• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Undecidability Results of Modal Definability in Extended Modal Languages*

    2021-02-12 10:50:54ZhiguangZhao
    邏輯學(xué)研究 2021年6期

    Zhiguang Zhao

    Abstract. In the present paper,we apply the methodology in Balbiani and Tinchev(2016)to show that for the modal language with universal modality LU,tense language LT,hybrid languages LH, LH(@),Chagrova’s theorem holds that the modal/tense/hybrid definability of first-order sentences with respect to certain classes of frames is undecidable,by using similar techniques as stable classes of Kripke frames.

    1 Introduction

    In the model theory of modal logic,the modal definability problem of first-order formulas can be stated as follows:given a first-order formulaα,for the class of Kripke frames it defines,whether there is a modal formulaφthat defines the same class of Kripke frames.The celebrated Goldblatt-Thomason Theorem([16])states that given an elementary class of Kripke frames,it is modally definable if and only if it is closed under taking disjoint unions,generated subframes and bounded morphic images and reflects ultrafilter extensions.However,this theorem does not provide an algorithm to check if a given first-order formula is modally definable.As is shown by Chagrova in[10],this problem is undecidable.1For further similar results,see[7,9,11]and[8,Chapter 17].

    The problem of modal definability is further studied in[1-4,12-15].In[2],it is shown that modal definability for the class of all partitions is PSPACE-complete.In [3],it is further shown that modal definability in the modal language extended with universal modality for the class of all partitions is PSPACE-complete.In [12,14],it is shown that for the modal language and the modal language with universal modality,the modal definability problem for the class of KD45-frames is PSPACEcomplete.In[4],by applying the stable class technique,it is shown that with respect to certain frame classes,the modal definability problem of first-order sentences is undecidable,which is also an alternative proof of Chagrova’s result.In[1],by using similar techniques,it is shown that with respect to the class of all Euclidean frames,the modal definability problem is undecidable.The basic idea of the stable class technique can be described as follows:Given a class C of Kripke frames,by showing that the class C is stable,the problem of checking whether a first-order sentenceαis valid in C (C-validity problem) can be reduced to the modal definability problem ofαin C(C-modal definability problem).Therefore,if the first-order theory of C is undecidable,then the modal definability of first-order sentences in C is undecidable.In the present paper,what we are going to investigate is to what extent can we apply the same technique to get similar undecidability results,if we extend the modal language by adding converse modality,nominals,the@-operator,universal modality,etc.Indeed,in the proof that C-validity problem can be reduced to C-modal definability problem,the only parts that uses properties of the modal language are the following:(a).the modal language contains a formula like⊥such that it is valid on no Kripke frames in C?(b).the relation FF′that F′validates more(or the same)modal formulas than F.If we revise the definition of therelation by replacing modal formulas by tense/hybrid/…formulas,then we can get similar notions of stability in the extended modal languages,without changing the proof of the reducibility mentioned above.Therefore,once we have revised the definitions of stability according to the extended modal language,we can use the same technique to construct the witnesses of stability.What one needs to take care is that by adding expressivity to the modal language,the validity of extended modal formulas are preserved under less kinds of frame constructions,e.g.for tense logic,the notion of p-morphic image should be revised accordingly,and for the language with universal modality,the validity is not preserved under taking disjoint union or generated subframe anymore.Therefore,we need to take care of choosing appropriate frame F′to make sure that FF′holds for the extended modal languageLin consideration.

    The structure of the paper is as follows:Section 2 presents preliminaries on the extended modal languages and first-order language concerned in the paper.Section 3 sketches the stable class methodology as well as giving new undecidability results for the class of serial frames in the basic modal language.Section 4 gives the proofs thatLU-,LT-,LH-andLH(@)-definability for certain classes of Kripke frames are undecidable.Section 5 gives conclusions and further directions of research.

    2 Preliminaries

    In this section,we collect preliminary definitions and propositions for modal logic,tense logic and hybrid logic.For more details,see[4-6].

    2.1 Extended modal languages

    SyntaxGiven a set of propositional variables Prop,a set of nominals Nom,the syntax for modal logicLM,modal logic with universal modalityLU,tense logicLT,hybrid logicLH,hybrid logic with@-operatorLH(@)(we call these languages(extended)modal languages)are defined as follows:

    wherep ∈Prop.

    LUis obtained by adding the clausesUφandEφtoLM?

    LTis obtained by adding the clauses ■φand ◆φtoLM?

    LHis obtained by adding the clauseitoLMwherei∈Nom?

    LH(@)is obtained by adding the clause@iφtoLH.

    SemanticsGiven the(extended) modal languages,they are interpreted on Kripke frames F=(W,R) whereW /=?,R ?W × W.A Kripke model is a tuple M=(W,R,V)where(W,R)is a Kripke frame andV:Prop∪Nom→P(W)is an assignment such thatV(i)is a singleton for all nominalsi∈Nom.

    Given a Kripke model M=(W,R,V),the satisfaction relation is defined as follows:

    A formulaφis true in a model M(notation:M ?φ),if M ?φfor allv ∈W.φis valid in a frame F(notation:F ?φ),ifφis true in all models based on F.φis valid in a frame class C(notation:C ?φ),ifφis valid in all frames in C.A frame F isL-weaker than a frame F′(notation FF′),if for allL-formulasφ,if F ?φthen F′?φ.

