• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE BEREZIN TRANSFORM AND ITS APPLICATIONS*

    2021-02-23 12:06:32KeheZHU

    Kehe ZHU

    Department of Mathematics and Statistics, State University of New York, Albany, NY 12222, USA

    Abstract We give a survey on the Berezin transform and its applications in operator theory.The focus is on the Bergman space of the unit disk and the Fock space of the complex plane.The Berezin transform is most effective and most successful in the study of Hankel and Toepltiz operators.

    Key words reproducing kernel; reproducing kernel Hilbert space; Hardy space; Bergman space; Fock space; Berezin transform; Toeplitz operator; Hankel operator;composition operator

    1 Introduction

    If H is a reproducing kernel Hilbert space on Ω and w ∈Ω,then by the Riesz representation theorem in functional analysis,there exists a unique function K∈H such that f(w)=〈f,K〉for all f ∈H. The function K :Ω×Ω →C defined by K(z,w)=K(z)is called the reproducing kernel of H.

    If {e} is an orthonormal basis for the RKHS H on Ω, then it can be shown that

    In particular, the reproducing kernel K(z,w) is independent of the choice of the orthonormal basis {e}. There are only a few cases where the formula above can be used to yield a closedform formula for K(z,w).

    We assume that the RKHS in our discussion has the additional property that for every w ∈Ω there exists some f ∈H such that f(w)/=0. In this case, it is clear that

    These are called the normalized reproducing kernels of H. It is easy to see that the set of all finite linear combinations of (normalized) kernel functions is dense in H.

    In functional analysis, we often encounter linear operators induced by functions; these include pseudo-differential operators, Hankel operators, Toeplitz operators, and composition operators. The inducing function is usually called the symbol of the resulting operator. Conversely, in many situations, a linear operator on a Hilbert space H also gives rise to a function on Ω. For example, any square matrix A = A, which is a bounded linear operator on the finite dimensional Hilbert space C, generates a characteristic polynomial p(λ)=det(λI-A).In the infinite dimensional case, many other important functions can be constructed from the operator λI -A.

    The Berezin transform was first introduced in [13, 14] as a tool in quantization [15-18].It has since found applications in many areas of mathematics and mathematical physics. See[6, 38, 44, 46, 47, 53, 65, 71, 77, 84, 85] for some expository work about the Berezin transform in mathematical analysis and[39,40, 48,50, 57,68,70,85]for some applications of the Berezin transform in quantization and mathematical physics. The purpose of this article is to give a brief survey of the mathematical theory of the Berezin transform, especially regarding its applications to operator theory. Our main focus will be on problems related to the Bergman space of the unit disk and the Fock space of the complex plane.

    2 Hardy, Bergman, and Fock Spaces

    Let D be the open unit disk in the complex plane C. We use T to denote the boundary of D. There are three canonical reproducing kernel Hilbert spaces we want to consider; these are defined on T, D, and C, respectively.

    On the unit circle T, each function f ∈L(T,dt) has a Fourier expansion

    The experienced reader will have no trouble with us moving freely between the unit circle T and the unit disk D when we study issues involving the Hardy space H. Fortunately, there will be no such ambiguity when we study the Bergman space on D and the Fock space on C.

    The Bergman space Ais the closed subspace of all analytic functions in L(D,dA), where

    which is called the Bergman reproducing formula.

    The Bergman space Ais a very popular and important setting for operator theory. See[84] and references therein for major developments in the past few decades. Despite the very simple definition, the function theoretic structure of the Bergman space Aremains mostly mysterious. This is in sharp contrast to the Hardy space H, where a mature function theory exists. The books [35, 46] contain the most noticeable progress in recent years regarding the function theory of Bergman spaces.

    which is again called the reproducing formula for f. See [85] for an introduction to analysis on Fock spaces.

    A common feature of the three analytic function spaces introduced above is that each of them is contained in an Lspace, so there is an orthogonal projection P from the containing Lspace onto the particular RKHS H. With the help of this projection, we can then define the notions of Toeplitz and Hankel operators on each of H =H,A,F. More specifically, for each of the three cases,there is also a corresponding space L(of the unit circle,the unit disk,the complex plane, respectively), and if φ ∈L, we define a linear operator T: H →H by T(f)=P(φf(shuō)). Traditionally,Tis called the Toeplitz operator induced by φ, or the Toeplitz operator with symbol φ.

