• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterizing Argumentation Frameworks with an Extension*

    2021-02-12 10:50:56KangXuBeishuiLiao
    邏輯學研究 2021年6期

    Kang Xu Beishui Liao

    Abstract. According to a given criterium,from the structure of an argumentation framework,a set of extensions can be decided.Conversely,an extension or a set of extensions can identify a set of argumentation frameworks.The direction from argumentation frameworks to their semantics has been discussed a lot,but little attention has been paid to the opposite direction.In this paper,we focus on characterizing argumentation frameworks with a given set of arguments as an extension,and show its applications on the update of argumentation frameworks and monotony.

    1 Introduction

    Formal argumentation is a very active research area in the field of knowledge representation and reasoning,in which Dung’s abstract argumentation([11])has been extensively studied in the past two and a half decades,including argumentation semantics([20,1]),algorithms([15,19]),computational complexity([14,13]),dynamics([3,7]),etc..

    An abstract argumentation framework can be modeled as a graph(A,R),whereArepresents a set of arguments andR ?A×Aa binary relation called “attack”.Given such a graph,an interesting question is which sets of arguments,i.e.extensions,can reasonably be accepted.This question is stated as semantics that is a function from an argument graph to a set of extensions.There is a rich variety of semantics,defined in terms of intuitions and principles([1]),each of which represents a kind of attitude to select acceptable arguments in practice.

    Example 1.AF1is an argumentation framework illustrated in Figure 1.Argumentsaandcare accepted simultaneously under grounded semantics wich represents a caucious choice.Then{a,c}is the grounded extension ofAF1.The semantics ofAF1is a mapping fromAF1to{{a,c}}.

    Figure 1 :Argumentation frameworks

    Conversely,from an extension or a set of extensions,a set of argumentation frameworks can be decided.

    Example 2.LetE1={a,c}be a set of arguments.There are infinite argumentation frameworks that haveE1as the grounded extension.All of them can be put in a set,denoted asAF1andAF2illustrated in Figure 1 are two argumentation frameworks inThe direction from argumentation frameworks to semantics has been discussed a lot([20,1,15,19]),but little attention has been paid to the opposite direction from semantics to frameworks.Example 2 gives rise to a research question:Given a setEof arguments,under grounded semantics,what kinds of conditionsshould satisfy? It can be seen from the structures of bothAF1andAF2that one argument inEis unattacked,and it can be seen more from the structure ofAF2that the circle identified by{a,d}is attacked bycinE.There should be a precise characterization ofthat covers all of these conditions.We will discuss this problem in this paper,and will focus on characterizing the set of argumentation frameworks with an extension or a set of extensions.

    In our previous works([17]),we simplifed the computation of semantics of probabilistic argumentation by characterizing subgraphs.After that,we introduced this idea to“enforcement”,one question of the dynamics of argumentation frameworks.Enforcement is to change an argumentation framework to make a set or sets of arguments accepted.Baumann et al.firstly investigated whether enforcing an extension is possible in [4].We discussed the conditions under which an enforcement achieves([22,21]).In[22],we classified the change of an argumentation framework into two directions:expansion and contraction.The expansion of an argumentation framework is defined by adding arguments or attacks to the framework.The contraction of an argumentation framework is defined by deleting arguments or attacks from the framework.We formulated methods to expand or contract argumentation frameworks to enforce an extension under complete,grounded,preferred and stable semantics respectively.In[21],we discussed how to update an argumentation framewok to enforce an extension under complete,grounded,preferred and stable semantics,where updating an argumentation framework is not to change it in one direction,i.e.,either expansion or contraction,but to form a new framework.

    The way of characterizing subgraphs in [17] sparks an idea of characterizing argumentation frameworks from a fixed extension or a set of extensions.“Enforcement” in [22] and [21] provides methods to do the characterization of frameworks.This paper is motivated by these two points and to be an extension of [21] which incorporates the principle behind the enforcement in[21]and the idea of characterizing frameworks.It shows the relations between the structures of argumentation frameworks and some semantics,making a progress on the research direction from semantics to frameworks.Furthermore,it can be applied to the dynamics of argumentation frameworks which are about the interaction between the change of frameworks and that of semantics.

    The structure of this paper is as follows.Section 2 introduces some basic notions of abstract argumentation.Section 3 is the main part of this paper,studying the characterization of argumentation frameworks with a given extension,and a given set of extensions.Section 4 shows the applications of our work to updating argumentation frameworks and monotony.Section 5 concludes.

    2 Preliminaries

    2.1 Argumentation frameworks

    To make this paper self-contained,in this section,we introduce some basic notions on the abstract argumentation,including argumentation frameworks and their semantics.We consider only finite argumentation frameworks for the sake of simplicity,and all presentations here are adjusted to the studies in the following sections.

    Definition 1.LetUbe the universe of all possible arguments.An argumentation frameworkGis a tuple(A,R)whereAis finite,A ?UandR ?A×Ais a binary relation onA.

    LetB ?AandRB=R∩(B×B).(B,R*)is a sub-framework ofGifB ?AandR* ?RB.G ↓B=(B,RB)is the restriction ofGtoB,and it is a sub-framework ofG.

    Givena,b ∈A,(a,b)∈Rmeansaattacksb.We writeaRbinstead of(a,b)∈R,andinstead of (a,b)R.GivenB,C ?A,we sayBRa(respectively,aRB)if there existsb ∈Bsuch thatbRa(respectively,aRb),andBRCif there existb ∈Bandc ∈Csuch thatbRc.

    We useto denote the indirect relation between two arguments:if there exist a series of argumentsx1,x2,...xnsuch thataRx1,x1Rx2,...,andxnRb.

    Circles play a key role to dicide the content of an extention and the number of extensions of an argumentation framework.It is defined as follows.

    Definition 2.LetG=(A,R)be an argumentation framework,andB ?A.G ↓Bis a circle ofGif and only if for any argumentsa,b ∈B,The set of all circles ofGis denoted asCIRG,and the set{B|G ↓Bis a circle ofG}is denoted asSCIRG.

    Example 3.LetAF3be an argumentation framework illustrated in Figure 2.={AF3↓{a,b},AF3↓,AF3↓{c,d}}andSCIRAF3={{a,b},,{c,d}}.

    Figure 2 :An argumentation framework

    The notion of circle is different from that of strongly connected component of an argumentation framework in[2].

    Definition 3.LetG=(A,R)be an argumentation framework,PEGis a relation onAand satisfies:

    · for anyx ∈A,(x,x)∈PEG?

    · for anyx,y ∈Awithx/=y,(x,y)∈PEGif and only if

    PEGis an equivalence relation and we call it the relation of path-equivalence.Leta ∈A.The equivalence class ofamoduloPEGis a strongly connected component ofG.The set of strongly connected components ofGis denoted asSCCSGand it is a partition ofA.

    It can be seen from Definitions 2 and 3 that any cyclic graph of a strongly connected component is a circle,but not vice versa.ConsideringAF3in Example 3,={{a,b},{c,d},{e},{f}}in which two subframeworks induced by{a,b}and{c,d}depict circles ofAF3.