    2.2 Frame constructions and validity preservation

    In the stable class techniques,therelation is an important technical tool,and it can be shown by proving that certain frame constructions preserveL-validity.Notice that here we only talk about frame constructions rather than model constructions,we do not need to revise the definitions of the frame constructions for hybrid logic.

    Definition 1(Generated subframe).Given two Kripke frames F=(W,R) and F′=(W′,R′),we say that F′is a generated subframe of F ifW′ ?W,R′=R ∩(W′×W′),and for allw ∈W′andv ∈Wsuch thatRwv,we havev ∈W′.

    Definition 2(Disjoint union).Given Kripke frames Fi=(Wi,Ri) (i ∈I) with disjoint domains,their disjoint union ?

    iFi=(W,R)is defined asW:=∪

    i∈I Wi,R:=∪

    i∈I Ri.

    Definition 3(Bounded morphic image).Given two Kripke frames F=(W,R)and F′=(W′,R′),we say that F′is a bounded morphic image of F if there is a surjective mapf:W →W′such that the following conditions hold:

    · for allw,v ∈W,ifRwvthenR′f(w)f(v)?

    · for allw ∈W,v′ ∈W′,ifR′f(w)v′then there exists av ∈Wsuch thatRwvandf(v)=v′.

    Definition 4(Tense generated subframe).Given two Kripke frames F=(W,R)and F′=(W′,R′),we say that F′is a tense generated subframe of F if

    ·W′ ?W?

    ·R′=R ∩(W′×W′)?

    · for allw ∈W′andv ∈Wsuch thatRwv,we havev ∈W′?

    · for allw ∈W′andv ∈Wsuch thatRvw,we havev ∈W′.

    Definition 5(Tense bounded morphic image).Given two Kripke frames F=(W,R)and F′=(W′,R′),we say that F′is a tense bounded morphic image of F if there is a surjective mapf:W →W′such that the following conditions hold:

    · for allw,v ∈W,ifRwvthenR′f(w)f(v)?

    · for allw ∈W,v′ ∈W′,ifR′f(w)v′then there exists av ∈Wsuch thatRwvandf(v)=v′?

    · for allw ∈W,v′ ∈W′,ifR′v′f(w)then there exists av ∈Wsuch thatRvwandf(v)=v′.

    It is easy to see that the modal languageLMis preserved under taking the first three kinds of frame constructions defined above:

    Proposition 1.

    ·Given two Kripke framesFandF′,ifF′is a generated subframe ofF,then for any LM-formula φ,ifF ?φ,thenF′?φ(i.e.,FF′);

    ·Given a class of frames{Fi | i ∈I},for any LM-formula φ,ifFi?φ for alli ∈I,then

    ·Given two Kripke framesFandF′,ifF′is a bounded morphic image ofF,then for any LM-formula φ,ifF ?φ,thenF′?φ(i.e.,FF′).

    We can obtain similar results for extended modal languages:

    Proposition 2.

    ·For the modal language with universal modality LU,its validity is preserved under taking bounded morphic images;

    ·For the tense logic language LT,its validity is preserved under taking tense generated subframes,disjoint unions and tense bounded morphic images;

    ·For the hybrid logic languages LH and LH(@),their validities are preserved under taking generated subframes.

    2.3 First-order language

    In this subsection we give the necessary notations and definitions in first-order logic and relativization.We follow the presentations in[4].

    SyntaxGiven a set of individual variables Var,the first-order languageL1is defined as follows:

    TruthGiven a frame F=(W,R),the satisfaction relation between first-order formulaα() and F with respect to a listsof worlds in F (notation:is defined as follows:

    RelativizationThe relativizationof a first-order formulaγwith respect to another first-order formulaαand an individual variablexis defined as follows:

    whereα[x/y] is obtained by replacing all free occurrence ofxinαbyy.When writingwe assume that individual variables occurring inαandγare disjoint.

    For relativization and relativized reducts,we have the following theorem:

    3 Undecidability of Modal Definability:The Stable Class Technique

    In this section,we recall the technique used in [4] to show the undecidability of modal definability of first-order sentences.The basic idea is to use the so-called stable class of frames.Balbiani and Tinchev ([4]) showed that if a class of framesis stable,then the validity problem of first-order sentences in C is reducible to the modal definability problem with respect toOnce the validity problem of firstorder sentences inis undecidable,the modal definability problem with respect tois undecidable.

    3.1 The stable class technique

    Now we give the relevant definitions in[4].

    Definition 7(Modal definability).Given a class of frames,a first-order sentenceαis modally definable with respect to C if there is a modal formulaφsuch that for all frames F∈,F ?αiff F ?φ.

    For other extended modal languages,the definition is similar.

    Definition 8(Stable class).A class of framesis stable if there is a first-order formulaand a first-order sentenceβsuch that the following two conditions hold(we say thatis a witness of the stability of):

    The definition above is defined for the language of modal logic,and it can be adapted to other extended modal languages by revising the index of

    Now we briefly recall the proof of Balbiani and Tinchev’s reduction theorem:

    Theorem 4(Theorem 1 in [4]).If a class of framesis stable,then the validity problem of first-order sentences inis reducible to the modal definability problem with respect to

    Proof.See[4,Theorem 1].Here we repeat it for the sake of checking the details of the proof.

