• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Derived sequences and the factor spectrum of the period-doubling sequence

    2021-02-23 12:07:14黃煜可,文志英

    we define ω[i,j]=ω[i;j-i+1]=xx···xx. By convention,ω[i]=ω[i,i]=ω[i;1]=xand ω[i,i-1]=ω[i;0]=ε(the empty word). We call ω[i,j]a factor of ω,denoted by ω[i,j]?ω.The position of factor ω[i,j] in ω is defined to be i. Let ρ be a recurrent sequence and let P be a property. Then, a fundamental problem is finding out all factors ω in the sequence ρ and positions n ∈N such that the occurrence of ω starting at position n fulfills the property P. For solving this problem, we have introduced the factor spectrum [16], as follows:

    Definition 1.1 Letting ρ be a recurrent sequence and letting P be a property,the factor spectrum related to ρ and P is defined as

    where Ωis the set of all factors in ρ.

    Notice that there is a slight difference from the definition of the factor spectrum given in Huang-Wen [16]. The definition here is more convenient for broad application.

    For a given sequence ρ and a property P, determining the factor spectrum is a difficult problem in general. We need not only find all positions of each factor ω ∈Ωin the sequence ρ, but we should know if the occurrence of ω starting at position n satisfies the property P. Wen-Wen [23] considered some special factors of the Fibonacci sequence, called singular words,and discussed the recurrent structure and derived sequence for each singular word,then established a decomposition by the singular words. By these results, we can determine the factors having given properties,but we do not discuss the corresponding factor spectrum. For a general primitive substitution, Durand[5] introduced return words and a derived sequence,but that is not enough to determine the factor spectrum, since we need to know the structures and properties of the return words and derived sequences. Based on the singular words,Huang-Wen[13]considered general factors of the Fibonacci sequence and introduced the notion of the kernel word,which plays an essential role in these studies. By developing some new ideas and related techniques, some typical factor spectra were determined, and some interesting applications obtained [12, 15, 17]. Huang-Wen generalized the results to the Tribonacci sequence [14]; for some other cases, see [12, 17].

    1.1 Example 1: about two variables of the factor spectrum

    This example shows that, given a property P and a factor ω,at some position, ω fulfils the property P, and for some other positions, ω does not fulfil the property P. Thus, whether a factor fulfils a property depends on its position.

    Let A = {a,b} be a binary alphabet. The period-doubling sequence D is the fixed point of the substitution σ(a) = ab and σ(b) = aa beginning with the letter a, which is a recurrent sequence. Let Pbe a property called a“square”such that(ω,n)∈Spt(P)means D[n;2|ω|]=ωω. Take ω = ab for instance. It is easy to check that ωω = abab is a square in D. However,not all occurrences of ab in D satisfy property P. Using factor spectrum, we can distinguish the occurrences of the same factor in different positions:

    We let notations [1] to [5] denote the first five occurrences of ω in Equation (1.2). Thus the

    1.2 Example 2: visualization of the factor spectrum

    In Figure 1(a), we visualize the factor spectra for factor ω = ab and properties P(i =1,2,3), which are colored grey, orange and red, respectively. For instance, the grey cell in line 1 column 1 means that a factor ω = ab occurs at position n = 1. Moreover, the cell in line 2 column 1 is white; this means the factor ω = ab that occurs at position n = 1 is not followed by another ω =ab, i.e., square ωω =abab does not exist at this position. Notice that,if (ω,n) ∈Spt(P), then (ω,n) ∈Spt(P) for i = 2,3. Thus we can put the three lines in Figure 1(a) in just one line. Therefore we obtain a more simple visualization of the factor spectra; see Figure 1(b).

    Figure 1 (Color online) The factor spectra for a fixed factor and several progressive properties

    The above analysis is about a fixed factor and several progressive properties. We can also study the factor spectrum for a fixed property and several factors. In Figure 2, we consider several prefixes of D and property P. Obviously,there exist some relations among the positions n where they occur. In particular, the set {n | (ω,n) ∈Spt(P),ω = abaaaba[1,h]} is the same for 4 ≤h ≤7.

    Figure 2 The factor spectrum for property P1 and several prefixes of D

    1.3 Organization of the paper

    In this paper, we will study the factor spectrum of the period-doubling sequence; this is a typical sequence generated by 2-automatons and appears often in number theory,mathematical physics and dynamical systems. For this sequence, the methods mentioned in Wen-Wen [23]and Huang-Wen [13, 14] are not valid. In Sections 2 to 6, some new ideas, containing new terms such as envelope word and envelope of a factor,and techniques will be introduced. These can be used to give the structure and some important properties of return words and derived sequences of the period-doubling sequence D. Then we will find the local structure near each occurrence of ω in D. In Section 7, using the results obtained, we determine the factor spectra in D for some typical properties. Section 8 is devoted to establishing the reflexivity property of derived sequences which characterise the structure of the derived sequences.