    All circles in an argumentation framework make a contribution to the constitution of semantics,while the strongly connected components in a framework have some relations to the properties of semantics([2]).

    2.2 Semantics of argumentation

    Given an argumentation framework,a fundamental problem is to determine which arguments can be regarded as collectively acceptable.There are mainly two approaches:extension-based approach and labelling-based approach.The idea underlying the extension-based approach is to identify sets of arguments,called extensions,that can be accepted according to a given criterion.The idea underlying the labellingbased approach is to assign a label to each argument according to a given criterion.

    The extension-based approach starts from the notions of conflict-freeness and defense.

    Definition 4.LetG=(A,R) be an argumentation framework,a,b ∈ AandE ?A.

    ·Eis conflict-free if and only if for anya,b ∈E,

    ·Edefendsaif and only if for anybRa,ERb.

    The set of all arguments defended by a subset ofAcan be denoted by the characteristic function ofG.The characteristic function makes a contribution to symplify the definitions in the extension-based approach.

    Definition 5.The characteristic function of an argumentation frameworkG=(A,R)isF:2A2A,where for anyB ?A,F(B)={a ∈A|Bdefendsa}.

    Based on conflict-freeness and the characteristic function,a set of extensions can be defined as follows([6,9,15]).

    Definition 6.LetG=(A,R)be an argumentation framework,a ∈AandE ?A.

    ·Eis an admissible set if and only ifEis conflict-free andE ?F(E)?

    ·Eis a complete extension ofGif and only ifEis conflict-free andE=F(E)?

    ·Eis the grounded extension ofGif and only ifEis the minimal complete extension(with respect to set inclusion)?

    ·Eis a preferred extension ofGif and only ifEis a maximal admissible set(with respect to set inclusion)?

    ·Eis a stable extension ofGif and only ifEis admissible andER(AE)?

    ·Eis the ideal extension ofGif and only ifEis the maximal admissible extension(with respect to set inclusion)contained in all preferred extensions ofG.

    The labelling-based approach is defined in terms of labellings.A labelling is a function assigning a label to each argument of an argumentation framework to indicate its status.There are usually three labels:in,outandundec.The labelinindicates that the argument is accepted,outindicates that the argument is rejected andundecindicates that the argument is undecided which means that it can not be decided to be accepted or rejected([1]).

    Definition 7.LetG=(A,R)be an argumentation framework.The labelling ofGis a total functionL:in,out,undec}.

    Letin(L)={a ∈A | L(a)=in},out(L)={a ∈A | L(a)=out}andundec(L)={a ∈A | L(a)=undec}.Lis often represented as a triple(in(L),out(L),undec(L)).

    LetB ?A.L ↓B=(in(L)∩B,out(L)∩B,undec(L)∩B) is called the restriction ofLtoB.

    The central criterion for labelling-based approach is legality.

    Definition 8.LetG=(A,R)be an argumentation framework,a ∈A,andLbe a labelling ofG.

    ·L(a)=inis legal if and only if for anyb ∈A,bRaimpliesL(b)=out?

    ·L(a)=outis legal if and only if there existsb ∈Asuch thatbRaandL(b)=in?

    ·L(a)=undecis legal if and only if the above two cases are unsatisfied,i.e.

    -there existsb ∈Asuch thatbRaandL(b)/=out?

    -for anyc ∈A,ifcRathenL(c)/=in.

    Based on Definition 8,various kinds of labellings can be defined as follows.

    Definition 9.LetG=(A,R)be an argumentation framework,andLbe a labelling ofG.

    ·Lis an admissible labelling if and only if arguments inin(L)andout(L)are legally labeled byL?

    ·Lis a complete labelling if and only if it is admissible,and arguments inundec(L)are legally labeled byL?

    ·Lis the grounded labelling if and only if it is complete,andin(L)is minimal(with respect to set inclusion)among all complete labellings ofG?

    ·Lis a preferred labelling if and only if it is admissible,andin(L)is maximal(with respect to set inclusion)among all admissible labellings ofG?

    ·Lis a stable labelling if and only if it is complete,andundec(L)=??

    ·Lis the ideal labelling if and only if it is the maximal admissible labelling that is smaller than or equal to each preferred labelling(with respect to set inclusion).Here,we say that a labellingLis smaller than or equal to another labellingL′if and only ifin(L)?in(L′).

    In this paper,we usead,co,pr,gr,standidto denote admissible,complete,preferred,grounded,stable and ideal respectively,and useσto represent one of them,i.e.σ ∈{ad,co,pr,gr,st,id}.The set of allσ-extensions(sets)ofGis denoted asEσ(G).The set of allσ-labellings onGis denoted asLσ(G).

    The relation between labellings and extensions is:for anyσ-labelling ofG,there is aσ-extension(set)Esuch thatE=in(L)?for anyσ-extension(set)EofG,there is aσ-labelling such thatE=in(L)([1]).In the following part of this paper,we callin(L)aσ-extension(set)whileLis aσ-labelling.

    It is not the case for eachσin{ad,co,pr,gr,st,id}that theσ-labellings are in one-to-one correspondence to theσ-extensions(sets)of an argumentation framework.ad-labellings are not uniquelly identified by theirinlabeled part,but it does hold forco-labellings([12]).The following proposition indicates this unique identification forco-labellings.

    Proposition 1.Let G=(A,R)be an argumentation framework,and L1,L2be colabellings of G.It holds that:

    ·in(L1)?in(L2)if and only ifout(L1)?out(L2);

    ·in(L1)?in(L2)if and only ifout(L1)?out(L2).

    2.3 Directionality and sub-frameworks

    Directionality is a property of semantics with respect to the structures of argumentation frameworks.In this paper,we adopt the definition based on the labellingbased approach in[1].

    Definition 10.LetG=(A,R)be an argumentation framework,andB ?A.Bis unattacked if and only if there is no argumenta ∈ABsuch thataRB.

    Definition 11.A semanticsσis directional if and only if for any argumentation frameworkGand for any set of argumentsBwhich is unattacked,Lσ(G)↓B=Lσ(G ↓B),whereLσ(G)↓B={L ↓B |L ∈Lσ(G)}.

    In[15],Liao et al.calledG ↓BwithBunattacked unconditioned sub-framework ofG,otherwise conditioned sub-framework.Furthermore,they proposed the partially labeled sub-framework which is a combination of a conditioned sub-framework and its outside attackers.In this paper,we stick “partially labeled” to sub-frameworkG ↓B.

    Definition 12.LetG=(A,R) be an argumentation framework,andB ?A.A partially labeled sub-framework ofGis denoted as(G ↓B)L,whereLis a labelling covers all attackers outsideG ↓B.

    In Definition 12,we do not restrict the attackers outsideBto be nonempty,which is different from[15].The legality of labellings for a partially labeled sub-framework needs to incorporate the labels of its external attackers if there are.