    It is easy to see that the only two places that uses the properties of the modal language are the following:

    · The modal language contains a formula like⊥such that it is valid on no Kripke frames in C?

    · The relation FF′that F′validates more (or the same) modal formulas than F.

    Therefore,when considering an extended modal languageL,once it contains⊥and we consider the relation FF′instead of FF′when defining the stable class and proving the theorem,we can obtain the definition ofL-stable class by replacing FF′with FF′,and obtain the analogue of the theorem above by the following theorem:

    Theorem 5.If a class of framesis L-stable,then the validity problem of first-order sentences inis reducible to the L-definability problem with respect toC.

    3.2 Example of showing undecidability of modal definability within certain frame class

    We can give the following example that modal definability problem is undecidable in the class of serial frames,i.e.the frames satisfying?x?yRxy,by showing that the class of serial frames is stable.To the author’s knowledge,this result is original.

    Theorem 6.The classSer of serial frames is stable.Therefore,the modal definability problem inSer is undecidable.

    Proof.For the validity problem ofTh(Ser),since the first-order theory of lattice is a finite extension ofTh(Ser),the undecidability ofTh(Ser) follows from the undecidability of the first-order theory of lattice[17].Therefore,it suffices to show thatSeris stable.

    Now defineα(x):=?yRyx,β:=??xRxx,then we can show that conditions 1 and 2 hold forSerwitnessed by(α(x),β):

    · For condition 1,take any frame F=(W,R)∈Ser,F is serial.Consider a frame F′=(W′,R′)which is the relativized reduct of F with respect toα(x),then it is easy to see thatW′ /=?,since for a serial frame F=(W,R),R/=?,so there exists aw ∈Wsuch thatwhas anR-predecessor.We can show thatR′is a serial relation onW′:suppose otherwise,whasR-successors but noR′-successors,then the worlds in the setR[w]={v ∈W | Rwv}are all deleted when taking the relativized reduct,so thosevs have noR-predecessor,a contradiction toRwv.

    · For condition 2,for any serial frame F0=(W0,R0)∈CSer,we can construct F and F′as follows:

    It is easy to see that F and F′are serial.Since in F,the worlds with immediate predecessors are exactly the ones inW0,so F0is the relativized reduct of F with respect to?yRyx.

    It is easy to see that F ???xRxx,F′???xRxx.

    Finally,definef:F→F′such that every world is mapped tor,it is easy to see thatfis a surjective bounded morphic morphism,so FF′.

    Therefore,CSeris stable.

    4 Undecidability Results

    In this section,we will make use of the stable class technique to show that certainL-definability problems with respect to certain frame classesare undecidable by showing thatisL-stable and that the validity problem of first-order sentences inis undecidable.

    Theorem 7.The classCof all Kripke frames is LT-,LU-,LH-,LH(@)-stable.

    Proof.Define:=Rx1x,β:=?x?y(x /=y ∧??zRzx ∧??zRzy),then we can show that forLT-,LU-,LH-,LH(@)-stability,conditions 1 and 2 hold for C witnessed by

    · For condition 1,since the class of all Kripke frames is closed under taking subframes,this condition is automatically satisfied?

    · For condition 2,for any Kripke frame F0=(W0,R0)∈C,we can construct F and F′as follows:

    We take an isomorphic copy F′′of F′,and define F :=F′ ?F′′,where the isomorphic copy ofsin the F′′part is denoted ass′?

    It is trivial that F and F′ ∈

    Since in F,the worlds who hassas an immediate predecessor are exactly the ones in the original copy(i.e.,F′part)W0,so F0is the relativized reduct of F with respect toRx1xands.

    It is easy to see that F ??x?y(x/=y ∧??zRzx ∧??zRzy),F′??x?y(x/=y ∧??zRzx ∧??zRzy),since in F there are two worlds without immediate predecessor,but in F′there is only one world without immediate predecessor.Finally,definef:F→F′such that both the F′part and the F′′part are mapped to F′in an isomorphic way.Then it is easy to check thatfis a surjective tense bounded morphic morphism,a surjective bounded morphic morphism,F′is a generated subframe of F,so FF′forL ∈{LT,LU,LH,LH(@)}.

    Therefore,C isLT-,LU-,LH-,LH(@)-stable.

    Corollary 1.The L-definability problem inCis undecidable for L ∈{LT,LU,LH,LH(@)}.

    Proof.By Theorem 5 and Theorem 7,it suffices to show that the validity problem of first-order sentences in C is undecidable,which is already shown in[4,Corollary 1].

    Theorem 8.The classRef of all reflexive Kripke frames is LT-,LU-,LH-,LH(@)-stable.

    Proof.Defineα():=Rx1x∧?x1=x,β:=?x?y(x/=y ∧??z(Rzx∧?z=x)∧??z(Rzy∧?z=y)),then we can show that forLT-,LU-,LH-,LH(@)-stability,conditions 1 and 2 hold forRefwitnessed by(α(),β):

    · For condition 1,since the class of all reflexive Kripke frames is closed under taking subframes,this condition is automatically satisfied?

    · For condition 2,for any Kripke frame F0=(W0,R0)∈Ref,we can construct F and F′as follows:

    We take an isomorphic copy F′′of F′,and define F :=F′ ?F′′,where the isomorphic copy ofsin the F′′part is denoted ass′?

    It is trivial that F and F′ ∈Ref.