    2 The Return Word and Derived Sequence of D

    Wen-Wen [23] and Huang-Wen [13, 14] proved that for any factor, a derived sequence of the Fibonacci sequence (resp. the Tribonacci sequence) over any factor ω is still the Fibonacci sequence (resp. the Tribonacci sequence) itself. Using these properties, we determined the numbers of palindromes, squares and cubes occurring in each factor of F and T; see [15] for more details. These topics are of great importance in computer science.

    For the period-doubling sequence D though, there are two difficulties. First, the main tool of [13, 14] is the kernel word. However, in the study of the period-doubling sequence D, the technique of kernel words fails. In fact, there is no well-defined kernel set in D. To overcome this difficulty, we introduce two new notions: the envelope word and the envelope of a factor(see Equations (3.3) and (3.4)). Second, the derived sequences of D over two distinct factors may be different (see examples in Equations (3.1) and (3.2)). Fortunately, we can divide set Ωinto two types, each type corresponding to one derived sequence.

    2.1 The return word and derived sequence

    We call a non-empty word ν a prefix(resp. suffix)of a word ω if there exists a word u such that ω = νu (resp. ω = uν), which is denoted by ν ?ω (resp. ν ?ω). In this case, we write νω = u (resp. ων= u), where νis the inverse word of ν such that νν= νν = ε.A palindrome is a finite word that reads the same backwards as forwards. Let ρ be a recurrent sequence,and let ω and W be two factors of ρ. We let ωdenote the p-th occurrence of ω,and we let(ω)denote the position of ω. We note that ω=Wif ω =W and(ω)=(W). Moreover,we note that ω?Wif ω ?W and that (W)≤(ω)<(ω)+|ω|-1 ≤(W)+|W|-1.

    The definitions of both the return word and the derived sequence are from Durand [5].We recall them below. Notice that Durand gave these notions for all prefixes of any recurrent sequence (but we find these notions are fit for all non-empty factors).

    Let ρ be a recurrent sequence and let ω be a non-empty factor of ρ. We call ρ[(ω),(ω)-1] the p-th return word over ω, denoted by R(ω). Denote by Hthe set of return words over factor ω ?ρ. Then the sequence ρ can be written in a unique way as a concatenation ρ=ρ[1,(ω)-1]R(ω)R(ω)···,where R(ω)∈H. By convention,we denote R(ω)=ρ[1,(ω)-1], which is not a return word. Let us give to Hthe linear order defined by the rank of the first occurrence in ρ. This defines a one to one and onto map Λ: H→{1,...,Card(H)}=:N, and the sequence

    This sequence of alphabet Nis called a derived sequence of ρ. Notice that we omit the prefix ρ[1,(ω)-1]. Moreover, we let Θ:N→Hdenote the reciprocal map of Λ.

    The main result of Durand [5] is that a sequence ρ is substitutive primitive if and only if the number of its different derived sequences is finite. The other property is that for any ω ?ρ and v ?D(ρ), there exists a factor μ ?ρ such that derived sequence is D(D(ρ)) = D(ρ);see Proposition 6(5) in [5]. By the two properties, for any ω ?ρ, the derived sequence D(ρ)is still substitutive primitive.

    2.2 The period-doubling sequence

    Let A={a,b}be a binary alphabet. We define·:A →A by a=b and b=a. The perioddoubling sequence D has been heavily studied in mathematics and computer science. Damanik[7] determined the numbers of palindromes, squares and cubes of length n occurring in D.Allouche-Peyri`ere-Wen-Wen[2] proved that all the Hankel determinants of D are odd integers.We also refer readers to [1, 4, 6, 8-11, 18, 22]. We denote A= σ(a) and B= σ(b)for m ≥0. Then |A| = |B| = 2. Let δ∈{a,b} be the last letter of A. Obviously,δ=a if and only if m is even,and δis the last letter of B. Moreover Aδ=Bδ.Let Rand Rbe two words over the alphabet A. The period-doubling sequence over the alphabet{R,R} is denoted by D(R,R). The sequence D can be written in a unique way as a concatenation D = R(ω)R(ω)R(ω)···. The sequence D(D) = {Λ(R(ω))}is the derived sequence over factor ω.

    3 Research Ideas, Definitions and Main Results

    As mentioned earlier, derived sequences of D over two distinct factors may be different.Take factors b and aa for instance. By the definition of a return word, R(b) = baaa and R(b) = ba. Furthermore, we denote Λ(R(b)) = α and Λ(R(b)) = β. Then the derived sequence over factor b is D(D)=D(α,ββ); see Equation (3.1).

    Obviously, The derived sequences D(D) and D(D) are different. In order to accurately describe the derived sequence D(D) for any factor ω,we give two types of special factors in D,called the envelope words (see Definition 3.1). These satisfy the following properties: (1) The derived sequence over any envelope word of type 1 is D(α,ββ)and the derived sequence over any envelope word of type 2 is D(αβ,αγαγ) (see Theorem 3.2); (2) There exists a unique envelope for each factor, denoted by Env(ω), and the difference (ω)-(Env(ω))=(ω)-(Env(ω))is independent of p (see Theorem 3.5).

