品热| 久久久久久伊人网av| 精品少妇久久久久久888优播| 国产精品一区www在线观看| 久久久久久人妻| 人妻一区二区av| 天天躁夜夜躁狠狠久久av| 2018国产大陆天天弄谢| a 毛片基地| 亚洲国产毛片av蜜桃av| 国产男女超爽视频在线观看| 蜜臀久久99精品久久宅男| 精品一区二区免费观看| 日韩强制内射视频| 国产在视频线精品| 午夜精品国产一区二区电影| av视频免费观看在线观看| 亚洲精品aⅴ在线观看| 久久久国产一区二区| 97热精品久久久久久| 在线亚洲精品国产二区图片欧美 | 中文精品一卡2卡3卡4更新| 亚洲高清免费不卡视频| 少妇 在线观看| 尤物成人国产欧美一区二区三区| 亚洲精品一二三| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| 黄色日韩在线| 18禁在线播放成人免费| 国产日韩欧美在线精品| 日韩伦理黄色片| 99久久精品国产国产毛片| 久久久欧美国产精品| 观看av在线不卡| 国语对白做爰xxxⅹ性视频网站| 久热这里只有精品99| 五月伊人婷婷丁香| 精品一区二区三区视频在线| 久久精品国产亚洲av涩爱| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 国产欧美亚洲国产| 一边亲一边摸免费视频| 久久久久久久久久久丰满| 久久久亚洲精品成人影院| 啦啦啦视频在线资源免费观看| 成人美女网站在线观看视频| 深夜a级毛片| 夜夜骑夜夜射夜夜干| 免费看不卡的av| 视频区图区小说| 在线 av 中文字幕| 国产男女超爽视频在线观看| 2018国产大陆天天弄谢| 亚洲欧美一区二区三区国产| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜添av毛片| 身体一侧抽搐| 久久99热这里只有精品18| 久久久久人妻精品一区果冻| 国产免费一区二区三区四区乱码| 日日啪夜夜爽| 黄色配什么色好看| 免费播放大片免费观看视频在线观看| 免费观看性生交大片5| 啦啦啦啦在线视频资源| 国产毛片在线视频| 哪个播放器可以免费观看大片| 女人十人毛片免费观看3o分钟| 蜜桃久久精品国产亚洲av| 国产在线免费精品| 亚洲国产av新网站| 天天躁日日操中文字幕| 伊人久久国产一区二区| 国产熟女欧美一区二区| 亚洲av.av天堂| 夜夜骑夜夜射夜夜干| 黄色欧美视频在线观看| 高清黄色对白视频在线免费看 | 在线播放无遮挡| 亚洲av国产av综合av卡| 一级二级三级毛片免费看| 干丝袜人妻中文字幕| 国产在线免费精品| 日本vs欧美在线观看视频 | 国产成人免费观看mmmm| 亚洲精品久久午夜乱码| 国产69精品久久久久777片| 欧美一级a爱片免费观看看| 亚洲色图av天堂| 男女啪啪激烈高潮av片| 菩萨蛮人人尽说江南好唐韦庄| 亚洲,一卡二卡三卡| 免费看日本二区| 看免费成人av毛片| 少妇人妻一区二区三区视频| 一区二区三区四区激情视频| 欧美 日韩 精品 国产| 内射极品少妇av片p| 婷婷色综合大香蕉| 精品少妇久久久久久888优播| 国产精品伦人一区二区| 国产成人精品福利久久| 看非洲黑人一级黄片| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| 黄色日韩在线| 日韩三级伦理在线观看| 亚洲精品中文字幕在线视频 | 男女边摸边吃奶| 日韩欧美精品免费久久| 国产成人精品福利久久| 日本av手机在线免费观看| 大又大粗又爽又黄少妇毛片口| 搡女人真爽免费视频火全软件| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 人人妻人人添人人爽欧美一区卜 | 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩另类电影网站 | 久久6这里有精品| 久久婷婷青草| 国产亚洲91精品色在线| 免费黄频网站在线观看国产| 一区二区av电影网| 纯流量卡能插随身wifi吗| freevideosex欧美| 国产精品一区www在线观看| 国产精品一区二区在线观看99| 中国国产av一级| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 欧美成人精品欧美一级黄| 男人舔奶头视频| 日本一二三区视频观看| 欧美日韩综合久久久久久| 久久久久久久精品精品| 日日摸夜夜添夜夜添av毛片| 噜噜噜噜噜久久久久久91| 黄色欧美视频在线观看| 日韩中文字幕视频在线看片 | 一级片'在线观看视频| 亚洲精品一区蜜桃| 国产伦精品一区二区三区视频9| 国产亚洲一区二区精品| 日日啪夜夜撸| 日韩 亚洲 欧美在线| 免费观看在线日韩| 精品久久久久久久末码| 国产精品.