    Similarly, for each φ ∈L, we can also define a linear operator H: H →L?H by H(f) = (I -P)(φf(shuō)) = φf(shuō) -P(φf(shuō)), where I is the identity operator on L. We call Hthe Hankel operator induced by φ, or the Hankel operator with symbol φ. Since each orthogonal projection is an operator with norm equal to 1,we see that both Tand Hare bounded linear operators with ‖T‖≤‖φ‖and ‖H‖≤‖φ‖.

    The integral representation for the orthogonal projection P : L→H allows us to extend the domain of P to a space much larger than L. For example, in the case of Hand A, the natural domain of P as an integral operator is L. With this extension of P,we can sometimes densely define Tand Hfor certain unbounded functions φ in the respective contexts. It is actually easy to produce examples of unbounded functions φ that will induce bounded operators Tand H(except the case of Toeplitz operators on H). In fact, if we use a symbol function φ ∈L, then the operators Tand Hare densely defined on H, with their domain containing the closed linear span of all normalized reproducing kernels which is dense in H.

    The most successful application of the Berezin transform in operator theory occurs in the study of Hankel and Toeplitz operators, and this will be the focus of this survey. See [84, 85]for an introduction to Hankel and Toeplitz operators on Bergman and Fock spaces. We will not touch the subject of quantization, although that was the original physical motivation for the Berezin transform. Since the Berezin transform of an operator T : H →H is defined in terms of the normalized reproducing kernels, the following simple result is critical when we study compactness properties for operators on H:

    To illustrate how the Berezin transform can be used in the study of operators on reproducing kernel Hilbert spaces, we begin with the following immediate consequence of Lemma 2.1:

    In many situations, as we will see in the next few sections, the converse of the above is also true, but there are very simple examples to show that this is false in general. In fact, the operator T : A→Adefined by Tf(z) = f(-z) is clearly unitary (so not compact), but its Berezin transform

    as |w|→1.

    In addition to Toeplitz and Hankel operators(together,they are sometimes called Ha-plitz operators),we will also use composition operators as an important example. More specifically,if φ:D →D is an analytic self-map of the unit disk,we can define linear operators C:H→Hand C: A→Aby C(f) = f ?φ. It follows from the classical Littlewood subordination principle that Cis bounded on both Hand A. See [84] for an introduction to composition operators on Hand A.

    For an analytic self-map φ: C →C (namely, any entire function φ), we may also define a composition operator C: F→Fby C(f) = f ?φ. Unfortunately, composition operators in this context are not always bounded, but it is known (and relatively easy to prove) exactly which entire functions φ induce bounded composition operators on F. We will not discuss composition operators on F.

    3 The Classical Poisson Transform

    We begin with the most classical example of the Berezin transform, namely, the Berezin transform associated with the Hardy space. Thus we take a function φ ∈L(T,dt)and consider the Toeplitz operator T:H→H. Since the normalized reproducing kernels of Hare given by

    on D for any function φ ∈L(T,dt) without going through the notion of Toeplitz operators. In other words, we can define the Berezin transform of any function φ ∈L(T,dt) as the Poisson transform of φ.

    As an application of the Berezin/Poisson transform on H, we obtain the following characterization of bounded and compact Toeplitz operators on the Hardy space:

    Theorem 3.1 Suppose that φ ∈L(T,dt) and that Tis the densely defined Toeplitz operator on H. Then we have the following:

    (a) Tis bounded on Hif and only if φ ∈L(T);

    The simple result above is a good illustration of how the Berezin transform can be used to tackle problems in operator theory. We will consider two other similar applications: one involving Hankel operators and the other involving composition operators.

    By Garcia’s Lemma (see [45]), f is in BMOA,the space of all analytic functions with bounded mean oscillation on the unit circle.

    On the other hand, if f is in BMOA, we can write f = P(φ) for some φ ∈L(T). After the Poisson extension to D, we can write φ = φ+φ, where each φis analytic in D with φ(0)=0, which gives P(φ)=φ. It follows that φ=φ+f and H=H+H=H. This shows that His bounded with ‖H‖≤‖φ‖.

    Therefore,with the help of the Berezin/Poisson transform and using some results from the theory of BMO, we are able to characterize all bounded Hankel operators on H. The same arguments also lead to a corresponding characterization for compact Hankel operators on H.Thus we have shown that, for f ∈H, the Hankel operator His bounded (or compact) on Hif and only if f belongs to BMOA (or VMOA). Since every function on T consists of an analytic part and a conjugate analytic part, we can restate the result above as follows:

    4 The Berezin Transform for the Bergman Space

    Let f ∈L(D) and consider the Toeplitz operator T:A→A. It is easy to see that the Berezin transform of Tis

    which is easy to verify.