    Table 1 The first few letters of D, D(α,ββ) and D(αβ,αγαγ)

    Table 2 The first few values of Am, Bm, E1m and E2m

    Theorem 3.2 (Derived sequence over envelope word) For any m ≥1, we have the derived sequence D(D)=D(α,ββ) and the derived sequence D(D)=D(αβ,αγαγ).

    where 0 ≤j ≤|Env(ω)|-|ω|, |u| =j, u ?Env(ω) and ν ?Env(ω). In fact, j is unique for any fixed ω, i.e., each factor ω in D occurs exactly once in Env(ω) (see Lemma 5.3).

    Figure 3 The relation between Env(ωp) and Env(ω)p, where ω =baa and Env(ω)=E13 =abaaaba

    Theorem 3.5 (The relation between Env(ω) and Env(ω))

    For all (ω,p)∈Ω×N, Env(ω)=Env(ω).

    Theorem 3.5 plays an important role in our studies. Using Theorem 3.5, we can extend derived sequences of D from envelope words (Theorem 3.2) to general factors (Theorem 3.6).The proof of Theorem 3.5 will be given in Section 5.

    Theorem 3.6 (Derived sequence over any factor) For any factor ω ?D, we have that:(1) if there exists an integer m ≥1 such that Env(ω) = E, we get the derived sequence D(D) = D(α,ββ); (2) if there exists an integer m ≥1 such that Env(ω) = E, we get the derived sequence D(D)=D(αβ,αγαγ).

    The proofs of Theorem 3.6 will be given in Section 6,as well as the more accurate expressions of R(ω) for ω ?D and p ≥1. As an application of Theorem 3.6, we give the positions of all occurrences of ω in D.

    The other two results in this paper are as follows:

    (1) Using the structures of derived sequences, we determine the factor spectra for some combinatorial properties (see Section 7).

    (2) For any ω ?D and v ?D(D), the derived sequence D(D(D)) is still D(α,ββ) or D(αβ,αγαγ). We call this the reflexivity property of a derived sequence (see Section 8).

    4 Proof of Theorem 3.2

    Our goal in this section is to prove a more accurate form of Theorem 3.2 as below, which determines the derived sequences for all envelope words. We can see Equation (3.2) as an example.

    Let ω be a factor of a sequence ρ. How do we determine all occurrences of ω in ρ? An immediate method is to check whether or not ρ[i,i+|ω|-1]is equal to ω for all i ≥1. Letting u be a proper factor of ω, we have that 0 <|u| <|ω|, and there exist two words μ and ν subject to ω = μuν. If we already know all positions of u in ρ, we can discover all ω by a simpler method, called the factor extending method. This method works due to the fact that if ω occurs at position L, then u occurs at position L+|μ|; i.e.,

    Thus an occurrence of u can extend to ω if and only if this u is preceded by the word μ and followed by the word ν. In this case, we say the factor u at this position can extend to a ω.

    Lemma 4.1 Aoccurs exactly twice in both AAand ABAfor m ≥0.

    Proof The result is clearly true for m = 0. Assume that the result is true for m. Then all positions of Ain AAand ABAare shown with underbrace, as below.

    Among these, only the Aat positions [1], [2], [3] and [6] are followed by B. By the factor extending method, A= ABoccurs twice in both AAand ABA.Thus the conclusion holds for m ≥0, by induction.□

    (2) The proof can be obtained by an analogous argument.□

    5 Proof of Theorem 3.5

    Theorem 3.5 is equivalent to stating that the difference

    is independent of p, where integer j is given in Equation (3.5).

    By Equation(3.5),for all p ≥1,there exists an integer q ≥p such that(ω)-(Env(ω))=j.In fact, if a word Env(ω) occurs at position L, a word ω occurs at position L+j. In order to prove Theorem 3.5, i.e., q =p, we only need to prove Proposition 5.1, below.

    Proposition 5.1 Every occurrence of ω in the period-doubling sequence is preceded by word u and followed by word ν, where the words u and ν are given in Equation (3.5). This means that every occurrence of ω can extend to a Env(ω).

    We first list all factors with envelope E(m = 1,2). We can check them one by one to prove Proposition 5.1 for m=1,2.

    In order to prove Proposition 5.1 for m ≥3, we first give two lemmas.

    Lemma 5.2 Let ω be a factor of D. (1) If there exists an integer m ≥3 such that Env(ω)=E, then ω must contain at least one element in set

    Figure 4 Fine structures of E1m and E2m for m ≥3

    This completes the proof.□

    Lemma 5.3 Each factor ω in the period-doubling sequence D occurs exactly once in Env(ω). Thus, for each factor ω, there exists one and only one integer j such that ω =Env(ω)[j+1,j+|ω|].

    Proof This conclusion can be checked easily for m = 1,2. For m ≥3, we first consider the case that Env(ω) = E. By Lemma 4.1, all positions of Ain Eare shown with underbrace, as below.

    The proofs of other cases can be obtained by analogous arguments.□

    By Lemmas 5.2 and 5.3 above, in order to prove Proposition 5.1 for m ≥3, we only need to prove Proposition 5.4 for m ≥3, as below.