    Since in F,the worlds who hassas a strict immediate predecessor are exactly the ones in the original copy(i.e.,F′part)W0,so F0is the relativized reduct of F with respect toRx1x ∧?x1=xands.

    It is easy to see that F ??x?y(x/=y∧??z(Rzx∧?z=x)∧??z(Rzy∧?z=y)),F′??x?y(x/=y ∧??z(Rzx ∧?z=x)∧??z(Rzy ∧?z=y)),since in F there are two worlds without strict immediate predecessor,but in F′there is only one world without strict immediate predecessor.

    Finally,definef:F→F′such that both the F′part and the F′′part are mapped to F′in an isomorphic way.Then it is easy to check thatfis a surjective tense bounded morphic morphism,a surjective bounded morphic morphism,F′is a generated subframe of F,so FF′forL ∈{LT,LU,LH,LH(@)}.

    Therefore,CRefisLT-,LU-,LH-,LH(@)-stable.

    Corollary 2.The L-definability problem inRef is undecidable for L ∈{LT,LU,LH,LH(@)}.

    Proof.By Theorem 5 and Theorem 8,it suffices to show that the validity problem of first-order sentences inRefis undecidable,which is already shown in[4,Corollary 3].

    Theorem 9.The classTra of all transitive Kripke frames,Ref,Tra of all reflexive and transitive Kripke frames,Poset of all partial orders are LT-,LU-,LH-,LH(@)-stable.

    · For condition 1,these three classes are all closed under taking subframes,so this condition is automatically satisfied?

    Corollary 3.The LT-,LU-,LH-,LH(@)-definability problems inTra,Ref,Tra,Poset are undecidable.

    Proof.By Theorem 5 and Theorem 9,it suffices to show that the validity problems of first-order sentences inare undecidable,which is already shown in[4,Corollary 3,5].

    Theorem 10.The classSym of all symmetric Kripke frames is LT-,LU-,LH-,LH(@)-stable.

    Proof.Defineα(x,x) :=Rx1x,β:=??x?y(x=y ∨Rxy),then we can show that forLT-,LU-,LH-,LH(@)-stability,conditions 1 and 2 hold forSymwitnessed by(α(),β):

    · For condition 1,since the class of all symmetric Kripke frames is closed under taking subframes,this condition is automatically satisfied?

    · For condition 2,for any Kripke frame F0=(W0,R0)∈Sym,we can construct F and F′as follows:

    We take an isomorphic copy F′′of F′,and define F :=F′ ?F′′,where the isomorphic copy ofsin the F′′part is denoted ass′?

    It is trivial that F and F′ ∈Sym.

    Since in F,the worlds who hassas an immediate predecessor are exactly the ones in the original copy(i.e.,F′part)W0,so F0is the relativized reduct of F with respect toRx1xands.

    It is easy to see that F ???x?y(x=y ∨Rxy),F′???x?y(x=y ∨Rxy),since in F′,any nonspoint is anR′-successor ofs,while in F,each point is not connected with a point in the other isomorphic copy.

    Finally,definef:F→F′such that both the F′part and the F′′part are mapped to F′in an isomorphic way.Then it is easy to check thatfis a surjective tense bounded morphic morphism,a surjective bounded morphic morphism,F′is a generated subframe of F,so FF′forL ∈{LT,LU,LH,LH(@)}.

    Therefore,CSymisLT,LU-,LH-,LH(@)-stable.

    Corollary 4.The LT-,LU-,LH-,LH(@)-definability problem inSym is undecidable.

    Proof.By Theorem 5 and Theorem 10,it suffices to show that the validity problem of first-order sentences inSymis undecidable,which is already shown in [4,Corollary 3].

    Theorem 11.The classRef,Sym of all reflexive and symmetric Kripke frames is LT-,LU-,LH-,LH(@)-stable.

    Proof.Defineα() :=Rx1x ∧?x1=x,β:=??x?yRxy,then we can show that forLT-,LU-,LH-,LH(@)-stability,conditions 1 and 2 hold forRef,Symwitnessed by(α(),β):

    · For condition 1,since the class of all reflexive symmetric Kripke frames is closed under taking subframes,this condition is automatically satisfied?

    · For condition 2,for any Kripke frame F0=(W0,R0)∈Ref,Sym,we can construct F and F′as follows:

    We take an isomorphic copy F′′of F′,and define F :=F′ ?F′′,where the isomorphic copy ofsin the F′′part is denoted ass′?

    It is trivial that F and F′ ∈Ref,Sym.

    Since in F,the worlds who hassas a strict immediate predecessor are exactly the ones in the original copy(i.e.,F′part)W0,so F0is the relativized reduct of F with respect toRx1x ∧?x1=xands.

    It is easy to see that F ???x?yRxy,F′???x?yRxy,since any point is anR′-successor ofsin F′,while in F,points in different isomorphic copies are not connected.

    Finally,definef:F→F′such that both the F′part and the F′′part are mapped to F′in an isomorphic way.Then it is easy to check thatfis a surjective tense bounded morphic morphism,a surjective bounded morphic morphism,F′is a generated subframe of F,so FF′forL ∈{LT,LU,LH,LH(@)}.

    Corollary 5.The LT-,LU-,LH-,LH(@)-definability problem inRef,Sym is undecidable.