    In the case of the Hardy space, the Berezin transform of a function f on T is simply the Poisson harmonic extension of f to the unit disk D. This, together with some classical results in complex/harmonic analysis, implies that T: H→His bounded ifff is bounded, and that T:H→His compact ifff =0. It is easy to see that this is no longer true for Toeplitz operators on the Bergman space. The difference stems from the fact that a function on the unit circle has a relatively simple structure (it consists of an analytic part and a conjugate analytic part), while a function on the unit disk is much more complicated (it has an analytic part, a conjugate analytic part, and a third component that is very difficult to describe).

    Let φ ∈L(D,dA) be any unbounded function with compact support in D. It follows from the integral representation for T:A→A,

    The result above is false in general without the positivity assumption. However, if we assume that the function f is already bounded,then the compactness part remains true without the assumption f ≥0.

    The characterization of bounded and compact Hankel pairs Hand Hin terms of the Bergman metric BMO and the Berezin transform began in[81]and continued in[12]and many other papers.

    We have now seen several natural and successful applications of the Berezin transform in operator theory, but the Berezin transform can also be studied as an operator itself. This is certainly the case for the Poission transform (i.e., the Berezin transform in the context of the Hardy space), which has been a classical tool in complex and harmonic analysis, independent of operator theory.

    This shows that all (complex) harmonic functions in L(D,dA) are fixed-points of the Berezin transform. It turns out the converse is also true.

    Theorem 4.6 Suppose that f ∈L(D,dA). Then Bf =f if and only if f is harmonic.

    The characterization of fixed-points for the Berezin transform in the context of the Bergman space over the unit disk was an open problem for almost a decade before the theorem above was finally proved by Ahern, Flores, and Rudin in [2]. The characterization for Bf = f when f ∈L(D) was done earlier in [36]. Despite the extremely elementary and elegant statement of Theorem 4.6,its proof in [2] was highly non-trivial;a lot of complex analysis was carried out with the help of certain special functions and some numerical computations. This is another remarkable theorem regarding the Berezin transform.

    The Poisson transform of any function f ∈L(T)is a harmonic function on D. The Berezin transform Bf of any function f ∈L(D,dA) is clearly real-analytic. It is natural to wonder what other regularity properties Bf may have. In other words,is there a way to determine the range of the Berezin transform? Some partial results can be found in [1, 66]. Here we mention a Lipschitz estimate for the Berezin transform of functions in BMO; see [12, 84].

    Theorem 4.7 For any f ∈BMOwe have

    for z,w ∈D, where β(z,w) is the hyperbolic metric (or Bergman metric) between z and w.

    As an integral transform,we can certainly apply the Berezin transform iterately many times to a “reasonably good” function. In particular, Bf is well defined for any f ∈L(D) and any positive integer n. More generally, for any p ∈(1,∞), it can be shown that the Berezin transform B is a bounded linear operator on L(D,dA). Thus we can also consider Bf for f ∈L(D,dA), p >1, and n ≥1. A natural question then is this: is there anything we can say about Bf as n →∞? We mention one particular result in this direction; see [4, 84].

    Theorem 4.8 Suppose that f ∈C(D). Then

    Note that the result above is not true without some assumption on f. For example, if f(z)=log(1-|z|), then Bf is defined for all positive integers n. In fact, it is elementary to check that Bf = f +1, so Bf = f +n for every positive integer n. It is then clear that the sequence {Bf} does not converge. As a first step, we can ask to determine the convergence properties of {Bf} for a general function f ∈L(D).

    The assumption that f be smooth with compact support in D can be relaxed somewhat,but the current form of the theorem is usually strong enough for applications and it follows easily from Green’s formula. We also mention that it is possible to express the Berezin transform as a function of the invariant Laplacian (see [65] for example).

    5 The Berezin Transform for the Fock Space

    is the fundamental solution of the heat equation. Any solution of the heat equation can be built from the fundamental solution using the heat transforms.

    One of the reasons why the Berezin/heat transform plays a more prominent role in the theory of Fock spaces than its counterpart in the theory of Bergman spaces is that the heat transform has the following semi-group property (see [85] again):

    Theorem 5.2 We have HH=Hfor all positive parameters s and t in the sense that H(Hf)=Hf for any f ∈L(C).

    The assumption f ∈L(C) can easily be relaxed, but that is only a technical point which is not essential in most situations.

    for all z,w ∈C.

    where the supremum is taken over all arcs I in T with |I| being the dt-measure of I and fbeing the mean of f over I with respect to dt.