    Definition 13.LetG=(A,R) be an argumentation framework,B ?A,a ∈BandL*be a labelling of(G ↓B)L.

    ·L*(a)=inis legal if and only if for anyb ∈AB,bRaimpliesL(b)=out,and for anyc ∈B,bRaimpliesL*(c)=out?

    ·L*(a)=outis legal if and only if there existsb ∈AB,such thatbRaandL(b)=inor there existsb ∈B,such thatbRaandL*(b)=in?

    ·L*(a)=undecis legal if and only if the above two cases are unsatisfied.

    The definitions ofad,co,gr,prandid-labellings of a partially labeled subframework are defined as follows.

    Definition 14.LetG=(A,R)be an argumentation framework,B ?AandL*be a labelling of(G ↓B)L.

    ·L*is anad-labelling of (G ↓B)Lif and only if all arguments inin(L*) andout(L*)are legally labeled byL*?

    ·L*is aco-labelling of (G ↓B)Lif and only if it is anad-labelling,and all arguments inundec(L*)are legally labeled byL*?

    ·L*is thegr-labelling of(G ↓B)L,if and only ifL*is aco-labelling,andin(L*)is minimal(with respect to set inclusion)among all co-labellings of(G ↓B)L?

    ·L*is apr-labelling of(G ↓B)Lif and only ifL*is anad-labelling,andin(L*)is maximal(with respect to set inclusion)among all ad-labellings of(G ↓B)L?

    ·L*is an st-labelling of(G ↓B)Lif and only if it is a co-labeling,andundec(L)=??

    ·L*is theid-labelling of(G ↓B)Lif and only if it is the maximalad-labelling that is smaller than or equal to eachpr-labelling of (G ↓B)L(with respect to set inclusion).

    Example 4.AF3↓{a,b}andAF3↓{e,f}are two sub-frameworks ofAF3(see Figure 2).AF3↓{a,b}is unconditioned,and given any labellingL,Lco((AF3↓{a,b})L)={({a},,?)}.

    AF3↓{e,f}is conditioned,and is attacked outside bycandd.SupposeL1=({c},j5i0abt0b,?),L2=(j5i0abt0b,{c},?),andL3=(?,?,{c,d}),then we have:

    If a sub-framework is attacked outside by arguments that are all labeledout,then its semantics is imprevious.The following theorem shows this condition.

    Theorem 2.σ ∈{ad,co,gr,pr,st,id}.Let G=(A,R)be an argumentation framework,B,C ?A,and C={c ∈A|c/∈B and cRB}.If there is a labelling L on C such that for any c ∈C,L(c)=out,then Lσ((G ↓B)L)=Lσ(G ↓B).

    It is easy to prove Theorem 2 by Definitions 13 and 14.

    3 Characterizing Argumentation Frameworks

    In this section,we will discuss how to characterizeσ-argumentation frameworks with an extension.This kind of conditioned argumentation frameworks are defined followingσ-subgraphs with respect to an extension proposed in[17].Aσ-subgraph with respect to an extension is a sub-framework that has a fixed set of arguments as aσ-extension.For example,AF2,AF2↓{a,b,c},AF2↓{a,d,c}andAF2↓{a,c}are allgr-subgraphs ofAF2with respect to{a,c}(see Figure 1).

    Aσ-argumentation framework with an extension is defined as follows.

    Definition 15.LetG=(A,R) be an argumentation framework.IfEis aσextension ofG,then we callGaσ-argumentation framework withE.is used to denote the set of allσ-argumentation frameworks withE.

    AF1andAF2illustrated in Figure 1 are twogr-argumentation frameworks with{a,c}.AF3illustrated in Figure 2 is aco-argumentation framework with{a,c,f}.

    Eis the key point to the construction ofGinTwo factors related toEjointly make a contribution to this construction:arguments that attackEand arguments that are attacked byE.In the remaining part of this paper,the following sets related toEwithin any argumentation frameworkG=(A,R) will be frequently used,which are previously presented in[17].={x ∈AE|xRE},denoting the set of arguments inAthat attacksE?={x ∈AE|ERx},denoting the set of arguments inAthat is attacked byE?denoting the set of arguments inAthat attackEbut is not attacked byE?denoting the set of arguments inAwhich is unrelated toE(neither attacks nor is attacked byE).

    E,make a partition ofA,and determine whetherGis aσ-argumentation framework withE.

    The following parts of this section show the characterizations of argumentation frameworks with an extension under complete,grounded,preferred and stable semantics.

    3.1 Complete semantics

    Before discussing argumentation frameworks inwe first show how anad-argumentation framework withEis.

    Given an argumentation frameworkG,ifGis anad-argumentation framework withE,then there exists an ad-labellingLofGsuch thatin(L)is equal toE.Alladsets are conflict-free,then any two arguments inEdo not attack each other.According to Definition 9,arguments inin(L)andout(L)should be legally labeled.This implies that all arguments inare labeledoutbyL.According to Definition 8,any argument labeledoutis attacked by at least one argument labeledin.Then it can be concluded thatEattacks,i.e.is included in

    Theorem 3.Let G=(A,R)be an argumentation framework,and E ?A.G ∈if and only if

    From Theorem 3,thatis included inand thatEis conflict-free are not only sufficient but also necessary conditions forGbeing anad-argumentation framework withE.

    Example 5.LetE2={a,d}.According to Theorem 3,AF4illustrated in Figure 3 is anad-argumentation framework withE2.

    Figure 3 :An ad-argumentation framework with E2

    Figure 4 : co-argumentation frameworks with E2

    On the basis of Theorem 3,aco-argumentation framework withEcan be described as follows.

    Theorem 4.Let G=(A,R)be an argumentation framework,and E ?A.G ∈if and only if

    Comparing with Theorem 3,Theorem 4 adds a new condition onwhich makes sure that all arguments unrelated toEare legally labeledundec.Theorem 4 provides sufficient and necessary conditions forGbeing aco-argumentation framework withE.

    3.2 Grounded semantics

    IfGis agr-argumentation framework withE,then there is agr-labelling ofG,sayL,such thatin(L)is equal toE.As thegr-labelling is also complete,Gfirst is aco-argumentation framework withE.Then we know thatEis conflict-free,is included inis self-attacked.As the grounded extension is the minimal complete extension,Gshould have no otherco-extension that is properly included inE.This implies that the sub-frameworkshould not have arguments that can be labeledundec,i.e.is thegr-labeling ofG

    SupposeGis aco-argumentation framework withE,andis thegrlabelling ofthenis aco-labelling ofG,and there is no smallerco-extension ofGthanE.Thenbecomes thegr-labelling ofG,andGis agr-argumentation framework withE.

    In[19],Modgil and Caminada provided an algorithm to compute thegr-labelling of an argumentation framework.The algorithm started by assigninginto all arguments that are unattacked,and then iteratively assignoutto any argument that is attacked by an argument which has been assignedin,andinto those arguments whose attackers are all assignedout.The iteration continues until no more new arguments can be assignedinorout,then all the arguments left are assignedundec.In this process of assignment,for any circle,if it is unattacked or attacked only by arguments assignedout,then all arguments in it can only be decided to beundec.But if it is attacked by arguments assignedin,then some arguments in this circle can be decided to beinorout.