    Proof.By Theorem 5 and Theorem 11,it suffices to show that the validity problem of first-order sentences inRef,Symis undecidable,which is already shown in [4,Corollary 3].

    5 Conclusions and Further Directions

    In this paper,we use the stable class technique in[4]to show that certain extended modal definability in certain frame classes are undecidable.Here we use a frame construction of F and F′from F0which satisfies that F′is a tense bounded morphic image,a bounded morphic image,a generated subframe of F at the same time,so we can treatLT,LU,LH,LH(@)uniformly.

    As we know,the more expressive the extended modal language is,the less kinds of frame constructions its validities are preserved under.Therefore,if we consider the hybrid languageLH(E)which has both the nominals and the universal modality,its validity is only preserved under taking ultrafilter morphic images(e.g.,see [6]),which makes it harder to construct F and F′.While for very expressive hybrid language likeLH(E)extended with the downarrow binder,each first-order formula isLH(E,↓)-definable.Therefore,it is an interesting question that for which positionLof the extended modal language hierarchy,theL-definability problem for first-order sentences becomes decidable.

    亚洲高清免费不卡视频| 午夜视频国产福利| 国产亚洲一区二区精品| 亚洲精品成人av观看孕妇| 亚洲成人一二三区av| 嘟嘟电影网在线观看| 国产单亲对白刺激| 嘟嘟电影网在线观看| 欧美成人午夜免费资源| 国产高清三级在线| 免费少妇av软件| 欧美潮喷喷水| 国产伦在线观看视频一区| 国产毛片a区久久久久| 日韩人妻高清精品专区| 舔av片在线| 亚洲最大成人手机在线| 国产综合懂色| 亚洲欧美一区二区三区黑人 | 亚洲人成网站高清观看| 精品一区二区三区人妻视频| 久久久久久久久大av| 男女视频在线观看网站免费| 尤物成人国产欧美一区二区三区| 全区人妻精品视频| 一级片'在线观看视频| 亚洲精品国产av成人精品| 国产久久久一区二区三区| 国产又色又爽无遮挡免| 亚洲av国产av综合av卡| 搡老乐熟女国产| 国产精品一区www在线观看| 欧美一级a爱片免费观看看| 99视频精品全部免费 在线| 久久精品夜夜夜夜夜久久蜜豆| 观看美女的网站| 成人鲁丝片一二三区免费| 国产精品人妻久久久久久| 久久久亚洲精品成人影院| 色哟哟·www| 麻豆成人午夜福利视频| 国产午夜精品一二区理论片| 22中文网久久字幕| 国产精品精品国产色婷婷| 麻豆乱淫一区二区| 伊人久久精品亚洲午夜| 国产精品无大码| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲乱码一区二区免费版| 久久久精品欧美日韩精品| 午夜激情欧美在线| 特级一级黄色大片| 搡女人真爽免费视频火全软件| 欧美激情在线99| 特大巨黑吊av在线直播| av天堂中文字幕网| 亚洲国产精品专区欧美| 久久久色成人| 18+在线观看网站| 神马国产精品三级电影在线观看| 国产综合精华液| 亚洲一区高清亚洲精品| 亚洲最大成人中文| eeuss影院久久| 欧美zozozo另类| 亚洲精品国产av蜜桃| 白带黄色成豆腐渣| 爱豆传媒免费全集在线观看| 水蜜桃什么品种好| 久久久久久久久久成人| 亚洲怡红院男人天堂| av卡一久久| 高清毛片免费看| 亚洲av二区三区四区| 亚洲av成人精品一二三区| 色播亚洲综合网| 内地一区二区视频在线| 精品国产一区二区三区久久久樱花 | 大香蕉97超碰在线| 秋霞伦理黄片| 少妇人妻一区二区三区视频| 嫩草影院入口| 国产 一区 欧美 日韩| av.