    In the theory of Bergman spaces, we have a similar space BMO, which can be described either geometrially or in terms of the Berezin transform. Thus for the theory of Fock spaces,we define a space BMOconsisting of all functions f on C such that

    It is easy to see that in each of the three cases above, Lis a proper subspace of the corresponding BMO space (on the unit circle, the unit disk, and the complex plane, respectively).The following result gives another Lipschitz estimate for the Berezin transform in the Fock space setting:

    Theorem 5.4 For any t >0 there exists a positive constant C,depending on t only,such that

    for all f ∈BMOand all z,w ∈C.

    In a fashion similar to the Hardy and Bergman space settings,the Berezin transform is also a very useful tool in the study of Hankel and Toeplitz operators in the Fock space setting. In particular, we have the following two natural results:

    We believe the first usage of the Berezin transform in the theory of Hankel and Toeplitz operators was in the Fock space setting (see [19, 20, 85]).

    6 Sarason’s Toeplitz Product Problem

    Finally,we mention a recent success story for the Berezin transform in the study of Ha-plitz operators. This concerns the following interesting problem raised by Donald Sarason in [67]:

    Problem 6.1 Characterize analytic functions f and g on D such that the product TTof Toeplitz operators on Hor Ais bounded.

    Although Sarason originally only asked the question for Toeplitz operators on the Hardy and Bergman spaces,it is clear that the problem also makes sense for Toeplitz operators on the Fock space. Note that the order of multiplication in TTis important. When Sarason raised the problem above, he also formulated the following conjecture in [67] in terms of the Berezin transform and provided a proof for the “only if” part:

    More can be said on this; in fact, if the function in (b) or (c) above is bounded, then the same function must be constant (see [59] for more details).

    Sarason’s original problem for Toeplitz products on both the Hardy and Bergman spaces remains unsolved. Although there is a very rich function theory for the unit disk, the analysis in the Fock space setting is easier because there is a prominent rigidity theorem on the complex plane (i.e., Liouville’s theorem) that helps us to determine bounded Toeplitz products, Hankel products, and mixed Ha-plitz products on the Fock space.