    Example 7.are argumentation frameworks with circles(see Figure 5).The assigning process of grounded semantics foris:a(in)→b(out)→c(undec).The assigning process of grounded semantics foris:a(in)→b(out)→c(in).

    Figure 5 :Argumentation frameworks with circles

    Figure 6 :A gr-argumentation framework with E2

    Based on Theorem 4 and the algorithm of computinggr-labellings,agr-argumentation framework withEcan be described as follows.

    Theorem 5.Let G=(A,R)be an argumentation framework,and E ?A.G ∈if and only if

    3.3 Preferred semantics

    The following theorem shows how to characterize argumentation frameworks in

    Theorem 6.Let G=(A,R)be an argumentation framework,and E ?A.G ∈if and only if

    3.4 Stable semantics

    Based on Theorem 3,argumentation frameworks inare constructed as follows.

    Theorem 7.Let G=(A,R)be an argumentation framework,and E ?A.G ∈if and only if

    Theorem 7 provides sufficient and necessary conditions forGbeing anst-argumentation framework withE.

    Example 10.E2={a,d}.AF4in Figure 3 is anad-argumentation framework withE2.One of thead-labellings ofAF4is({a,d},{b,e},{c,f}).Since={c,f},then from Theorem 7,AF4is not anst-argumentation framework withE2.andillustrated in Figure 7 are qualified argumentation frameworks in

    Figure 7 : st-argumentation frameworks with E2

    Figure 8 :The update of AF1 to enforce E3

    We call all above theorems for the characterizations of argumentation frameworks inchracterizing theorems,whereσ ∈{ad,co,gr,pr,st}.

    3.5 Properties of σ-argumentation frameworks with E

    There is a series of inclusion relations between admissible sets,complete,grounded,preferred,stable and ideal extensions of an argumentation framework.They actually indicate a kind of ordering on these semantics if we treat“admissible”also as a kind of semantics.

    Definition 16.Letσandτbe two kinds of semantics,andbe a relation between them.if and only if for any argumentation frameworkG,for anyE ∈Eσ(G),E ∈Eτ(G).

    The fact that every stable extension is also a preferred extension was first stated in[18].All other relations between admissible sets,complete,grounded and preferred extensions have originally been stated in[11].Meanwhile,as proved in[8],an ideal extension is also a complete extension.All these indicates thatis an odering on admissible,complete,grounded,preferred,stable and ideal semantics:

    Given a set of argumentsE,this odering implies inclusion relations between corresponding sets of argumentation frameworks withE.

    Theorem 8.Let E be a set of arguments.Then we know that:

    The definitions ofmakes a clear clue to prove Theorem 8.

    At last,we extend the chatacterization ofσ-argumentation frameworks with a single extension to a set of extensions.

    Theorem 9.Let G=(A,R)be an argumentation framework,and B={B |B ?A}.B ?Eσ(G)if and only if G ∈∩{|E ∈B}.

    Theorem 9 can be proved directly from the definition of

    4 Applications

    In this section,we will discuss two applications of our work in Section 3 on the dynamics of argumentation frameworks.One application is updating an argumentation framework to enforce an extension.The other one is monotony.

    4.1 Updating an argumentation framework to enfroce an extension

    Updating an argumentation framework is to change the set of arguments and the attack relation of this tuple.In [16],Liao et al.treated it as an operation between an arguementation framework and a set of arguments and attacks.In this paper,we adopt the perspective that updating an argumentation framework is adding arguments or attacks to it,or deleting arguments or attacks from it,and after revising,it still becomes an argumentation framework.

    Definition 17.LetG=(A,R)be an argumentation framework.The update ofGis an argumentation frameworkG′=(A′,R′),andG′satisfies

    ·A′=(AB)∪CwhereB ?AandC ∩(AB)=??

    ·R′=(RR1)∪R2whereR1andR2are two binary relations,(A×B)∪(B×B)∪(B×A)?R1andR2?A′×A′.

    Updating an argumentation framework to enforce an extension,sayE,means updating an argumentation framework in such a way thatEbecomes one of its extensions.In[4],Baunman et al.have found the sufficient conditions for expanding an argumentation framework,i.e.adding arguments or attaks to it,to enforce an extension.In this paper,each characterizing theorem in Section 3 provides a way to update an argumentation framework,either expanding or restricting,to enforce aσ-extension whereσ ∈{co,gr,pr,st}.

    Theorems 4,5 and 7 show direct ways to update an argumentation framework to enforce a complete,grounded and stable extension,respectively.

    Theorem 6 shows an indirect way to update an argumentation framework to enforce a preferred extension.

    Example 12.E3={a},andE3is not apr-extension but anad-set ofAF2(see Figure 1).is an updated argumentation framework ofAF2to enforceE3as apr-extension(see Figure 9).is formed by addinge,(e,c),(b,e)toAF2,where={b,c,e}and there is no arguments in it can be labeledin.

    Figure 9 :The update of AF2 to enforce E3

    Examples 11 and 12 show how to update an argumentation framework to enforce an extension.The general rules of these updates under complete,grounded,stable and preferred semantics are displayed in[21],and each rule corresponds to a characterizing theorem of the same semantics in Section 3.The ways to update argumentation frameworks in Examples 11 and 12 conform to the rules in [21],while the resulted frameworks satisfy the characterizing theorems.

    4.2 Monotony

    Monotony is an important conception in mathematics and logic.In abstract argumentation,monotony is a kind of property of the update from an argumentation framework,sayG,to the other one,sayG′,that represents the monotonic change of accepted arguments.In[10],Cayrol et al.proposed monotony,credulous monotony and skeptical monotony.Monotony indicates each extension ofGis included in at least one extension ofG′.Credulous monotony indicates the union of the extensions ofGis included in the union of the extensions ofG′.Skeptical monotony indicates the intersection of extensions ofGis included in the intersection of extensions ofG′.In[5],monotony is classified as expansive monotony and restrictive monotony.The update fromGtoG′is expansive monotony if every argument accepted inGis still accepted inG′,i.e.no accepted argument is lost or there is an expansion of acceptability.The update fromGtoG′is restrictive monotony if every argument accepted inG′was already accepted inG,i.e.no new acceptable arguments appear or there is a restriction of acceptability.In[4],monotony means that arguments accepted in the original argumentation framework survive,and the number of extensions can not decrease after updating.

    In this paper we discuss some relations between theσ-argumentation frameworks with an extension and the monotonies proposed in[5].The definition of monotonies is defined as follows.

    Definition 18.LetG=(A,R)andG′=(A′,R′)be argumentation frameworks.

    · The update fromGtoG′is expansiveσ-monotony if and only if for anyσextensionEofG,there is aσ-extensionE′ofG′such thatE ?E′.