在线天堂| 一级片'在线观看视频| 日韩 亚洲 欧美在线| 80岁老熟妇乱子伦牲交| 欧美日韩精品成人综合77777| 一区二区三区四区激情视频| 午夜精品国产一区二区电影 | 日韩欧美 国产精品| 国产黄a三级三级三级人| 狂野欧美白嫩少妇大欣赏| 国产午夜精品一二区理论片| 26uuu在线亚洲综合色| 男女视频在线观看网站免费| 国产色爽女视频免费观看| 亚洲第一区二区三区不卡| 欧美精品国产亚洲| 简卡轻食公司| 看免费成人av毛片| 国产精品一区二区三区四区久久| 午夜激情欧美在线| 人妻制服诱惑在线中文字幕| 久久这里只有精品中国| 欧美激情在线99| 亚洲欧美一区二区三区国产| av在线亚洲专区| 九九在线视频观看精品| 色哟哟·www| 青春草国产在线视频| 国产成人freesex在线| 成人国产麻豆网| 午夜老司机福利剧场| 又黄又爽又刺激的免费视频.| av在线蜜桃| 淫秽高清视频在线观看| 免费看av在线观看网站| 夜夜看夜夜爽夜夜摸| 高清av免费在线| 成人性生交大片免费视频hd| 免费看不卡的av| 街头女战士在线观看网站| 免费观看性生交大片5| 久久精品国产亚洲av天美| 高清午夜精品一区二区三区| 免费电影在线观看免费观看| 国产精品一区www在线观看| 国产伦理片在线播放av一区| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av嫩草精品影院| 精品国内亚洲2022精品成人| 午夜福利在线在线| 97热精品久久久久久| 欧美一级a爱片免费观看看| 亚洲精品视频女| 免费看美女性在线毛片视频| 老女人水多毛片| 一区二区三区高清视频在线| 国产高清有码在线观看视频| 亚洲av成人精品一区久久| 男女啪啪激烈高潮av片| 欧美成人a在线观看| 久久久久久久亚洲中文字幕| 国产午夜精品久久久久久一区二区三区| 一区二区三区四区激情视频| 美女被艹到高潮喷水动态| 黄片无遮挡物在线观看| 午夜免费激情av| 国产在线男女| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品日本国产第一区| 91精品一卡2卡3卡4卡| av免费观看日本| 亚洲婷婷狠狠爱综合网| 免费观看精品视频网站| 又大又黄又爽视频免费| 午夜激情福利司机影院| 欧美最新免费一区二区三区| 激情 狠狠 欧美| 欧美极品一区二区三区四区| 男女边摸边吃奶| 91在线精品国自产拍蜜月| 久久久久久久国产电影| 国产成人精品久久久久久| 激情 狠狠 欧美| 亚洲美女搞黄在线观看| 日日啪夜夜撸| 午夜福利视频1000在线观看| 国产探花极品一区二区| 久久久国产一区二区| 色视频www国产| 久久鲁丝午夜福利片| 我的女老师完整版在线观看| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 国产亚洲最大av| 成人亚洲精品av一区二区| 亚洲第一区二区三区不卡| 国产精品精品国产色婷婷| 久久精品国产鲁丝片午夜精品| 一区二区三区高清视频在线| 午夜福利在线观看吧| 80岁老熟妇乱子伦牲交| 国产 亚洲一区二区三区 | 在现免费观看毛片| 久久精品国产亚洲av涩爱| 国产精品一及| 国产v大片淫在线免费观看| 亚洲第一区二区三区不卡| 成人漫画全彩无遮挡| 又爽又黄a免费视频| 亚洲精品自拍成人| 久久久久九九精品影院| 九草在线视频观看| 搡老乐熟女国产| 国产乱人偷精品视频| 精品人妻偷拍中文字幕| 久久久久九九精品影院| 岛国毛片在线播放| 噜噜噜噜噜久久久久久91| 亚洲美女搞黄在线观看| 国产精品无大码| 亚洲最大成人手机在线| 国产精品1区2区在线观看.| 一边亲一边摸免费视频| 亚洲国产精品国产精品| 亚洲国产精品sss在线观看| 亚洲欧美清纯卡通| 免费大片黄手机在线观看| 亚洲av成人av| 蜜桃亚洲精品一区二区三区| 男女边摸边吃奶| 亚洲婷婷狠狠爱综合网| 亚洲最大成人中文| 国产高清国产精品国产三级 | 男人狂女人下面高潮的视频| av.在线天堂| 校园人妻丝袜中文字幕| 免费看不卡的av| 国产成人免费观看mmmm| 中文字幕亚洲精品专区| 婷婷色麻豆天堂久久| 精品久久久久久久末码| 特级一级黄色大片| 国产视频首页在线观看| 亚洲在线观看片| 亚洲精品日韩av片在线观看| 亚洲精品第二区| av天堂中文字幕网| 久久6这里有精品| 一级毛片aaaaaa免费看小| 美女主播在线视频| 麻豆乱淫一区二区| av在线蜜桃| 一个人观看的视频www高清免费观看| 午夜免费观看性视频| 又大又黄又爽视频免费| 成人二区视频| 在线观看av片永久免费下载| 毛片女人毛片| 欧美区成人在线视频| 18禁在线播放成人免费| 国产午夜精品一二区理论片| 高清av免费在线| 亚洲精品乱码久久久v下载方式| 男女边摸边吃奶| 性色avwww在线观看| 亚洲,欧美,日韩| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久 | 一级爰片在线观看| 色综合亚洲欧美另类图片| 国产乱来视频区| 免费观看av网站的网址| 精品久久久精品久久久| 久久久久久久久久久免费av| 一夜夜www| 可以在线观看毛片的网站| 国产精品av视频在线免费观看| 建设人人有责人人尽责人人享有的 | 