    日日摸夜夜添夜夜添小说| 999精品在线视频| 999久久久国产精品视频| 欧美午夜高清在线| 91久久精品国产一区二区成人 | 91久久精品国产一区二区成人 | 久久久久久久精品吃奶| 成年女人毛片免费观看观看9| 久久久久久久久中文| 我的老师免费观看完整版| 免费av毛片视频| 一夜夜www| 亚洲人成伊人成综合网2020| 欧美最黄视频在线播放免费| 每晚都被弄得嗷嗷叫到高潮| 亚洲中文av在线| 俺也久久电影网| 欧美中文综合在线视频| 免费看光身美女| 日本与韩国留学比较| 亚洲av电影在线进入| 久99久视频精品免费| 久久午夜综合久久蜜桃| 日本黄大片高清| 国产精品,欧美在线| 母亲3免费完整高清在线观看| 精品午夜福利视频在线观看一区| 99国产精品一区二区三区| av天堂在线播放| 国产精品日韩av在线免费观看| 精品欧美国产一区二区三| 久久人妻av系列| 日本成人三级电影网站| 美女高潮喷水抽搐中文字幕| 欧美乱妇无乱码| 观看免费一级毛片| 成人av一区二区三区在线看| 哪里可以看免费的av片| 99久久国产精品久久久| 亚洲av成人一区二区三| 亚洲精品在线观看二区| 51午夜福利影视在线观看| 国产97色在线日韩免费| 久久久久国产精品人妻aⅴ院| 久久国产乱子伦精品免费另类| 最近视频中文字幕2019在线8| 午夜激情欧美在线| 日韩欧美在线乱码| av国产免费在线观看| 免费观看人在逋| 最新在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 99re在线观看精品视频| 又大又爽又粗| 免费在线观看日本一区| 国产爱豆传媒在线观看| 叶爱在线成人免费视频播放| 美女扒开内裤让男人捅视频| 99视频精品全部免费 在线 | 国产熟女xx| 午夜免费成人在线视频| 91在线精品国自产拍蜜月 | 又黄又爽又免费观看的视频| 精品国产美女av久久久久小说| 欧美黑人巨大hd| 亚洲男人的天堂狠狠| 久久久久国产精品人妻aⅴ院| 色噜噜av男人的天堂激情| av视频在线观看入口| 99久久综合精品五月天人人| 亚洲熟女毛片儿| 国产91精品成人一区二区三区| 十八禁人妻一区二区| 制服人妻中文乱码| 一区二区三区高清视频在线| 国内毛片毛片毛片毛片毛片| 久久久国产成人精品二区| 国产免费男女视频| 他把我摸到了高潮在线观看| 麻豆成人午夜福利视频| 国产亚洲精品一区二区www| 亚洲乱码一区二区免费版| 精品国产乱码久久久久久男人| 色视频www国产| 国产成+人综合+亚洲专区| 男女午夜视频在线观看| 精品久久久久久久末码| 亚洲 欧美一区二区三区| 日本免费一区二区三区高清不卡| 免费大片18禁| 久久久国产成人精品二区| 成人高潮视频无遮挡免费网站| 一a级毛片在线观看| 色播亚洲综合网| www.熟女人妻精品国产| 日本黄色视频三级网站网址| 国产高清视频在线观看网站| 首页视频小说图片口味搜索| 手机成人av网站| 男女做爰动态图高潮gif福利片| 精品久久久久久久末码| 国产伦精品一区二区三区四那| 亚洲av成人不卡在线观看播放网| 欧美在线一区亚洲| 欧美一级a爱片免费观看看| 国产亚洲精品久久久久久毛片| 免费看a级黄色片| 国产91精品成人一区二区三区| 少妇裸体淫交视频免费看高清| cao死你这个sao货| 国产美女午夜福利| 欧美日韩瑟瑟在线播放| 日本 av在线| 俺也久久电影网| 免费观看精品视频网站| 91av网一区二区| 欧美在线一区亚洲| 成人一区二区视频在线观看| 亚洲欧美日韩无卡精品| 黄片大片在线免费观看| 精品久久久久久久人妻蜜臀av| 亚洲精品在线观看二区| 欧美zozozo另类| av黄色大香蕉| 久久久久亚洲av毛片大全| 观看美女的网站| 国产精品久久电影中文字幕| 国产高潮美女av| 听说在线观看完整版免费高清| 亚洲精品456在线播放app | 成年版毛片免费区| 精品国产超薄肉色丝袜足j| 色在线成人网| 亚洲中文av在线| 午夜福利视频1000在线观看| 中文在线观看免费www的网站| 国产黄片美女视频| 男人舔女人的私密视频| 国产精品久久久久久亚洲av鲁大| 99精品欧美一区二区三区四区| 久久婷婷人人爽人人干人人爱| 成人午夜高清在线视频| 在线看三级毛片| 精品国内亚洲2022精品成人| 国产精品一区二区精品视频观看| 亚洲国产精品999在线| 露出奶头的视频| 欧美中文日本在线观看视频| 亚洲 欧美 日韩 在线 免费| 久久久国产精品麻豆| 精品午夜福利视频在线观看一区| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 