    · The update fromGtoG′is restrictiveσ-monotony if and only if for anyσextensionEofG,there is aσ-extensionE′ofG′such thatE ?E′.

    Theσ-argumentation framework with an extension can be used to show the conditions for monotony.

    From Definition 6,we know that?is an ordering on the set ofco-extensions of an argumentation framework.If all the maximalco-extensions,i.e.allpr-extensions of the original argumentation frameworkGsurvive in the updated argumentation frameworkG′,then allco-extensions survive.Then the expansive monotony under complete and preferred semantics are satisfied.Since both thegr-extension and theid-extension are unique in a framework,then the expansive monotony under grounded and ideal semantics are satisfied if the correspondinggrandid-extensions survives.

    The following theorem uses the set ofσ-argumentation frameworks with an extension to show some sufficient conditions for expansive monotony.

    Theorem 10.Let G=(A,R)and G′=(A′,R′)be argumentation frameworks.

    · If G′ ∈∩{|E ∈Epr(G)},then the update from G to G′ is expansive co and pr-monotony.

    · If G′ ∈where E ∈Eid(G),then the update from G to G′ is expansive grand id-monotony.

    Proof.

    · SupposeG′ ∈∩{|E ∈Epr(G)},then anypr-extensionEofGis anadset ofG′.For anyco-extensionE1ofG,there is apr-extensionE2ofGsuch thatE1?E2.SinceE2is anad-set ofG′,then there must be aco-extensionE3ofG′such thatE2?E3.Thus the update fromGtoG′is expansivecomonotony.

    Thepr-extension is also aco-extension,then the update fromGtoG′is also expansivepr-monotony.

    · SupposeG′ ∈andE ∈Eid(G),then theid-extensionEofGis thegr-extension ofG′.Since thegr-extension is included in theid-extension of an argumentation framework,thenEincludes thegr-extension ofG.Thus the update fromGtoG′is expansivegr-monotony.Eis also included in theid-extension ofG′.Thus the update fromGtoG′is expansiveid-monotony.□

    Egr(AF9)=Eid(AF9)={E3}whereE3={a}.illustrated in Figure 12 hasE3as thegr-extension.According to Theorem 10,the update fromAF9tois expansivegrandid-monotony,and we can see from Figure 12 that{a,e}is theid-extension of

    Figure 10 :An argumentation framework

    Figure 11 :An updated argumentation framework of AF9

    Figure 12 :An updated argumentation framework of AF9

    Gis the original argumentation framework,andG′is the updated framework.If the minimalco-extention,i.e.thegr-extension ofGis restricted inG′,then allco-extensions are restricted inG′.The minimalgr,prandid-extensions of an argumentation framework are themselves.The restrictive monotony under grounded,preferred and ideal semantics are satisfied if the correspondinggr,prandid-extensions are restricted inG′.

    The following theorem uses the set ofσ-argumentation frameworks with an extension to show some sufficient conditions for restrictive monotony.

    Theorem 11.Let G=(A,R)and G′=(A′,R′)be argumentation frameworks.

    · If E is the gr-extension of G and G′ ∈then the update from G to G′ isrestrictive co and gr-monotony.

    · If E is the id-extension of G and G′ ∈then the update from G to G′ isrestrictive pr and id-monotony.

    Proof.

    · SupposeEis thegr-extension ofGandG′ ∈thenEis aco-extension ofG′.Sincegr-extension is the minimalco-extension of an argumentation framework,then the update fromGtoG′is restrictiveco-monotony.More over,there must be agr-extensionE′ofG′such thatE′ ?E,then the update fromGtoG′is also restrictivegr-monotony.

    · SupposeEis theid-extension ofGandG′ ∈thenEis apr-extension ofG′and it is included in anypr-extension ofG.FromEis apr-extension ofG′we know that theid-extensionE′ofG′is included inE.Then the update fromGtoG′is restrictiveid-monotony.FromEis included in anypr-extension ofGwe know that there is apr-extensionE′′ofGsuch thatE ?E′′.SinceG′ ∈then the update fromGtoG′is restrictivepr-monotony.

    Example 14.ConsiderAF9illustrated in Figure 10 andE3={a}.E3is thegrand theid-extension ofAF9,and it is also aco-extension and apr-extension ofillustrated in Figure 13.According to Theorem 11,the update fromAF9tois restrictiveco,gr,prandid-monotony:E4={a,c,j}andE5={a,i}arecoandpr-extensions ofAF9??is thegrand theid-extension of

    Figure 13 :An updated argumentation framework of AF9

    5 Conclusion

    Given an argumentation framework,a set of extensions are generated from its structure.Reversely,given an extension,or a set of extensions,a set of argumentation frameworks can be decided.In this paper,we study how to characterize argumentation frameworks from an extension.

    The main part of this paper is Section 3,in which we define,and characterize the argumentation framework,sayG,with a set of arguments,sayE,as an extension.A series of characterizing theorems are proposed.The characterizations ofGunder complete,grounded and stable semantics are in the syntax level,but the characterization ofGunder preferred semantics is decided partially by computing the admissible labelling of a related sub-frameworkThe last part of Section 3 shows the relations between the sets of argumentation frameworks with an extension under different semantics,and that how to characterize an argumentation framework with more than one extension.In [17],we characterize subgraphs of an argumentation framework with an extension under admissible,complete,stable,preferred and grounded semantics1“Admissible”is a kind of semantics in[17]..In this paper,we adjust the characterizations to whole argumentation frameworks.The most significant improvement of this paper is that we found a way to characterize the argumentation frameworkGwithout computing the semantics ofunder grounded semantics,while in[17],the counterpart ofGneeds to be checked whether hasEas the grounded extention.Section 3 is a groundwork for[22]and[21].All results related to revising/updating argumentation frameworks in[22]and[21]conform to the characterizing theorems.

    Section 4 shows some applications of the work in Section 3.The first application is updating an argumentation framework to enforce an extension.We discuss this problem followed from Baumann et al.([4]),and this part of application is not a new idea but a review of[21].The second application is monotony which is a property of updating argumentation frameworks.The monotony is introduced followed from [5],and is separated as expansive monotony and restrictive monotony.There are some relations between the set ofσ-arguementation frameworks with an extension and monotony,and the set ofσ-arguementation frameworks with an extension is used in this paper to show some conditions for monotony.Comparing[4]and[5],where updating an arugmentation framework is just adding or deleting one argument and the related attacks([5]),or extending it([4]),we combine our work on characterizing theorems to the updating process and provide a discretionary way to update a framework for both enforcement and monotony.

    Two conceptions are provided in this paper to help characterizing theσ-arguementation framework with an extension.The first is circle.The circles in an argumentation framework are the key points to the constitution of semantics.It is used to characterize thegr-arguementation framework with an extension.The second one is partially labeled sub-framework.It is a variation of the concept of the same name in[15],and it is used to prove the characterization ofpr-arguementation framework with an extension.Furthermore,the partially labeled sub-framework itself is a useful idea to study the merging of argumentation frameworks.