最近2019中文字幕mv第一页| 三级男女做爰猛烈吃奶摸视频| 国产伦精品一区二区三区视频9| 人妻少妇偷人精品九色| 欧美最新免费一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久久久免| 亚洲精品,欧美精品| 午夜精品在线福利| 熟女电影av网| 日韩欧美精品免费久久| 白带黄色成豆腐渣| 日日摸夜夜添夜夜爱| 欧美日本视频| 床上黄色一级片| 亚洲精品一区蜜桃| 91aial.com中文字幕在线观看| 亚洲国产精品成人久久小说| 亚洲第一区二区三区不卡| 69av精品久久久久久| 久久久久久久久中文| 亚洲av男天堂| 又爽又黄a免费视频| 3wmmmm亚洲av在线观看| 麻豆av噜噜一区二区三区| 亚洲第一区二区三区不卡| 干丝袜人妻中文字幕| 精品一区二区三区人妻视频| 大香蕉97超碰在线| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 尾随美女入室| 国产一区亚洲一区在线观看| av在线老鸭窝| 丰满人妻一区二区三区视频av| 晚上一个人看的免费电影| 日韩av在线免费看完整版不卡| 亚洲av免费高清在线观看| www.av在线官网国产| 国产视频首页在线观看| 国产又色又爽无遮挡免| 久久久精品94久久精品| 美女被艹到高潮喷水动态| 亚洲一级一片aⅴ在线观看| 欧美极品一区二区三区四区| 26uuu在线亚洲综合色| 美女高潮的动态| av网站免费在线观看视频 | 黄色配什么色好看| 69人妻影院| 91精品一卡2卡3卡4卡| 夫妻午夜视频| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 午夜精品一区二区三区免费看| 亚洲美女视频黄频| 午夜福利成人在线免费观看| 91av网一区二区| 国产精品一二三区在线看| 国内少妇人妻偷人精品xxx网站| 99久久精品国产国产毛片| 亚洲av二区三区四区| 欧美zozozo另类| 国产探花极品一区二区| 国产高清有码在线观看视频| 欧美激情久久久久久爽电影| 69av精品久久久久久| 久久精品国产亚洲av涩爱| 国产精品精品国产色婷婷| 中文字幕av在线有码专区| 午夜激情久久久久久久| 国产欧美日韩精品一区二区| 精品久久久久久久久av| 80岁老熟妇乱子伦牲交| 日韩强制内射视频| 欧美高清成人免费视频www| 国国产精品蜜臀av免费| 80岁老熟妇乱子伦牲交| 狂野欧美激情性xxxx在线观看| 国产探花在线观看一区二区| 男女边吃奶边做爰视频| a级一级毛片免费在线观看| 亚洲国产欧美在线一区| 国产色婷婷99| 国产av不卡久久| 亚洲人成网站高清观看| 亚洲一级一片aⅴ在线观看| av黄色大香蕉| 日韩三级伦理在线观看| 免费少妇av软件| 国产欧美另类精品又又久久亚洲欧美| 国产色婷婷99| 久久久久久久午夜电影| 亚洲欧美成人精品一区二区| 欧美性猛交╳xxx乱大交人| 国产又色又爽无遮挡免| 欧美一区二区亚洲| 99re6热这里在线精品视频| 少妇裸体淫交视频免费看高清| 久久亚洲国产成人精品v| 我要看日韩黄色一级片| 亚洲性久久影院| 久久久精品欧美日韩精品| 免费看不卡的av| 嫩草影院精品99| 久久久久久久久中文| 综合色av麻豆| 日日摸夜夜添夜夜添av毛片| 日本爱情动作片www.在线观看| 伊人久久精品亚洲午夜| 午夜福利视频精品| 99视频精品全部免费 在线| 久久久久九九精品影院| 国内精品美女久久久久久| 99久久精品国产国产毛片| 成年女人看的毛片在线观看| 简卡轻食公司| 国产亚洲5aaaaa淫片| 少妇熟女欧美另类| 91aial.com中文字幕在线观看| 成人鲁丝片一二三区免费| 亚洲熟女精品中文字幕| 99热这里只有精品一区| av免费在线看不卡| 成人美女网站在线观看视频| 国国产精品蜜臀av免费| 亚洲性久久影院| 午夜亚洲福利在线播放| 网址你懂的国产日韩在线| 亚洲精品影视一区二区三区av| 亚洲av二区三区四区| 成人无遮挡网站| 在线天堂最新版资源| 午夜福利视频1000在线观看| 男的添女的下面高潮视频| 欧美xxxx性猛交bbbb| 亚洲精品亚洲一区二区| 婷婷色av中文字幕| 最新中文字幕久久久久| 尤物成人国产欧美一区二区三区| 亚洲国产欧美在线一区| 午夜免费男女啪啪视频观看| 一夜夜www| 白带黄色成豆腐渣| 美女cb高潮喷水在线观看| 免费观看在线日韩| 成人av在线播放网站| 精品人妻偷拍中文字幕| 免费看av在线观看网站| 草草在线视频免费看| 伊人久久国产一区二区| 国产一区亚洲一区在线观看| 少妇的逼水好多| 成人漫画全彩无遮挡| 伊人久久精品亚洲午夜| 97热精品久久久久久| 国产午夜福利久久久久久| 成人av在线播放网站| 婷婷色麻豆天堂久久| 免费看av在线观看网站| 九九久久精品国产亚洲av麻豆| 天堂影院成人在线观看| 国产成人精品婷婷| 久久久久久久久中文| 观看美女的网站| 看十八女毛片水多多多| 大香蕉97超碰在线| 婷婷色麻豆天堂久久| 男人狂女人下面高潮的视频| www.