    (2) The proof can be obtained by an analogous argument.□

    6 Proof of Theorem 3.6

    In this section, we let W denote Env(ω), for short. For all p ≥1,the p-th return word of ω(resp. Env(ω)=W) is R(ω)=D[(ω),(ω)-1] (resp. R(W)=D[(W),(W)-1]).Let ω ?D have the expression in Equation (3.5), i.e., ω =W[j+1,j+|ω|] and W =u·ω·ν,where 0 ≤j ≤|W|-|ω| and |u|=j. By Figure 5, |R(W)|>|u|=j. Thus u ?R(W) for all p ≥1.

    Figure 5 If |RD,p(W)|≤|u| for some p ≥1, both ωp and ωp+1 occur in Wp+1,contradicting Lemma 5.3

    By Theorem 3.5, (ω)-(W)=j for all p ≥1. Thus

    An immediate corollary of Equation (6.1) is (ω)-(ω)= |R(ω)| = |R(W)| for p ≥1 (see Figure 6 for instance, where j =1 and u=a).

    Figure 6 The first few return words of ω =baa and W =Env(ω)=abaaaba

    Since u is only dependent on ω, R(ω) = R(ω) if and only if R(W) = R(W)for any p /= q. By the definitions of a derived sequence and map Λgiven in Section 1,D(D)=D(D).

    Thus we extend Theorem 3.2 to Theorem 3.6.□where D(α,ββ)[1,p-1]is the prefix of sequence D(α,ββ)with length p-1,and|D(α,ββ)[1,p-1]|is the number of letter α occurring in D(α,ββ)[1,p-1]. The second equality holds by Theorem 3.6’. The third equality holds by |D(α,ββ)[1,p-1]|+|D(α,ββ)[1,p-1]|=p-1.(2) By an analogous argument, we obtain the conclusion for Env(ω)=E.□Taking ω =b and Env(b)=E, for instance, {(b)|p ≥1}={2,6,8,10,14,18,22,24,...},by Proposition 6.1. We can check this conclusion by Equation (3.1).

    7 The Factor Spectra of D

    Obviously, property Pis the same as P(called a “square”) defined in Section 1.

    In Section 7.1, we first find out all ωsatisfying these properties using the structure of derived sequences(Theorem 3.6’). Thus we can refine some classical conclusions. In Section 7.2,using the positions of all occurrences of ω (Proposition 6.1), we give the factor spectra of properties P(i=1,2,3) for all factors with length 2for m ≥0.

    7.1 Three combinatorics properties

    Figure 7 Several subsets of (ΩD,N)

    Theorem 7.1 (1) ω∈Pif and only if (ω,p)∈S∪S∪S;

    (2) ω∈Pif and only if (ω,p)∈S; (3) ω∈Pif and only if (ω,p)∈S∪S.

    Similarly, we can obtain the conclusion in other cases.□

    7.2 The factor spectra

    Using the factor spectra of properties P(occurrence), P(square), P(cube), we can refine these classical conclusions. In Figure 8,we visualize the factor spectra for all factors with lengths 2(m=0,1,2) and properties P(i=1,2,3), these are colored grey, orange and red,respectively.

    Figure 8 (Color online) The factor spectra for all factors with lengths 2m (m=0,1,2) and properties Pi (i=1,2,3)

    7.3 Further research

    So far, we have found the factor spectrum by the structure of derived sequences. The process is quite complicated. Notice that the visualization of the factor spectrum has some fractal properties,in particular,has some self-similar structure. We wish,in future research,to find out a finite generation rule of the factor spectrum, and to treat more general sequences by more general methods.

    8 The Reflexivity of Derived Sequences

    Define three alphabets A = {a,b}, B = {α,β} and C = {α,β,γ}. Define map τ: A →B by τ(a) = α and τ(b) = ββ. Define map τ: A →C by τ(a) = αβ and τ(b) = αγαγ.Obviously, τ(D)=D(α,ββ) and τ(D)=D(αβ,αγαγ). Thus we can rewrite Theorem 3.6.

    Theorem 3.6” For ω ?D and Env(ω)=E(k =1,2),the derived sequence is D(D)=τ(D).

    Table 3 The first few values of kEim for k,i=1,2

    We omit the proof, which is quite simple but tedious in terms of notation. More accurate expressions are given in Proposition 8.3. For ease of understanding, we show the reflexivity relations among D, τ(D) and τ(D) in Figure 9, and give four examples in Figure 10.

    Figure 9 The reflexivity of derived sequences. For instance, the edge“Dτ1(D)=D(α,ββ)” means that for any ω ?D, if Env(ω)=E1m,then the derived sequence is Dω(D)=τ1(D)=D(α,ββ)

    Figure 10 Four examples of derived sequences in τ1(D) and τ2(D)