欧美激情久久久久久爽电影| 美女高潮喷水抽搐中文字幕| 精品久久蜜臀av无| 一区二区三区高清视频在线| 亚洲黑人精品在线| 99国产精品99久久久久| 色噜噜av男人的天堂激情| 国产精华一区二区三区| 一级毛片高清免费大全| 国内揄拍国产精品人妻在线| 99在线视频只有这里精品首页| 成人精品一区二区免费| 在线永久观看黄色视频| xxxwww97欧美| 日本成人三级电影网站| 亚洲av电影在线进入| 蜜桃久久精品国产亚洲av| 人妻夜夜爽99麻豆av| 国产精品自产拍在线观看55亚洲| 国产又黄又爽又无遮挡在线| 村上凉子中文字幕在线| 香蕉国产在线看| 亚洲成av人片在线播放无| 国产又色又爽无遮挡免费看| 国产麻豆成人av免费视频| 日本熟妇午夜| 女生性感内裤真人,穿戴方法视频| 国产成人欧美在线观看| 两个人的视频大全免费| 嫩草影院入口| 亚洲国产欧美网| 精品国产三级普通话版| 免费在线观看成人毛片| 精品一区二区三区视频在线观看免费| 日本a在线网址| 男女那种视频在线观看| www日本黄色视频网| 男插女下体视频免费在线播放| 色综合婷婷激情| 亚洲片人在线观看| av片东京热男人的天堂| 亚洲中文字幕一区二区三区有码在线看 | 99精品久久久久人妻精品| 成人永久免费在线观看视频| 亚洲精品粉嫩美女一区| www.精华液| 久久久久久九九精品二区国产| 搡老妇女老女人老熟妇| 黑人欧美特级aaaaaa片| 国产精品香港三级国产av潘金莲| 很黄的视频免费| 免费av不卡在线播放| 国产欧美日韩精品亚洲av| 国产v大片淫在线免费观看| 成人特级黄色片久久久久久久| 久久久精品欧美日韩精品| 中文字幕最新亚洲高清| 97人妻精品一区二区三区麻豆| 国产成人影院久久av| 韩国av一区二区三区四区| 国产欧美日韩一区二区三| 99久久国产精品久久久| 国产亚洲精品久久久久久毛片| 99国产综合亚洲精品| 中文在线观看免费www的网站| 男女午夜视频在线观看| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区mp4| 舔av片在线| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免费看| 国产亚洲欧美98| 日韩中文字幕欧美一区二区| 母亲3免费完整高清在线观看| 波多野结衣巨乳人妻| 99久久精品热视频| 婷婷丁香在线五月| 国产三级在线视频| 国产成人aa在线观看| 亚洲色图av天堂| 成人特级av手机在线观看| www.熟女人妻精品国产| 国产又色又爽无遮挡免费看| 美女高潮的动态| 国产极品精品免费视频能看的| 少妇裸体淫交视频免费看高清| 高潮久久久久久久久久久不卡| 五月伊人婷婷丁香| 热99re8久久精品国产| 黄色日韩在线| 两个人视频免费观看高清| 国产激情偷乱视频一区二区| 深夜精品福利| 法律面前人人平等表现在哪些方面| 好男人电影高清在线观看| 精品久久久久久久末码| 亚洲国产精品合色在线| 国产私拍福利视频在线观看| 精品欧美国产一区二区三| 淫妇啪啪啪对白视频| 欧美又色又爽又黄视频| 99国产综合亚洲精品| 欧美色欧美亚洲另类二区| 日韩国内少妇激情av| 五月玫瑰六月丁香| 国产高清videossex| 久久人人精品亚洲av| 欧美色视频一区免费| 婷婷亚洲欧美| 一个人免费在线观看的高清视频| 午夜精品一区二区三区免费看| 国产精品香港三级国产av潘金莲| 久久草成人影院| 男人舔女人的私密视频| 成人av在线播放网站| 一个人看的www免费观看视频| 欧美性猛交╳xxx乱大交人| 怎么达到女性高潮| 欧美黑人欧美精品刺激| 中文在线观看免费www的网站| 亚洲成人中文字幕在线播放| 夜夜夜夜夜久久久久| av在线蜜桃| 在线观看午夜福利视频| 日韩国内少妇激情av| 欧美性猛交黑人性爽| 中文在线观看免费www的网站| 美女免费视频网站| 97超级碰碰碰精品色视频在线观看| av在线蜜桃| 亚洲精品久久国产高清桃花| a级毛片在线看网站| 国产激情偷乱视频一区二区| АⅤ资源中文在线天堂| 久久久久久久久免费视频了| 他把我摸到了高潮在线观看| 国产精品永久免费网站| 美女午夜性视频免费| 桃色一区二区三区在线观看| 国产高潮美女av| 嫩草影院入口| 国产精品一区二区精品视频观看| 啪啪无遮挡十八禁网站| 欧美激情久久久久久爽电影| 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 88av欧美| 国产在线精品亚洲第一网站| 久久久久久久久久黄片| 精品久久久久久久久久久久久| 美女午夜性视频免费| 桃色一区二区三区在线观看| 