    To conclude,there are three defects of our work.The first is on the characterization ofpr-argumentation frameworks with an extension,where computing semantics of sub-frameworks makes the process of constructing a requested argumentation framework complicated.The second is that the argumentation framework generated from the characterizing theorems may have one or more extensions undesired.We can not get a one-to-one match between the argumentation frameworks and a set of extensions.The third is that we do not get the characterizing theorems under some other kinds of semantics such as ideal and semi-stable.All of these problems will be worth discussing in the future.

    国产av国产精品国产| 日日爽夜夜爽网站| 日韩一区二区三区影片| 秋霞伦理黄片| 在线看a的网站| 又大又黄又爽视频免费| 高清不卡的av网站| 亚洲人成网站在线播| 18+在线观看网站| 国产成人精品久久久久久| 久久精品国产自在天天线| 青春草亚洲视频在线观看| 日本欧美国产在线视频| 久久久国产欧美日韩av| 日本免费在线观看一区| 日韩不卡一区二区三区视频在线| 国产成人a∨麻豆精品| 亚洲国产欧美日韩在线播放| 伦精品一区二区三区| 国产黄色免费在线视频| 欧美精品一区二区免费开放| 777米奇影视久久| 欧美少妇被猛烈插入视频| 一二三四中文在线观看免费高清| 18禁观看日本| .国产精品久久| 久久精品久久久久久噜噜老黄| 久久综合国产亚洲精品| 嘟嘟电影网在线观看| 亚洲国产精品999| 一级,二级,三级黄色视频| 亚洲综合色网址| 国产国语露脸激情在线看| 黑人欧美特级aaaaaa片| 蜜桃国产av成人99| 欧美激情极品国产一区二区三区 | 超色免费av| 免费av中文字幕在线| 在线 av 中文字幕| 亚洲精品久久成人aⅴ小说 | 视频中文字幕在线观看| 另类精品久久| 人人妻人人爽人人添夜夜欢视频| 最新的欧美精品一区二区| 国产亚洲午夜精品一区二区久久| 亚洲欧美一区二区三区国产| 日日摸夜夜添夜夜添av毛片| 亚洲精品亚洲一区二区| 精品一区在线观看国产| 建设人人有责人人尽责人人享有的| 一区二区日韩欧美中文字幕 | 街头女战士在线观看网站| 搡老乐熟女国产| 亚洲精品第二区| 国产午夜精品一二区理论片| av播播在线观看一区| 亚洲国产精品一区三区| 嘟嘟电影网在线观看| 日韩,欧美,国产一区二区三区| 亚洲色图 男人天堂 中文字幕 | 丰满少妇做爰视频| 欧美精品高潮呻吟av久久| 在线天堂最新版资源| 久久久久久伊人网av| 好男人视频免费观看在线| 内地一区二区视频在线| 最近中文字幕2019免费版| 极品人妻少妇av视频| videossex国产| av黄色大香蕉| 国产免费一级a男人的天堂| 久久人人爽人人爽人人片va| 一级黄片播放器| 少妇被粗大的猛进出69影院 | 国产精品秋霞免费鲁丝片| 亚洲婷婷狠狠爱综合网| 夜夜爽夜夜爽视频| freevideosex欧美| 高清不卡的av网站| 丝袜喷水一区| 久久免费观看电影| 国产成人av激情在线播放 | 日韩人妻高清精品专区| 男女国产视频网站| 在线观看www视频免费| 欧美+日韩+精品| 制服诱惑二区| 一区二区三区四区激情视频| 亚洲少妇的诱惑av| 亚洲精品aⅴ在线观看| 精品久久国产蜜桃| 欧美3d第一页| 久久女婷五月综合色啪小说| 最近最新中文字幕免费大全7| 春色校园在线视频观看| 国产av一区二区精品久久| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| 女的被弄到高潮叫床怎么办| 高清午夜精品一区二区三区| 亚洲欧洲日产国产| 婷婷色av中文字幕| 欧美最新免费一区二区三区| 一本—道久久a久久精品蜜桃钙片| 免费观看的影片在线观看| 黄色欧美视频在线观看| 亚洲精品视频女| 美女xxoo啪啪120秒动态图| 国产一级毛片在线| 狠狠婷婷综合久久久久久88av| 爱豆传媒免费全集在线观看| 国产黄色视频一区二区在线观看| 日本黄色日本黄色录像| 18禁裸乳无遮挡动漫免费视频| 我要看黄色一级片免费的| 欧美97在线视频| 久久久亚洲精品成人影院| av天堂久久9| 美女视频免费永久观看网站| 国产有黄有色有爽视频| 大片电影免费在线观看免费| 妹子高潮喷水视频| 夫妻性生交免费视频一级片| 精品久久国产蜜桃| 中文字幕亚洲精品专区| 精品熟女少妇av免费看| 一级二级三级毛片免费看| 欧美成人精品欧美一级黄| 欧美最新免费一区二区三区| 欧美另类一区| 纯流量卡能插随身wifi吗| 久久久久久久久久人人人人人人| 精品久久国产蜜桃| 18禁观看日本| av网站免费在线观看视频| 青春草亚洲视频在线观看| 国产精品蜜桃在线观看| 制服丝袜香蕉在线| 黄片播放在线免费| 丁香六月天网| 在线观看免费日韩欧美大片 | 三级国产精品欧美在线观看| 人人澡人人妻人| 18禁观看日本| 日韩人妻高清精品专区| av卡一久久| 亚洲欧美色中文字幕在线| 亚洲一区二区三区欧美精品| 美女内射精品一级片tv| 久热这里只有精品99| 亚洲美女黄色视频免费看| 国产成人a∨麻豆精品| 精品久久久噜噜| freevideosex欧美| 大片免费播放器 马上看| 欧美一级a爱片免费观看看| freevideosex欧美| 能在线免费看毛片的网站| 欧美97在线视频| 亚洲精品,欧美精品| 午夜福利视频精品| 少妇被粗大的猛进出69影院 | 五月玫瑰六月丁香| 亚洲精品456在线播放app| .