    天堂中文最新版在线下载| 一区二区三区国产精品乱码| 午夜激情av网站| 国产在线一区二区三区精| 99re6热这里在线精品视频| 人成视频在线观看免费观看| 亚洲精品国产一区二区精华液| 在线观看舔阴道视频| 老熟妇仑乱视频hdxx| 亚洲成人国产一区在线观看| 高清毛片免费观看视频网站 | 国产精品.久久久| 香蕉国产在线看| 丰满人妻熟妇乱又伦精品不卡| 欧美 亚洲 国产 日韩一| 精品人妻1区二区| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区| 午夜久久久在线观看| 午夜福利影视在线免费观看| 丁香欧美五月| 久久久久久久精品吃奶| 丰满人妻熟妇乱又伦精品不卡| 美女国产高潮福利片在线看| 一区二区日韩欧美中文字幕| 国产成人影院久久av| 亚洲欧洲日产国产| 亚洲三区欧美一区| 蜜桃在线观看..| 一级,二级,三级黄色视频| 老司机午夜福利在线观看视频 | 建设人人有责人人尽责人人享有的| 亚洲av第一区精品v没综合| 国产一区二区三区综合在线观看| 另类亚洲欧美激情| 一进一出好大好爽视频| 亚洲精品美女久久av网站| 丝袜美腿诱惑在线| 国产精品 国内视频| 一区在线观看完整版| 可以免费在线观看a视频的电影网站| 欧美日韩亚洲国产一区二区在线观看 | 男女免费视频国产| 久久精品91无色码中文字幕| 99精品久久久久人妻精品| av网站在线播放免费| 自拍欧美九色日韩亚洲蝌蚪91| 伦理电影免费视频| 少妇 在线观看| 考比视频在线观看| 欧美日韩视频精品一区| 国精品久久久久久国模美| 蜜桃国产av成人99| 欧美日韩中文字幕国产精品一区二区三区 | 免费久久久久久久精品成人欧美视频| 亚洲欧洲精品一区二区精品久久久| 18禁观看日本| 蜜桃国产av成人99| 日本五十路高清| 欧美午夜高清在线| 亚洲av电影在线进入| 母亲3免费完整高清在线观看| 超色免费av| 亚洲一区二区三区欧美精品| 亚洲国产看品久久| 久久狼人影院| 亚洲欧美色中文字幕在线| av天堂在线播放| 亚洲第一av免费看| 十八禁网站免费在线| 国产亚洲精品久久久久5区| 久久精品成人免费网站| 国产成人一区二区三区免费视频网站| 欧美另类亚洲清纯唯美| 丁香六月欧美| 老熟妇乱子伦视频在线观看| 亚洲全国av大片| 久久亚洲精品不卡| 成在线人永久免费视频| 国产精品偷伦视频观看了| 欧美黄色淫秽网站| 高潮久久久久久久久久久不卡| 精品国产超薄肉色丝袜足j| 午夜福利,免费看| 亚洲色图 男人天堂 中文字幕| 免费在线观看日本一区| 新久久久久国产一级毛片| 欧美日韩亚洲综合一区二区三区_| 国产单亲对白刺激| 一二三四在线观看免费中文在| 午夜福利一区二区在线看| 男女边摸边吃奶| 久久影院123| 国产一区二区三区视频了| 老汉色av国产亚洲站长工具| 性少妇av在线| 久热爱精品视频在线9| 欧美老熟妇乱子伦牲交| 一进一出抽搐动态| 岛国在线观看网站| 久久av网站| 男人操女人黄网站| 欧美人与性动交α欧美软件| 91麻豆精品激情在线观看国产 | 国产亚洲欧美在线一区二区| 桃花免费在线播放| 国产精品国产高清国产av | 精品福利永久在线观看| 人人妻人人添人人爽欧美一区卜| 极品少妇高潮喷水抽搐| 一级片免费观看大全| 国产精品一区二区在线不卡| 女人被躁到高潮嗷嗷叫费观| 狠狠婷婷综合久久久久久88av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一卡2卡三卡4卡5卡| 黄片小视频在线播放| 69精品国产乱码久久久| 欧美国产精品va在线观看不卡| 国产精品久久久人人做人人爽| 青草久久国产| 免费一级毛片在线播放高清视频 | 法律面前人人平等表现在哪些方面| 亚洲欧美日韩另类电影网站| 色94色欧美一区二区| 日韩大片免费观看网站| 国产精品免费视频内射| 国产三级黄色录像| 高清av免费在线| 女同久久另类99精品国产91| 国产精品一区二区在线观看99| 精品久久蜜臀av无| 国产日韩欧美视频二区| 精品人妻在线不人妻| 精品国产乱码久久久久久男人| 国产激情久久老熟女| 国产亚洲av高清不卡| 欧美精品高潮呻吟av久久| 国产在线免费精品| av又黄又爽大尺度在线免费看| 色视频在线一区二区三区| 悠悠久久av| 久久中文字幕一级| 久久影院123| 欧美+亚洲+日韩+国产| 深夜精品福利| 女人久久www免费人成看片| av免费在线观看网站| av线在线观看网站| 蜜桃在线观看..