色视频.com| 亚洲在线观看片| 成人特级av手机在线观看| 久久久久久久久久成人| 一区二区三区免费毛片| 成人毛片60女人毛片免费| 97精品久久久久久久久久精品| 婷婷色麻豆天堂久久| 久热久热在线精品观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av成人精品一区久久| 亚洲国产欧美人成| 不卡视频在线观看欧美| 国产成人a∨麻豆精品| av.在线天堂| 国产成人aa在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲av不卡在线观看| 久久99热这里只有精品18| 成人美女网站在线观看视频| 中国国产av一级| 国产成人freesex在线| 久久午夜福利片| 国产免费福利视频在线观看| 人妻系列 视频| 26uuu在线亚洲综合色| 国产综合懂色| 综合色av麻豆| 看十八女毛片水多多多| 中文乱码字字幕精品一区二区三区 | 亚洲精品国产av成人精品| 成人毛片a级毛片在线播放| 色视频www国产| 亚洲av成人精品一二三区| 亚洲在线自拍视频| 777米奇影视久久| 青春草视频在线免费观看| 噜噜噜噜噜久久久久久91| 欧美激情久久久久久爽电影| 国内精品宾馆在线| 久久99精品国语久久久| 欧美高清性xxxxhd video| 亚洲精品乱久久久久久| 在线播放无遮挡| 午夜福利视频精品| 国产高潮美女av| 建设人人有责人人尽责人人享有的 | 国产成人精品一,二区| 一级毛片黄色毛片免费观看视频| 亚洲欧美一区二区三区国产| 日韩伦理黄色片| 亚洲在线观看片| 青春草亚洲视频在线观看| 九草在线视频观看| 亚洲精品日本国产第一区| 久久99蜜桃精品久久| 蜜桃久久精品国产亚洲av| 国产亚洲91精品色在线| 午夜免费观看性视频| 一夜夜www| 国产精品久久久久久久电影| 久久精品国产亚洲网站| 精品一区二区免费观看| 亚洲人成网站在线观看播放| 国产成人a∨麻豆精品| 成人毛片60女人毛片免费| 超碰97精品在线观看| 亚洲综合色惰| 赤兔流量卡办理| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区黑人 | 热99在线观看视频| 成人欧美大片| 91久久精品国产一区二区成人| 精品一区二区三区人妻视频| 久久草成人影院| 国产 亚洲一区二区三区 | 国产激情偷乱视频一区二区| 91久久精品国产一区二区成人| 精品一区二区三区人妻视频| 国产精品久久久久久久久免| 国产精品一区二区三区四区久久| 搞女人的毛片| 久久久色成人| 日本午夜av视频| 国产一区有黄有色的免费视频 | 国产探花在线观看一区二区| 久久精品久久精品一区二区三区| 三级国产精品欧美在线观看| 欧美 日韩 精品 国产| 亚洲av福利一区| 麻豆成人av视频| 日本一二三区视频观看| 免费高清在线观看视频在线观看| 国产在线一区二区三区精| 丰满乱子伦码专区| 亚洲经典国产精华液单| 少妇人妻精品综合一区二区| 久久久成人免费电影| 国产激情偷乱视频一区二区| 嫩草影院入口| freevideosex欧美| 乱码一卡2卡4卡精品| 成人漫画全彩无遮挡| 国产av码专区亚洲av| 成年免费大片在线观看| 丰满人妻一区二区三区视频av| 尾随美女入室| 久久国内精品自在自线图片| 少妇人妻一区二区三区视频| 国产成人a区在线观看| 欧美日韩视频高清一区二区三区二| 国产av码专区亚洲av| 麻豆av噜噜一区二区三区| 最近最新中文字幕免费大全7| 91狼人影院| 午夜免费激情av| 国产午夜精品久久久久久一区二区三区| 国产色爽女视频免费观看| 青青草视频在线视频观看| 国产一级毛片七仙女欲春2| 男人狂女人下面高潮的视频| 国产av不卡久久| 欧美不卡视频在线免费观看| 能在线免费观看的黄片| 九九久久精品国产亚洲av麻豆| 免费av观看视频| 亚洲国产最新在线播放| 亚洲欧美精品专区久久| 国产精品麻豆人妻色哟哟久久 | 国产一级毛片七仙女欲春2| 99久国产av精品| 一级片'在线观看视频| 99久久九九国产精品国产免费| 午夜爱爱视频在线播放| 久久99热这里只有精品18| 日韩成人伦理影院| 国产在视频线精品| 中文欧美无线码| 免费观看精品视频网站| 国产成人a∨麻豆精品| 久久久午夜欧美精品| 国产亚洲av片在线观看秒播厂 | 少妇的逼水好多| 性色avwww在线观看| 欧美日韩在线观看h| 丝袜喷水一区| 久久精品久久精品一区二区三区| 22中文网久久字幕| 尤物成人国产欧美一区二区三区| 国产综合精华液| 欧美精品一区二区大全| 欧美高清性xxxxhd video| 舔av片在线| 大话2 男鬼变身卡| 欧美高清性xxxxhd video| 最近视频中文字幕2019在线8| 国产午夜福利久久久久久| 亚洲av电影不卡..在线观看| 色综合站精品国产| 在线天堂最新版资源| 欧美成人精品欧美一级黄| 精品久久国产蜜桃| 99视频精品全部免费 在线| 国产精品久久久久久久久免| 久久久久久久午夜电影| 一级毛片黄色毛片免费观看视频| 欧美日韩亚洲高清精品| 夫妻午夜视频| 日本免费在线观看一区| 成人亚洲精品av一区二区| 国产视频首页在线观看| 亚洲欧美精品自产自拍| 高清毛片免费看| 亚洲av一区综合| 国产永久视频网站| 最近最新中文字幕大全电影3| 亚洲欧美日韩卡通动漫| 亚洲精品久久久久久婷婷小说| 亚洲av成人精品一区久久| 91精品伊人久久大香线蕉| 国产av在哪里看| 久久精品熟女亚洲av麻豆精品 |