国产精品久久| 精品久久久久久久久av| 热re99久久国产66热| 亚洲国产毛片av蜜桃av| 成人黄色视频免费在线看| 国模一区二区三区四区视频| 亚洲欧美成人精品一区二区| 桃花免费在线播放| 九色亚洲精品在线播放| 久久久久久久久久久免费av| 精品久久蜜臀av无| 999精品在线视频| 岛国毛片在线播放| 午夜激情久久久久久久| 香蕉精品网在线| 夜夜看夜夜爽夜夜摸| 欧美另类一区| 精品亚洲成a人片在线观看| 久久久久久久久久久久大奶| 亚洲成人手机| 日韩欧美一区视频在线观看| 国产一区二区在线观看av| 简卡轻食公司| 成人免费观看视频高清| 黑人猛操日本美女一级片| 如何舔出高潮| 成人毛片a级毛片在线播放| 视频中文字幕在线观看| 成年女人在线观看亚洲视频| 成人国产麻豆网| 成年人午夜在线观看视频| 麻豆成人av视频| 色吧在线观看| 青春草国产在线视频| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 久久久久久久大尺度免费视频| 天堂中文最新版在线下载| 久久久久人妻精品一区果冻| 又黄又爽又刺激的免费视频.| 欧美日韩成人在线一区二区| 亚洲精品日本国产第一区| 欧美人与善性xxx| 中国三级夫妇交换| 香蕉精品网在线| 三级国产精品欧美在线观看| 王馨瑶露胸无遮挡在线观看| 日韩成人伦理影院| 高清av免费在线| 如何舔出高潮| 91久久精品电影网| 能在线免费看毛片的网站| 日韩在线高清观看一区二区三区| 国产男人的电影天堂91| 亚洲国产精品国产精品| 国产精品无大码| 大香蕉97超碰在线| 久久久国产精品麻豆| 九色成人免费人妻av| 女的被弄到高潮叫床怎么办| 蜜臀久久99精品久久宅男| 99九九在线精品视频| 蜜桃在线观看..| 亚洲伊人久久精品综合| 国产精品久久久久久久久免| 这个男人来自地球电影免费观看 | 日韩人妻高清精品专区| 亚洲精品国产av成人精品| 人妻一区二区av| 99久久中文字幕三级久久日本| 国产视频内射| 国产成人精品久久久久久| 啦啦啦中文免费视频观看日本| 国产淫语在线视频| 视频区图区小说| 欧美xxxx性猛交bbbb| 亚洲av二区三区四区| a级毛片免费高清观看在线播放| 老熟女久久久| 亚洲精品日韩av片在线观看| 亚洲五月色婷婷综合| 99视频精品全部免费 在线| 9色porny在线观看| 久久这里有精品视频免费| 亚洲国产av新网站| 国产精品一二三区在线看| 精品国产露脸久久av麻豆| 色视频在线一区二区三区| 免费人成在线观看视频色| 草草在线视频免费看| 少妇熟女欧美另类| 成人毛片a级毛片在线播放| 丝袜美足系列| 日韩,欧美,国产一区二区三区| 亚洲欧洲日产国产| 日韩视频在线欧美| 桃花免费在线播放| 乱人伦中国视频| 亚洲美女黄色视频免费看| 国产精品嫩草影院av在线观看| 精品酒店卫生间| 国产片内射在线| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 中文字幕制服av| 18在线观看网站| 中文字幕精品免费在线观看视频 | 又大又黄又爽视频免费| 香蕉精品网在线| 亚洲精品日韩在线中文字幕| 亚洲国产色片| 制服丝袜香蕉在线| 高清欧美精品videossex| 欧美激情极品国产一区二区三区 | 另类精品久久| 超色免费av| av女优亚洲男人天堂| 国产高清不卡午夜福利| av卡一久久| 99国产精品免费福利视频| 欧美国产精品一级二级三级| 又黄又爽又刺激的免费视频.| 国产国语露脸激情在线看| 丰满饥渴人妻一区二区三| av网站免费在线观看视频| 亚洲综合精品二区| 亚洲人成77777在线视频| 视频中文字幕在线观看| 亚洲,欧美,日韩| 国产片内射在线| 国产色婷婷99| xxx大片免费视频| 亚洲精品一区蜜桃| 成人国产麻豆网| 婷婷色av中文字幕| 如日韩欧美国产精品一区二区三区 | 日日摸夜夜添夜夜爱| 日日摸夜夜添夜夜添av毛片| 中国国产av一级| 国产淫语在线视频| 国产男女内射视频| 久久国产精品男人的天堂亚洲 | 国产在视频线精品| 熟女电影av网| 国语对白做爰xxxⅹ性视频网站| 免费看光身美女| 久久久久人妻精品一区果冻| kizo精华| 亚洲国产精品一区三区| 一区二区日韩欧美中文字幕 | 综合色丁香网| 国产精品人妻久久久久久| 九色成人免费人妻av| 少妇精品久久久久久久| 久久久久视频综合| 日本91视频免费播放| 精品国产一区二区久久| 老熟女久久久| 99热网站在线观看| 97在线人人人人妻| 日韩大片免费观看网站| av在线app专区| 免费播放大片免费观看视频在线观看| 韩国高清视频一区二区三区| 2022亚洲国产成人精品| 秋霞在线观看毛片| 日韩一本色道免费dvd| 美女国产高潮福利片在线看| 一区二区三区四区激情视频| 亚洲中文av在线| 色视频在线一区二区三区| 91精品一卡2卡3卡4卡| 黑人猛操日本美女一级片| 久久婷婷青草| 久久久精品94久久精品| 80岁老熟妇乱子伦牲交| 国产高清国产精品国产三级| 亚洲精品一二三| 久久久精品94久久精品| 一区二区日韩欧美中文字幕 | 久久99热这里只频精品6学生| 国产不卡av网站在线观看| 在线观看三级黄色| 亚洲丝袜综合中文字幕| 亚洲欧洲日产国产| 免费看不卡的av| 激情五月婷婷亚洲| 热99久久久久精品小说推荐| 99九九线精品视频在线观看视频| 亚洲性久久影院| 18禁在线播放成人免费| 伊人久久精品亚洲午夜| 久久国产亚洲av麻豆专区| 免费看光身美女| 最近中文字幕高清免费大全6| 久久av网站| 日韩强制内射视频| 久久av网站| 欧美性感艳星| 精品少妇黑人巨大在线播放| 亚洲,一卡二卡三卡| 人妻制服诱惑在线中文字幕| av卡一久久| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| 国产成人精品福利久久| 在线观看免费高清a一片| 亚洲中文av在线| 午夜福利视频精品| 人体艺术视频欧美日本| 精品卡一卡二卡四卡免费| 人人妻人人澡人人爽人人夜夜| 美女福利国产在线| 国产av精品麻豆| 国语对白做爰xxxⅹ性视频网站| 九九在线视频观看精品| 一级毛片我不卡| 久久国产精品大桥未久av| 国模一区二区三区四区视频| 欧美xxⅹ黑人| 狂野欧美白嫩少妇大欣赏| 亚洲av中文av极速乱| 免费黄色在线免费观看| 国产午夜精品久久久久久一区二区三区| 啦啦啦啦在线视频资源| 日本午夜av视频| 飞空精品影院首页| 菩萨蛮人人尽说江南好唐韦庄| 