| 国产精品一区二区在线观看99| 欧美精品人与动牲交sv欧美| 性少妇av在线| 啦啦啦视频在线资源免费观看| 一二三四在线观看免费中文在| tube8黄色片| 黑丝袜美女国产一区| 久久性视频一级片| 亚洲欧洲日产国产| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品无人区| 久久久精品国产亚洲av高清涩受| 亚洲自偷自拍图片 自拍| 国产免费av片在线观看野外av| 久久久国产成人免费| 国产成+人综合+亚洲专区| h视频一区二区三区| 久久精品亚洲av国产电影网| 中文字幕精品免费在线观看视频| 国产在线视频一区二区| 成人三级做爰电影| 美女视频免费永久观看网站| 国产伦人伦偷精品视频| 午夜免费鲁丝| 国产淫语在线视频| 免费观看a级毛片全部| 欧美久久黑人一区二区| 亚洲av成人一区二区三| 香蕉国产在线看| 少妇的丰满在线观看| 免费一级毛片在线播放高清视频 | 亚洲av成人一区二区三| 亚洲专区中文字幕在线| 亚洲成av片中文字幕在线观看| 亚洲av国产av综合av卡| 国产精品久久电影中文字幕 | 国产精品一区二区免费欧美| 亚洲欧美精品综合一区二区三区| 亚洲第一av免费看| 免费女性裸体啪啪无遮挡网站| 18禁裸乳无遮挡动漫免费视频| 王馨瑶露胸无遮挡在线观看| 老熟女久久久| 国产精品.久久久| 亚洲七黄色美女视频| av线在线观看网站| 色94色欧美一区二区| 午夜老司机福利片| 黑人欧美特级aaaaaa片| 欧美日韩av久久| 国产又色又爽无遮挡免费看| 性色av乱码一区二区三区2| 国产成人免费观看mmmm| 又黄又粗又硬又大视频| 精品亚洲成国产av| 精品久久久久久久毛片微露脸| 欧美日韩一级在线毛片| 亚洲欧美日韩高清在线视频 | 国产av精品麻豆| 久久这里只有精品19| 亚洲国产欧美网| 日韩欧美国产一区二区入口| 国产亚洲欧美在线一区二区| 日本wwww免费看| 人人澡人人妻人| 精品国产亚洲在线| 黄色视频不卡| 伦理电影免费视频| 色在线成人网| 国产国语露脸激情在线看| 亚洲一区中文字幕在线| 大陆偷拍与自拍| 欧美久久黑人一区二区| 久久久精品免费免费高清| 国产成人一区二区三区免费视频网站| 不卡一级毛片| 久久久久久久久久久久大奶| 又黄又粗又硬又大视频| 一个人免费在线观看的高清视频| 日本av手机在线免费观看| 久久国产精品男人的天堂亚洲| 日本av免费视频播放| 久久精品亚洲熟妇少妇任你| 国产男女超爽视频在线观看| av国产精品久久久久影院| 亚洲精品久久成人aⅴ小说| 无人区码免费观看不卡 | 热99re8久久精品国产| 一级a爱视频在线免费观看| 亚洲av日韩精品久久久久久密| 免费av中文字幕在线| 老熟女久久久| 90打野战视频偷拍视频| 一区二区三区精品91| 亚洲欧美精品综合一区二区三区| 国产男靠女视频免费网站| 色94色欧美一区二区| 色精品久久人妻99蜜桃| 久久久精品国产亚洲av高清涩受| 欧美精品av麻豆av| 久热爱精品视频在线9| 考比视频在线观看| 极品教师在线免费播放| 国产精品秋霞免费鲁丝片| 超碰成人久久| 国产一卡二卡三卡精品| 后天国语完整版免费观看| 国产一区二区 视频在线| 亚洲专区国产一区二区| kizo精华| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国内亚洲2022精品成人 | 中文字幕最新亚洲高清| 一二三四在线观看免费中文在| 亚洲第一av免费看| 天天操日日干夜夜撸| 国产精品久久电影中文字幕 | 色视频在线一区二区三区| 女人被躁到高潮嗷嗷叫费观| 露出奶头的视频| 少妇的丰满在线观看| 美女国产高潮福利片在线看| 大香蕉久久成人网| 免费观看a级毛片全部| 成人三级做爰电影| 男男h啪啪无遮挡| 一本—道久久a久久精品蜜桃钙片| 亚洲国产中文字幕在线视频| 一本大道久久a久久精品| 精品亚洲乱码少妇综合久久| 亚洲九九香蕉| 黑丝袜美女国产一区| 精品一区二区三区四区五区乱码| 亚洲中文日韩欧美视频| 国产野战对白在线观看| 国产成人精品无人区| 最新美女视频免费是黄的| 亚洲精品中文字幕在线视频| 美女高潮到喷水免费观看| 国产成人一区二区三区免费视频网站| 一本久久精品| 男女无遮挡免费网站观看| 国产黄频视频在线观看| 色播在线永久视频| 午夜福利乱码中文字幕| 国产色视频综合| 丝袜美足系列| 精品国产一区二区三区四区第35| 黄色视频,在线免费观看| 另类亚洲欧美激情| 18禁国产床啪视频网站| 两性夫妻黄色片| 午夜免费鲁丝| 国产xxxxx性猛交| 黄片大片在线免费观看| 欧美日韩国产mv在线观看视频| 妹子高潮喷水视频| 