久久久| 我要看日韩黄色一级片| 97超碰精品成人国产| 一级片'在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 美女主播在线视频| 亚洲成人一二三区av| 天天躁夜夜躁狠狠久久av| 毛片女人毛片| 欧美三级亚洲精品| 97热精品久久久久久| 精品酒店卫生间| 成人漫画全彩无遮挡| 日韩电影二区| 有码 亚洲区| 亚洲av成人精品一区久久| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕亚洲精品专区| 精品人妻视频免费看| 最近的中文字幕免费完整| 日本黄大片高清| 亚洲综合精品二区| 日本免费在线观看一区| 婷婷色综合www| 久久久久久久久久久免费av| 久久6这里有精品| 欧美人与善性xxx| 激情 狠狠 欧美| 久久久精品免费免费高清| 大码成人一级视频| 精品久久久噜噜| 亚洲国产精品专区欧美| 97在线人人人人妻| 99久久中文字幕三级久久日本| 欧美成人午夜免费资源| 日韩制服骚丝袜av| 丝瓜视频免费看黄片| 看非洲黑人一级黄片| 美女视频免费永久观看网站| 精品久久久久久久久亚洲| 韩国高清视频一区二区三区| 亚洲精品日韩在线中文字幕| 少妇人妻精品综合一区二区| 亚洲精品日韩在线中文字幕| 国产美女午夜福利| 男人舔奶头视频| 国产精品99久久99久久久不卡 | 国产黄片美女视频| 国产免费一区二区三区四区乱码| 色网站视频免费| 一区二区三区免费毛片| 99精国产麻豆久久婷婷| 丰满少妇做爰视频| av.在线天堂| 一本久久精品| 欧美xxⅹ黑人| 国产精品久久久久久精品电影小说 | 精品国产三级普通话版| 熟妇人妻不卡中文字幕| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片| 精华霜和精华液先用哪个| 妹子高潮喷水视频| 3wmmmm亚洲av在线观看| 午夜精品国产一区二区电影| 草草在线视频免费看| 高清毛片免费看| 26uuu在线亚洲综合色| 欧美成人精品欧美一级黄| 亚洲成人中文字幕在线播放| 狠狠精品人妻久久久久久综合| 日韩中字成人| 久久精品国产a三级三级三级| 国产精品av视频在线免费观看| 国产爽快片一区二区三区| 日本午夜av视频| 国产精品久久久久久久久免| 看非洲黑人一级黄片| 狠狠精品人妻久久久久久综合| 久久精品国产自在天天线| 亚洲av不卡在线观看| 婷婷色综合大香蕉| 久久精品国产a三级三级三级| 久久久成人免费电影| 国产乱人偷精品视频| 亚洲av男天堂| 一级爰片在线观看| 十分钟在线观看高清视频www | 免费看不卡的av| 激情 狠狠 欧美| 久久av网站| 深爱激情五月婷婷| 黄色一级大片看看| av国产久精品久网站免费入址| 欧美日韩综合久久久久久| 一本久久精品| 国产女主播在线喷水免费视频网站| 男人爽女人下面视频在线观看| 欧美精品人与动牲交sv欧美| a级毛色黄片| 国产真实伦视频高清在线观看| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件| 国产一区二区三区av在线| 成年免费大片在线观看| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| 七月丁香在线播放| 成年女人在线观看亚洲视频| 国产高清国产精品国产三级 | videossex国产| 老司机影院毛片| 亚洲精品国产av成人精品| 精品熟女少妇av免费看| 欧美xxxx性猛交bbbb| 这个男人来自地球电影免费观看 | 亚洲精品色激情综合| 国产精品麻豆人妻色哟哟久久| 免费不卡的大黄色大毛片视频在线观看| 国产v大片淫在线免费观看| 精品人妻偷拍中文字幕| 国产69精品久久久久777片| 哪个播放器可以免费观看大片| 久久久久久人妻| 高清日韩中文字幕在线| 亚洲丝袜综合中文字幕| 一级毛片久久久久久久久女| 伦理电影大哥的女人| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久电影| 国产淫片久久久久久久久| 日韩一本色道免费dvd| 色视频www国产| 亚洲天堂av无毛| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美在线精品| 激情 狠狠 欧美| 国产一区二区三区综合在线观看 | 人妻夜夜爽99麻豆av| 久久精品夜色国产| 日本色播在线视频| 精品亚洲成a人片在线观看 | 日韩,欧美,国产一区二区三区| 天天躁日日操中文字幕| 高清黄色对白视频在线免费看 | 