乱人伦中国视频| 国产成人免费观看mmmm| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久影院| 亚洲三级黄色毛片| 日韩强制内射视频| 国产在线视频一区二区| 18禁在线无遮挡免费观看视频| 成人亚洲精品一区在线观看| 一级毛片我不卡| 免费观看在线日韩| 五月天丁香电影| 亚洲精品aⅴ在线观看| 国产片特级美女逼逼视频| 边亲边吃奶的免费视频| 99热这里只有是精品在线观看| 欧美日韩成人在线一区二区| 18禁动态无遮挡网站| 精品国产一区二区久久| 国产成人精品一,二区| 免费不卡的大黄色大毛片视频在线观看| 老女人水多毛片| 国产欧美另类精品又又久久亚洲欧美| 日韩欧美一区视频在线观看| 97在线视频观看| 久久久欧美国产精品| 制服人妻中文乱码| 成年人免费黄色播放视频| 在线观看美女被高潮喷水网站| 一个人看视频在线观看www免费| a级毛片免费高清观看在线播放| 国产不卡av网站在线观看| 天堂8中文在线网| 国产在线视频一区二区| 欧美日韩国产mv在线观看视频| 99视频精品全部免费 在线| 日韩亚洲欧美综合| 视频在线观看一区二区三区| 妹子高潮喷水视频| 亚洲欧美成人综合另类久久久| 国产日韩欧美亚洲二区| 在线观看三级黄色| 熟女av电影| 久久97久久精品| 国产免费现黄频在线看| 国产精品久久久久成人av| 日本黄大片高清| 女性被躁到高潮视频| 久久热精品热| 亚洲av综合色区一区| 国产一区二区在线观看日韩| 乱人伦中国视频| 精品久久蜜臀av无| 国产午夜精品一二区理论片| 亚洲色图综合在线观看| 久久女婷五月综合色啪小说| 一本一本综合久久| 免费高清在线观看视频在线观看| 中文字幕制服av| 成人国产av品久久久| 亚洲国产av新网站| 97在线人人人人妻| 男女边吃奶边做爰视频| a级片在线免费高清观看视频| 亚洲精品久久午夜乱码| 欧美激情极品国产一区二区三区 | 精品人妻一区二区三区麻豆| 国产男人的电影天堂91| 亚洲欧美成人精品一区二区| 国产伦理片在线播放av一区| 97在线视频观看| 欧美激情国产日韩精品一区| 国产成人a∨麻豆精品| 免费观看av网站的网址| 欧美精品亚洲一区二区| 亚洲色图 男人天堂 中文字幕 | 成人综合一区亚洲| 91久久精品国产一区二区三区| 国产伦理片在线播放av一区| 精品国产国语对白av| 亚洲国产精品一区二区三区在线| 韩国av在线不卡| 欧美日韩精品成人综合77777| 十八禁高潮呻吟视频| 97超视频在线观看视频| 国产精品国产av在线观看| 久久精品久久精品一区二区三区| 欧美最新免费一区二区三区| 九色亚洲精品在线播放| 男人操女人黄网站| 精品亚洲成a人片在线观看| 少妇的逼好多水| 人人妻人人爽人人添夜夜欢视频| 嫩草影院入口| 中文天堂在线官网| 国产无遮挡羞羞视频在线观看| 少妇人妻久久综合中文| 另类亚洲欧美激情| 一二三四中文在线观看免费高清| 久久99一区二区三区| 青春草国产在线视频| 少妇人妻 视频| 在线观看一区二区三区激情| 在线观看国产h片| 少妇高潮的动态图| 精品一区二区三区视频在线| 只有这里有精品99| av黄色大香蕉| 免费av中文字幕在线| 欧美激情极品国产一区二区三区 | 日韩视频在线欧美| 国产精品女同一区二区软件| 国产av精品麻豆| 水蜜桃什么品种好| 又大又黄又爽视频免费| 成年女人在线观看亚洲视频| 午夜免费鲁丝| 国产免费福利视频在线观看| 亚洲精品中文字幕在线视频| 国产成人91sexporn| 秋霞伦理黄片| 久久97久久精品| 在线看a的网站| 久久久精品区二区三区| 亚洲一级一片aⅴ在线观看| 热99久久久久精品小说推荐| 18禁在线无遮挡免费观看视频| 国产女主播在线喷水免费视频网站| 蜜桃国产av成人99| 极品人妻少妇av视频| 日韩一区二区视频免费看| 啦啦啦中文免费视频观看日本| 欧美xxⅹ黑人| 久热久热在线精品观看| 亚洲精品乱久久久久久| 欧美激情国产日韩精品一区| av不卡在线播放| 久久99蜜桃精品久久| 在线观看人妻少妇| 亚洲av电影在线观看一区二区三区| 成人亚洲欧美一区二区av| 最近2019中文字幕mv第一页| 亚洲国产av新网站| 久久毛片免费看一区二区三区| 91精品国产国语对白视频| 伊人亚洲综合成人网| 香蕉精品网在线| 午夜激情久久久久久久| 日本黄色日本黄色录像| 亚洲精品国产av成人精品| 中文欧美无线码| 老女人水多毛片| 欧美日韩视频高清一区二区三区二| 免费高清在线观看日韩| 日韩一区二区三区影片| 亚洲av男天堂| 亚洲性久久影院| 欧美 亚洲 国产 日韩一| 国产精品偷伦视频观看了| 丝袜喷水一区| 黄片播放在线免费| 日本黄大片高清| 欧美日韩亚洲高清精品| 国产男人的电影天堂91| 九草在线视频观看| a级毛片黄视频| 精品久久久久久久久亚洲| 免费人成在线观看视频色| 亚洲欧美日韩卡通动漫| 久久热精品热| 精品亚洲乱码少妇综合久久| 一级毛片电影观看| 欧美激情极品国产一区二区三区 | 亚洲丝袜综合中文字幕| 一二三四中文在线观看免费高清| 一级,二级,三级黄色视频| 高清毛片免费看| av一本久久久久| 成人亚洲欧美一区二区av| 麻豆乱淫一区二区| 一本色道久久久久久精品综合| 国产成人一区二区在线| 国产老妇伦熟女老妇高清| 国产一区二区在线观看日韩| 精品一品国产午夜福利视频| 热re99久久国产66热| 亚洲精品日韩在线中文字幕| 免费黄频网站在线观看国产| 观看美女的网站| 人妻夜夜爽99麻豆av| 亚洲美女搞黄在线观看| 多毛熟女@视频| 九九在线视频观看精品| 妹子高潮喷水视频| 国产男女内射视频| 久久久久国产网址| 亚洲精品第二区| 美女国产视频在线观看| 亚洲国产精品999| 中文乱码字字幕精品一区二区三区| 国产一区二区在线观看日韩| 国产精品国产av在线观看| 高清欧美精品videossex| 一区在线观看完整版| 久热这里只有精品99| 18禁在线无遮挡免费观看视频| 中文欧美无线码| h视频一区二区三区| 美女内射精品一级片tv| 91aial.com中文字幕在线观看| 亚洲第一av免费看| 久久99热这里只频精品6学生| 日韩一本色道免费dvd| 一个人免费看片子| 观看美女的网站| 久久免费观看电影| 国产高清三级在线| 久久韩国三级中文字幕| 亚洲精品视频女| 国产成人精品一,二区| 免费观看无遮挡的男女| 日产精品乱码卡一卡2卡三| 又黄又爽又刺激的免费视频.|