国产亚洲欧美在线一区二区| 免费不卡黄色视频| 国产精品秋霞免费鲁丝片| 久久精品亚洲av国产电影网| 女性被躁到高潮视频| 两个人免费观看高清视频| 日韩有码中文字幕| 91九色精品人成在线观看| 国产精品免费一区二区三区在线 | 99re6热这里在线精品视频| 一本色道久久久久久精品综合| 欧美人与性动交α欧美软件| 亚洲成人国产一区在线观看| 成人国产av品久久久| 国产精品免费一区二区三区在线 | 久久这里只有精品19| 不卡av一区二区三区| 国产免费av片在线观看野外av| 99香蕉大伊视频| 欧美人与性动交α欧美软件| a级片在线免费高清观看视频| 欧美人与性动交α欧美精品济南到| 午夜福利影视在线免费观看| kizo精华| 夜夜夜夜夜久久久久| 又紧又爽又黄一区二区| 女性生殖器流出的白浆| 亚洲精品国产一区二区精华液| 老汉色∧v一级毛片| 久久人妻熟女aⅴ| 精品第一国产精品| 十八禁高潮呻吟视频| 午夜福利在线观看吧| 真人做人爱边吃奶动态| avwww免费| av福利片在线| 激情在线观看视频在线高清 | 日韩欧美免费精品| 国产精品一区二区免费欧美| 91成人精品电影| 国产黄频视频在线观看| 久久精品亚洲精品国产色婷小说| 亚洲,欧美精品.| aaaaa片日本免费| 黑人巨大精品欧美一区二区mp4| 国产成人精品在线电影| 国产高清videossex| 日韩免费av在线播放| 国产成人精品无人区| xxxhd国产人妻xxx| 啦啦啦免费观看视频1| 日本av免费视频播放| 国产精品熟女久久久久浪| 国产欧美日韩精品亚洲av| 精品欧美一区二区三区在线| 免费在线观看影片大全网站| 欧美在线一区亚洲| 在线观看免费高清a一片| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 日日爽夜夜爽网站| 久久精品国产亚洲av香蕉五月 | 色婷婷av一区二区三区视频| 中文亚洲av片在线观看爽 | 日韩大码丰满熟妇| 成人永久免费在线观看视频 | 日日摸夜夜添夜夜添小说| 久久亚洲精品不卡| 日韩一卡2卡3卡4卡2021年| 成人特级黄色片久久久久久久 | 丰满人妻熟妇乱又伦精品不卡| 午夜免费成人在线视频| 欧美精品一区二区免费开放| 黑人操中国人逼视频| 亚洲,欧美精品.| 老司机福利观看| 嫩草影视91久久| 欧美亚洲 丝袜 人妻 在线| 99国产精品一区二区三区| 欧美激情极品国产一区二区三区| 免费av中文字幕在线| 涩涩av久久男人的天堂| 亚洲天堂av无毛| 亚洲欧美精品综合一区二区三区| 国产av精品麻豆| 窝窝影院91人妻| 久久久欧美国产精品| e午夜精品久久久久久久| 欧美日韩黄片免| 69av精品久久久久久 | 久久人妻福利社区极品人妻图片| 黄色怎么调成土黄色| 国产av一区二区精品久久| 十分钟在线观看高清视频www| 每晚都被弄得嗷嗷叫到高潮| 最近最新免费中文字幕在线| 一本久久精品| 19禁男女啪啪无遮挡网站| 国产人伦9x9x在线观看| 天天影视国产精品| 三级毛片av免费| 久久久久久免费高清国产稀缺| 国产成人精品无人区| 午夜91福利影院| 精品少妇黑人巨大在线播放| 欧美国产精品一级二级三级| 在线观看人妻少妇| 国产极品粉嫩免费观看在线| 麻豆乱淫一区二区| 69av精品久久久久久 | 久久人妻熟女aⅴ| 午夜福利视频精品| 中文字幕人妻丝袜一区二区| 午夜成年电影在线免费观看| tube8黄色片| 国产麻豆69| 每晚都被弄得嗷嗷叫到高潮| 丝袜人妻中文字幕| av不卡在线播放| 精品国内亚洲2022精品成人 | videos熟女内射| 99精品久久久久人妻精品| 亚洲欧美激情在线| 一级片免费观看大全| 高清欧美精品videossex| 午夜福利免费观看在线| 国产成人av激情在线播放| 欧美变态另类bdsm刘玥| 日本vs欧美在线观看视频| 12—13女人毛片做爰片一| 免费人妻精品一区二区三区视频| 欧美激情久久久久久爽电影 | 成人国产av品久久久| 精品国产乱码久久久久久男人| av国产精品久久久久影院| 亚洲综合色网址| 男女免费视频国产| 最近最新中文字幕大全电影3 | 亚洲七黄色美女视频| 99国产精品99久久久久| 久久av网站| 国产精品欧美亚洲77777| videos熟女内射| 精品国产乱码久久久久久小说| 一二三四在线观看免费中文在| 国产福利在线免费观看视频| 精品久久久精品久久久| 18禁美女被吸乳视频| 国产精品1区2区在线观看. | 女人精品久久久久毛片| 久久久精品免费免费高清| 天堂8中文在线网| 一个人免费在线观看的高清视频| a级毛片黄视频| 