日韩在线高清观看一区二区三区| 亚洲,一卡二卡三卡| 久久国产精品大桥未久av | 久久精品国产亚洲网站| 国产午夜精品久久久久久一区二区三区| 女的被弄到高潮叫床怎么办| 国产精品一及| 80岁老熟妇乱子伦牲交| 一级毛片久久久久久久久女| 老司机影院毛片| 国产精品嫩草影院av在线观看| 亚洲精品aⅴ在线观看| 99热这里只有是精品在线观看| 欧美bdsm另类| 观看免费一级毛片| 精品久久久久久久久av| 欧美人与善性xxx| 六月丁香七月| 高清黄色对白视频在线免费看 | 日日摸夜夜添夜夜添av毛片| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区黑人 | 99久久精品一区二区三区| 久久人人爽av亚洲精品天堂 | 亚洲精品日本国产第一区| 亚洲精品久久久久久婷婷小说| 嘟嘟电影网在线观看| 久久久久久伊人网av| 国产欧美日韩精品一区二区| 最近中文字幕高清免费大全6| 人体艺术视频欧美日本| 国产人妻一区二区三区在| 免费人妻精品一区二区三区视频| 国产爽快片一区二区三区| 日韩三级伦理在线观看| 欧美老熟妇乱子伦牲交| 六月丁香七月| 日韩人妻高清精品专区| 国产v大片淫在线免费观看| 七月丁香在线播放| 人人妻人人看人人澡| 女人十人毛片免费观看3o分钟| 免费观看av网站的网址| 国产视频内射| 国产精品一及| 日韩在线高清观看一区二区三区| 六月丁香七月| 男女边摸边吃奶| 欧美日韩亚洲高清精品| 国产男人的电影天堂91| 麻豆成人av视频| 丰满少妇做爰视频| 亚洲精品日韩在线中文字幕| 国产深夜福利视频在线观看| 日韩av免费高清视频| 精品少妇黑人巨大在线播放| 国产精品久久久久成人av| 久久久午夜欧美精品| 欧美极品一区二区三区四区| 大片电影免费在线观看免费| 日本黄色日本黄色录像| 在现免费观看毛片| av免费观看日本| 成人美女网站在线观看视频| 青青草视频在线视频观看| 人体艺术视频欧美日本| 日韩一区二区三区影片| 亚洲伊人久久精品综合| 人人妻人人看人人澡| 毛片一级片免费看久久久久| 在线观看av片永久免费下载| 99热这里只有精品一区| 亚洲欧洲日产国产| 亚洲中文av在线| 亚洲欧美清纯卡通| 国产亚洲5aaaaa淫片| 97在线人人人人妻| 在线观看国产h片| 色网站视频免费| 99热全是精品| 日日撸夜夜添| 日韩在线高清观看一区二区三区| 能在线免费看毛片的网站| 这个男人来自地球电影免费观看 | 性色av一级| 99久久中文字幕三级久久日本| 97超碰精品成人国产| 成人无遮挡网站| 91午夜精品亚洲一区二区三区| 亚洲精品国产av蜜桃| 2018国产大陆天天弄谢| 精品酒店卫生间| 国产人妻一区二区三区在| 久久精品久久久久久噜噜老黄| 久久婷婷青草| 91精品国产国语对白视频| 亚洲av欧美aⅴ国产| 久久久久久人妻| 久久久精品94久久精品| 一个人看的www免费观看视频| 亚洲人与动物交配视频| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 春色校园在线视频观看| 亚洲熟女精品中文字幕| 日韩电影二区| 国产精品久久久久久av不卡| 亚洲精品日韩在线中文字幕| 涩涩av久久男人的天堂| 免费大片18禁| 精品熟女少妇av免费看| 欧美 日韩 精品 国产| 国产男女内射视频| 精品酒店卫生间| 最近的中文字幕免费完整| 亚洲综合色惰| 国产成人一区二区在线| 五月天丁香电影| 免费观看a级毛片全部| 男人添女人高潮全过程视频| 卡戴珊不雅视频在线播放| 久久久亚洲精品成人影院| 久久久久久久久久久丰满| 青春草亚洲视频在线观看| 日本免费在线观看一区| 如何舔出高潮| 亚洲欧洲日产国产| 黑丝袜美女国产一区| 色视频www国产| 国产亚洲91精品色在线| 成人免费观看视频高清| 久久久久国产精品人妻一区二区| 久久久久久久久大av| 日韩成人伦理影院| 热99国产精品久久久久久7| 久久精品国产自在天天线| 少妇的逼水好多| 一本久久精品| av国产免费在线观看| 久久精品熟女亚洲av麻豆精品| 六月丁香七月| 中文欧美无线码| 中文字幕久久专区| 国产免费视频播放在线视频| 午夜福利在线在线| 国产日韩欧美在线精品| 卡戴珊不雅视频在线播放| 国产极品天堂在线| 丝袜喷水一区| 日本av手机在线免费观看| 国产永久视频网站| 中文在线观看免费www的网站| 视频中文字幕在线观看| 国产高潮美女av| 高清在线视频一区二区三区| 午夜免费鲁丝| 国产乱人视频| 精品亚洲成a人片在线观看 | 欧美xxⅹ黑人| 成年av动漫网址| 18禁在线播放成人免费| 日韩欧美 国产精品| 日日啪夜夜爽| 久久精品久久精品一区二区三区|