人人妻,人人澡人人爽秒播| 1024手机看黄色片| 国产一级毛片七仙女欲春2| 色精品久久人妻99蜜桃| 香蕉久久夜色| 成在线人永久免费视频| 真人做人爱边吃奶动态| 国产亚洲欧美在线一区二区| 一级毛片高清免费大全| 午夜福利免费观看在线| 波多野结衣巨乳人妻| 一二三四社区在线视频社区8| 国产高清videossex| avwww免费| 欧美一级毛片孕妇| 中文字幕人成人乱码亚洲影| 亚洲精品456在线播放app | 蜜桃久久精品国产亚洲av| 美女大奶头视频| 国内精品久久久久久久电影| 神马国产精品三级电影在线观看| 在线免费观看不下载黄p国产 | 亚洲第一欧美日韩一区二区三区| 亚洲自拍偷在线| 中文字幕精品亚洲无线码一区| 黄色 视频免费看| 黄片大片在线免费观看| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 全区人妻精品视频| 香蕉国产在线看| 日韩中文字幕欧美一区二区| 欧美乱妇无乱码| 亚洲电影在线观看av| 成人无遮挡网站| 成年版毛片免费区| 色精品久久人妻99蜜桃| 久久香蕉精品热| 中亚洲国语对白在线视频| 白带黄色成豆腐渣| a级毛片在线看网站| 白带黄色成豆腐渣| 18美女黄网站色大片免费观看| 曰老女人黄片| 麻豆av在线久日| 国产黄片美女视频| 免费看十八禁软件| 中文亚洲av片在线观看爽| 久久天躁狠狠躁夜夜2o2o| 一个人看的www免费观看视频| 色播亚洲综合网| 欧美不卡视频在线免费观看| 天天躁日日操中文字幕| 又紧又爽又黄一区二区| 国产精华一区二区三区| 99久久久亚洲精品蜜臀av| 一本一本综合久久| 日韩免费av在线播放| 成人av在线播放网站| 99久久久亚洲精品蜜臀av| 午夜精品久久久久久毛片777| 不卡一级毛片| 欧美日韩一级在线毛片| 97碰自拍视频| 97超级碰碰碰精品色视频在线观看| 人人妻,人人澡人人爽秒播| 免费在线观看成人毛片| 亚洲国产精品sss在线观看| www国产在线视频色| 日韩成人在线观看一区二区三区| 久久久久国产一级毛片高清牌| 亚洲国产精品sss在线观看| 狂野欧美激情性xxxx| 18禁黄网站禁片免费观看直播| 亚洲精品456在线播放app | 精品国产乱子伦一区二区三区| 国产成年人精品一区二区| 亚洲欧美日韩高清在线视频| www.999成人在线观看| 啦啦啦观看免费观看视频高清| 99精品欧美一区二区三区四区| 夜夜躁狠狠躁天天躁| 十八禁网站免费在线| 一级毛片女人18水好多| 欧美日韩中文字幕国产精品一区二区三区| 99久久99久久久精品蜜桃| 噜噜噜噜噜久久久久久91| netflix在线观看网站| 久久中文字幕一级| 欧美激情久久久久久爽电影| 亚洲精品久久国产高清桃花| 国内精品美女久久久久久| 国产欧美日韩一区二区精品| www.自偷自拍.com| 国产精品亚洲av一区麻豆| 亚洲成人中文字幕在线播放| 日本在线视频免费播放| 亚洲av美国av| 国产伦精品一区二区三区四那| 午夜福利免费观看在线| 99国产精品一区二区三区| cao死你这个sao货| 麻豆成人av在线观看| 禁无遮挡网站| 欧美+亚洲+日韩+国产| av片东京热男人的天堂| 色噜噜av男人的天堂激情| 欧美国产日韩亚洲一区| 岛国视频午夜一区免费看| 夜夜躁狠狠躁天天躁| 亚洲中文av在线| 91九色精品人成在线观看| 亚洲七黄色美女视频| 国产精品98久久久久久宅男小说| 成年人黄色毛片网站| 12—13女人毛片做爰片一| 狂野欧美白嫩少妇大欣赏| 国产男靠女视频免费网站| 久久久久国产一级毛片高清牌| avwww免费| 国产综合懂色| 琪琪午夜伦伦电影理论片6080| 亚洲av片天天在线观看| 欧美激情在线99| 又紧又爽又黄一区二区| 此物有八面人人有两片| 哪里可以看免费的av片| av黄色大香蕉| www日本黄色视频网| x7x7x7水蜜桃| 麻豆久久精品国产亚洲av| 国产成人影院久久av| 又黄又爽又免费观看的视频| 黄色视频,在线免费观看| 亚洲 欧美一区二区三区| 国产精品免费一区二区三区在线| 一卡2卡三卡四卡精品乱码亚洲| 午夜影院日韩av| 热99re8久久精品国产| 两个人的视频大全免费| 久久久久国内视频| 欧美激情久久久久久爽电影| 18美女黄网站色大片免费观看| 国产一级毛片七仙女欲春2| bbb黄色大片| 午夜影院日韩av| 欧美中文综合在线视频| 一二三四社区在线视频社区8| 午夜日韩欧美国产| 两个人视频免费观看高清| 在线观看免费视频日本深夜| 成人av在线播放网站| 2021天堂中文幕一二区在线观| 美女高潮的动态| 久久精品aⅴ一区二区三区四区| 