国产黄频视频在线观看| 亚洲伊人色综图| 大片电影免费在线观看免费| 男女床上黄色一级片免费看| 久久 成人 亚洲| 久久人妻熟女aⅴ| 亚洲欧美日韩另类电影网站| 日本一区二区免费在线视频| 国产日韩欧美在线精品| 国产高清国产精品国产三级| 久久精品人人爽人人爽视色| 亚洲va日本ⅴa欧美va伊人久久| 夜夜爽天天搞| 12—13女人毛片做爰片一| 欧美黄色淫秽网站| kizo精华| 99久久99久久久精品蜜桃| cao死你这个sao货| 黄色 视频免费看| 十分钟在线观看高清视频www| 人妻 亚洲 视频| xxxhd国产人妻xxx| 18禁美女被吸乳视频| 午夜两性在线视频| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利欧美成人| 91老司机精品| 中文字幕人妻丝袜制服| 黄网站色视频无遮挡免费观看| 国产成人一区二区三区免费视频网站| h视频一区二区三区| 青青草视频在线视频观看| 国产精品自产拍在线观看55亚洲 | 热99久久久久精品小说推荐| 午夜福利视频精品| 老鸭窝网址在线观看| 欧美 日韩 精品 国产| 国产单亲对白刺激| a级片在线免费高清观看视频| 国产成人精品久久二区二区免费| 亚洲一码二码三码区别大吗| 黄色 视频免费看| aaaaa片日本免费| 成年动漫av网址| 久久久久久久久免费视频了| 天天添夜夜摸| 美女国产高潮福利片在线看| 如日韩欧美国产精品一区二区三区| 久久精品国产a三级三级三级| 午夜激情久久久久久久| 日本精品一区二区三区蜜桃| 一本综合久久免费| 亚洲av国产av综合av卡| 嫩草影视91久久| 久久久久视频综合| 91麻豆精品激情在线观看国产 | 午夜老司机福利片| 精品视频人人做人人爽| 怎么达到女性高潮| 亚洲人成77777在线视频| 曰老女人黄片| 欧美日韩视频精品一区| 波多野结衣av一区二区av| svipshipincom国产片| 十八禁网站免费在线| 一本久久精品| 欧美日韩成人在线一区二区| 亚洲国产成人一精品久久久| 久久精品国产99精品国产亚洲性色 | 久久国产精品男人的天堂亚洲| 人人澡人人妻人| 国产av精品麻豆| 在线观看66精品国产| 99香蕉大伊视频| 免费少妇av软件| 法律面前人人平等表现在哪些方面| 久久久精品免费免费高清| 桃花免费在线播放| 男女高潮啪啪啪动态图| 天天影视国产精品| 日韩中文字幕视频在线看片| www.自偷自拍.com| 国产欧美日韩综合在线一区二区| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 热re99久久精品国产66热6| 两性夫妻黄色片| 日韩一区二区三区影片| 亚洲人成电影观看| 一区二区三区激情视频| 18在线观看网站| 国产视频一区二区在线看| 汤姆久久久久久久影院中文字幕| 亚洲精品成人av观看孕妇| 欧美亚洲 丝袜 人妻 在线| 国产无遮挡羞羞视频在线观看| 国产精品偷伦视频观看了| 另类精品久久| 最黄视频免费看| 91字幕亚洲| 色婷婷av一区二区三区视频| 男女午夜视频在线观看| 亚洲精品乱久久久久久| 午夜福利欧美成人| 黑人猛操日本美女一级片| 一进一出好大好爽视频| 久久影院123| 十八禁网站免费在线| 丁香六月欧美| 日韩熟女老妇一区二区性免费视频| 丝袜美足系列| 狠狠婷婷综合久久久久久88av| 热99国产精品久久久久久7| 国产成人精品无人区| 国产精品1区2区在线观看. | www.自偷自拍.com| 男女高潮啪啪啪动态图| 色94色欧美一区二区| 在线观看66精品国产| 极品人妻少妇av视频| 久久毛片免费看一区二区三区| 午夜日韩欧美国产| 国产成人影院久久av| 精品亚洲成a人片在线观看| av天堂久久9| 日韩欧美免费精品| 热re99久久精品国产66热6| av又黄又爽大尺度在线免费看| 亚洲精品美女久久久久99蜜臀| 国产精品熟女久久久久浪| 久9热在线精品视频| 99re在线观看精品视频| 丁香六月欧美| 国产成+人综合+亚洲专区| 免费人妻精品一区二区三区视频| 国产亚洲精品第一综合不卡| 91老司机精品| 狠狠狠狠99中文字幕| 12—13女人毛片做爰片一| 亚洲国产中文字幕在线视频| 日韩视频一区二区在线观看| 精品国产超薄肉色丝袜足j| 高清av免费在线| 老司机影院毛片| 超碰97精品在线观看| 亚洲欧洲日产国产| 久久中文字幕一级| 在线亚洲精品国产二区图片欧美| 高清在线国产一区| 亚洲精品中文字幕一二三四区 | www.精华液| 亚洲九九香蕉| 狠狠精品人妻久久久久久综合| 最近最新中文字幕大全电影3 |