亚洲人成网站高清观看| 九九热线精品视视频播放| 人妻丰满熟妇av一区二区三区| 女生性感内裤真人,穿戴方法视频| 久久久久免费精品人妻一区二区| 69av精品久久久久久| 熟女电影av网| 精品无人区乱码1区二区| 国产真人三级小视频在线观看| 中文在线观看免费www的网站| 国产av不卡久久| 欧美乱码精品一区二区三区| 亚洲精华国产精华精| 悠悠久久av| 老司机午夜十八禁免费视频| 国产精品av视频在线免费观看| 亚洲av成人精品一区久久| 变态另类丝袜制服| 国产精品亚洲美女久久久| 精品久久久久久久末码| 国产乱人视频| 特大巨黑吊av在线直播| 97超视频在线观看视频| 99久久99久久久精品蜜桃| 免费人成视频x8x8入口观看| 国内精品美女久久久久久| 夜夜夜夜夜久久久久| 99久久精品热视频| 一级毛片高清免费大全| 国产精品久久久久久人妻精品电影| 精品国产亚洲在线| 国产亚洲欧美98| 亚洲美女视频黄频| 丁香六月欧美| 成人午夜高清在线视频| 麻豆久久精品国产亚洲av| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区三| 一级毛片高清免费大全| 欧美黑人巨大hd| 国产精品综合久久久久久久免费| 亚洲欧美激情综合另类| 亚洲片人在线观看| 天堂av国产一区二区熟女人妻| 日本a在线网址| 国产午夜福利久久久久久| 两人在一起打扑克的视频| 丰满的人妻完整版| 国产成人精品久久二区二区免费| 免费人成视频x8x8入口观看| ponron亚洲| 校园春色视频在线观看| 国产av不卡久久| 亚洲最大成人中文| 99在线视频只有这里精品首页| 在线视频色国产色| 夜夜躁狠狠躁天天躁| 制服丝袜大香蕉在线| 熟女电影av网| 美女高潮的动态| 丰满人妻一区二区三区视频av | 老熟妇乱子伦视频在线观看| 在线观看免费午夜福利视频| 男女下面进入的视频免费午夜| 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 999精品在线视频| 久久久久国产一级毛片高清牌| 亚洲18禁久久av| 一个人看视频在线观看www免费 | 免费在线观看日本一区| 国产高清有码在线观看视频| 999精品在线视频| 99久国产av精品| 波多野结衣高清作品| 国产免费男女视频| 亚洲欧美日韩高清专用| 99re在线观看精品视频| 可以在线观看毛片的网站| 亚洲av熟女| 日韩免费av在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲欧美在线一区二区| 亚洲欧美精品综合一区二区三区| 午夜激情欧美在线| 1024香蕉在线观看| 无限看片的www在线观看| 香蕉国产在线看| 五月伊人婷婷丁香| 免费一级毛片在线播放高清视频| 亚洲精华国产精华精| 99国产极品粉嫩在线观看| 级片在线观看| 观看美女的网站| 三级国产精品欧美在线观看 | 欧美黄色片欧美黄色片| 日韩国内少妇激情av| 国产淫片久久久久久久久 | 变态另类成人亚洲欧美熟女| 很黄的视频免费| 国产精品免费一区二区三区在线| 又黄又粗又硬又大视频| 精品欧美国产一区二区三| 国产不卡一卡二| 天堂av国产一区二区熟女人妻| 国产精品久久视频播放| 亚洲真实伦在线观看| 两个人看的免费小视频| 亚洲av第一区精品v没综合| 国产高潮美女av| 日本三级黄在线观看| 黄色视频,在线免费观看| 国产午夜福利久久久久久| 成人三级做爰电影| 九九热线精品视视频播放| 国产亚洲精品久久久久久毛片| 性欧美人与动物交配| 久久久水蜜桃国产精品网| 精品福利观看| 欧美色欧美亚洲另类二区| 99精品欧美一区二区三区四区| 国内精品一区二区在线观看| 热99re8久久精品国产| 久久中文看片网| 757午夜福利合集在线观看| 欧美日韩一级在线毛片| 国产精品久久久久久精品电影| 亚洲专区字幕在线| 国产真实乱freesex| 久久精品国产亚洲av香蕉五月| 91九色精品人成在线观看| 亚洲色图 男人天堂 中文字幕| 少妇丰满av| 国产亚洲精品综合一区在线观看| 男人的好看免费观看在线视频| 99re在线观看精品视频| 在线国产一区二区在线| 桃红色精品国产亚洲av| 啦啦啦免费观看视频1| 中文字幕av在线有码专区| 禁无遮挡网站| av欧美777| 欧美乱码精品一区二区三区| 精品一区二区三区视频在线 | 十八禁人妻一区二区| 亚洲成人中文字幕在线播放| 久久久久久久久中文| 亚洲成av人片免费观看| 日本 av在线| 亚洲专区字幕在线| 一进一出抽搐动态| 亚洲av免费在线观看| 欧美乱码精品一区二区三区| 母亲3免费完整高清在线观看|